File size: 8,493 Bytes
2a26d3b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
import json
import re
import pandas as pd
from tqdm import tqdm
from utils import (
    sample_from_two_lists,
    get_dfs_info,
    get_tool,
    filter_code,
    read_jsonl,
    filter_cot,
    timeout,
    TimeoutException,
    execute_with_timeout,
    load_json,
    save_json,
)
from table_qa_execution_eval.sft_prompt import (
    prompt_with_format_list,
    prompt_with_instruction_list,
)
from inference import (
    generate_outputs,
    load_model,
    load_tokenizer_and_template,
    get_infer_kwargs,
)
import os
import argparse
import shutil
from pathlib import Path
from concurrent.futures import ThreadPoolExecutor, TimeoutError
from joblib import Parallel, delayed


CODE_PREFIX = """import matplotlib.pyplot as plt
from mplfonts import use_font
import pandas as pd
import numpy as np
import seaborn as sns
import warnings

warnings.filterwarnings("ignore")
# Fixing Chinese font issues
use_font("Noto Serif CJK SC")
plt.rcParams['font.sans-serif']=['SimHei']
plt.rcParams['axes.unicode_minus']=False\n"""


def format_inputs(test_datas: list[dict],args) -> list[list[dict]]:
    """Format inputs to the required messages"""
    # 把需要推理的数据拼成 message 形式
    format_message_datas = []
    for idx, test_dt in enumerate(test_datas):
        if args.slim:
            messages = test_dt["message"]
        else:
            instruction = test_dt["instruction"]
            table_info = test_dt["table_info"]
            df_info_simple_str = test_dt["df_info_simple_str"]
            instruction = instruction.replace(table_info, df_info_simple_str)
            messages = [{"role": "user", "content": instruction}]
        format_message_datas.append(messages)

    return format_message_datas


def eval_outputs_parallel(
    llm_output: str,
    test_data: str,
    args,
) -> dict:
    df_paths = test_data["table_paths"]
    df_names = test_data["df_names"]
    query = test_data["query"]
    table_paths = test_data["table_paths"]
    df = [pd.read_csv(path, low_memory=False) for path in df_paths]

    if args.slim:
        # tool = get_tool(df, df_names)
        tool = get_tool(df) 
        instruction = test_data["message"]
    else:
        tool = get_tool(df, df_names)
        instruction = test_data["instruction"]
        table_info = test_data["table_info"]
        df_info_simple_str = test_data["df_info_simple_str"]
        instruction = instruction.replace(table_info, df_info_simple_str)

    code, _ = filter_code(llm_output)
    # cot = filter_cot(llm_output)
    eval_result_sample = {}
    # 运行超时代码,认为都是异常代码, 在tool.run()过程中,可能会print出额外的内容,不影响执行
    try:
        # 如果生成的代码为空(解析不到代码), 也认为是llm没有理解observe内容或instruct, 输出为Code Error
        if not code:
            observe = "Code Error: output empty code.."
        elif 'df.explode("Candidate")' in code:
            raise ValueError(f"df.explode error")
        else:
            with timeout(15):  # 设置超时时间为15秒
                pure_code = CODE_PREFIX + code
                # print("pure code:", pure_code)
                observe = tool.run(pure_code)  # 需要监控超时的代码块
                # observe = execute_with_timeout(pure_code, 15, tool)
                if isinstance(observe, pd.DataFrame):
                    observe = observe.head().to_markdown(index=False)
                else:
                    observe = str(observe)
    except TimeoutException as e:
        observe = f"Timeout Error: code running time exceed 15s.."
    except SystemExit as e:
        observe = f"SystemExit Error: {str(e)}"
    except Exception as e:
        observe = f"Unexpected Error: {str(e)}"

    eval_result_sample["code"] = code
    eval_result_sample["llm_output"] = llm_output
    eval_result_sample["observe"] = observe
    eval_result_sample["flag"] = execution_eval(observe)
    eval_result_sample["query"] = query
    eval_result_sample["table_paths"] = table_paths
    eval_result_sample["instruction"] = instruction

    return eval_result_sample


def execution_eval(observe: str) -> bool:
    """
    Test whether the code generated by eval_llm can be executed.
    :param output: output code of llm generation
    :return: True or False
    """
    # 只要执行结果中不出现error 或者 exception, 就认为代码可执行
    pattern = re.compile(r"error|exception", re.IGNORECASE)
    try:
        res = not pattern.search(observe)
    except:
        res = True
    return res


def main(args):
    eval_dataset_path = args.eval_dataset_path
    eval_results_save_path = args.eval_results_save_path
    model_path = args.model_path
    max_model_len = args.max_model_len
    template = args.template
    gpus_num = args.gpus_num
    model_kwargs = get_infer_kwargs(args)
    print("Load model...")
    llm_model = load_model(model_path, max_model_len, gpus_num)
    tokenizer = load_tokenizer_and_template(model_path, template)
    eval_dataset_path = args.eval_dataset_path
    test_datas = load_json(eval_dataset_path)

    format_message_datas = format_inputs(test_datas,args)

    print("Generating eval answers now..")
    model_outputs = generate_outputs(
        format_message_datas, llm_model, tokenizer, model_kwargs
    )
    # with open("model_output.json","w")as f:
    #     json.dump(model_outputs,f,ensure_ascii=False)
    print("Generating answers finished..")


    eval_answers = Parallel(n_jobs=48)(
        delayed(eval_outputs_parallel)(model_outputs[i]["output_text"], test_datas[i],args)
        for i in range(len(test_datas))
    )

    # calculate  execute rate
    execute_passed = 0
    total_len = len(eval_answers)
    for eval_answer in eval_answers:
        execute_passed += int(eval_answer["flag"])
    print(f"Sample length: {total_len}. ")
    print(
        f"Execute Passed: {execute_passed}." f"\tExecute pass-rate is:",
        round(execute_passed / total_len, 3),
    )

    # save eval result
    with open(eval_results_save_path, "w", encoding="utf-8") as f:
        json.dump(eval_answers, f, ensure_ascii=False)


if __name__ == "__main__":
    # 确定images目录是否存在和写权限
    output_dir = Path(__file__).parent / "images"
    if os.path.exists(output_dir):
        if not os.access(output_dir, os.W_OK):
            shutil.rmtree(output_dir)
            os.makedirs(output_dir)
            os.chmod(output_dir, 0o777)
            print("not write permission, makedir:", output_dir)
        else:
            print(f"{output_dir} exists!")
    else:
        os.makedirs(output_dir)
        os.chmod(output_dir, 0o777)
        print("makedir:", output_dir)
    parser = argparse.ArgumentParser(description="eval tableqa python code")
    parser.add_argument(
        "--gpus_num", type=int, default=1, help="the number of GPUs you want to use."
    )
    parser.add_argument(
        "--temperature", type=float, default=0.01, help="Temperature setting"
    )

    parser.add_argument(
        "--template",
        type=str,
        choices=[None, "llama3", "baichuan", "chatglm"],
        default=None,
        help="The template must be specified if not present in the config file",
    )

    parser.add_argument(
        "--model_path", type=str, required=True, help="Path to the model"
    )
    parser.add_argument(
        "--model_type",
        choices=["base_model", "chat_model"],
        default="chat_model",
        help="Base model or Chat model",
    )
    parser.add_argument(
        "--slim",
        action="store_true",
        help="slim data format",
    )
    parser.add_argument(
        "--max_new_tokens",
        type=int,
        default=1024,
        help="Maximum number of output tokens",
    )
    parser.add_argument("--max_model_len", type=int, default=8192, help="Cutoff length")
    parser.add_argument(
        "--eval_dataset_path",
        type=str,
        default="table_related_benchmarks/evalset/table_qa_execuate_test/test_datas_zuizong_filter.json",
        help="Test Set Path",
    )

    parser.add_argument(
        "--eval_results_save_path",
        type=str,
        default="output/result_table_qa.json",
        help="Max iteration for llm to run each code correction task",
    )
    args = parser.parse_args()

    os.environ["TOKENIZERS_PARALLELISM"] = "false"
    main(args)
    """
    python run_eval.py --model_path /data0/pretrained-models/Qwen2-7B-Instruct
    """