tanatapanun's picture
Model save
54e6200 verified
metadata
license: apache-2.0
base_model: GanjinZero/biobart-base
tags:
  - generated_from_trainer
metrics:
  - rouge
model-index:
  - name: fine-tuned-BioBART-15-epochs-1500-input-256-output
    results: []

fine-tuned-BioBART-15-epochs-1500-input-256-output

This model is a fine-tuned version of GanjinZero/biobart-base on the None dataset. It achieves the following results on the evaluation set:

  • Loss: 0.8909
  • Rouge1: 0.1801
  • Rouge2: 0.0468
  • Rougel: 0.1405
  • Rougelsum: 0.1403
  • Gen Len: 36.53

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 0.0001
  • train_batch_size: 4
  • eval_batch_size: 4
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_ratio: 0.1
  • num_epochs: 15

Training results

Training Loss Epoch Step Validation Loss Rouge1 Rouge2 Rougel Rougelsum Gen Len
No log 1.0 301 1.4869 0.086 0.0035 0.0743 0.0744 10.36
4.753 2.0 602 0.9880 0.0958 0.0233 0.0687 0.0686 47.88
4.753 3.0 903 0.9108 0.0622 0.009 0.0617 0.0622 10.39
0.9239 4.0 1204 0.8681 0.1159 0.0272 0.085 0.0849 27.95
0.7513 5.0 1505 0.8490 0.1732 0.0333 0.1345 0.1352 37.9
0.7513 6.0 1806 0.8486 0.1523 0.0297 0.12 0.1209 33.96
0.5751 7.0 2107 0.8402 0.1825 0.0426 0.1433 0.1437 40.27
0.5751 8.0 2408 0.8500 0.1712 0.0303 0.1425 0.1427 31.42
0.4702 9.0 2709 0.8542 0.1764 0.0325 0.1275 0.1273 44.93
0.3782 10.0 3010 0.8615 0.1667 0.042 0.1328 0.1335 36.86
0.3782 11.0 3311 0.8714 0.1756 0.0358 0.1364 0.1359 35.21
0.3005 12.0 3612 0.8772 0.1801 0.0368 0.1427 0.1427 33.99
0.3005 13.0 3913 0.8818 0.1685 0.0397 0.1323 0.1331 34.67
0.2417 14.0 4214 0.8891 0.189 0.0495 0.145 0.1445 36.0
0.2148 15.0 4515 0.8909 0.1801 0.0468 0.1405 0.1403 36.53

Framework versions

  • Transformers 4.36.2
  • Pytorch 1.12.1+cu113
  • Datasets 2.16.1
  • Tokenizers 0.15.0