Update README.md
Browse files
README.md
CHANGED
@@ -90,7 +90,24 @@ Ideal for:
|
|
90 |
|
91 |
## How to Use
|
92 |
|
93 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
94 |
|
95 |
```python
|
96 |
from transformers import AutoTokenizer, AutoModelForSequenceClassification
|
|
|
90 |
|
91 |
## How to Use
|
92 |
|
93 |
+
Using pipelines, it takes only 4 lines:
|
94 |
+
|
95 |
+
```pyython
|
96 |
+
from transformers import pipeline
|
97 |
+
|
98 |
+
# Load the classification pipeline with the specified model
|
99 |
+
pipe = pipeline("text-classification", model="tabularisai/multilingual-sentiment-analysis")
|
100 |
+
|
101 |
+
# Classify a new sentence
|
102 |
+
sentence = "I love this product! It's amazing and works perfectly."
|
103 |
+
result = pipe(sentence)
|
104 |
+
|
105 |
+
# Print the result
|
106 |
+
print(result)
|
107 |
+
```
|
108 |
+
|
109 |
+
Below is a Python example on how to use the multilingual sentiment model without pipelines:
|
110 |
+
|
111 |
|
112 |
```python
|
113 |
from transformers import AutoTokenizer, AutoModelForSequenceClassification
|