File size: 4,939 Bytes
2a26d3b |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 |
import os
import warnings
from inference_encoder import inference_with_encoder, format_encoder_tables, read_df_head, build_encoder_table_part_content
from inference import load_model, load_tokenizer_and_template
from table_bench_eval.run_eval import run_eval, execute_samples_and_save
from table_bench_eval.utils import read_json_file
from typing import List, Dict
import json
import pandas as pd
from table_bench_eval.utils import (
parse_chart_code_then_exec,
parse_code_then_exec,
pre_save_table_to_csv,
parse_final_answer_prediction,
write_json_to_file,
execution_eval,
parse_python_code
)
def format_encoder_inputs(samples: List[Dict]) -> List:
"""
输入数据格式化函数,按照 generate 的格式要求改造 inputs
:param samples: 待格式化样例数据
:param mode: 格式化模式
"""
# 把需要推理的数据拼成 message 形式
msgs = []
for sample in samples:
msg_sys = sample["instruction"]
table_str = sample["table"]
table_data = json.loads(table_str)
pre_save_table_to_csv(table_data)
# encoder 信息
df_names = ["table"]
table_paths = ["table.csv"]
msg_sys_list = msg_sys.split(table_str)
msg = [
{
"role": "user",
"content": [
{"type": "text", "text": msg_sys_list[0]},
{"type": "text", "text": table_str},
*build_encoder_table_part_content(df_names, table_paths),
{"type": "text", "text": msg_sys_list[1]},
],
}
]
msgs.append(msg)
return msgs
def main(args):
warnings.filterwarnings('ignore')
inference_output_dir = args.inference_output_dir
base_model_name = args.model_path
# 循环四个数据集加载数据进行
fnames = [x for x in os.listdir(args.eval_dataset_path) if x.endswith('.jsonl')]
all_samples = []
n_samples_test = None
for file_name in fnames:
print(file_name)
file_path = os.path.join(args.eval_dataset_path, file_name)
samples = read_json_file(file_path)
if n_samples_test:
samples = samples[:n_samples_test]
# format messages
msgs = format_encoder_inputs(samples)
# inference
print("Generating eval answers now..")
model_outputs_text = inference_with_encoder(args, msgs)
print("model_outputs_text", len(model_outputs_text))
print("Generating answers finished..")
assert len(model_outputs_text) == len(samples)
for i, output in enumerate(model_outputs_text):
samples[i]["raw_generation"] = output
save_path = os.path.join(inference_output_dir, base_model_name.split('/')[-1]+'_infer_'+file_name.split('.')[0]+'.jsonl')
with open(save_path, 'w') as f:
for item in samples:
f.write(json.dumps(item)+'\n')
all_samples.extend(samples)
# get execuate results
all_samples = execute_samples_and_save(all_samples, inference_output_dir, base_model_name)
# eval and save results
run_eval(all_samples, inference_output_dir, base_model_name)
if __name__ == "__main__":
from argparse import ArgumentParser
parser = ArgumentParser(description="Table bench evaluation")
parser.add_argument(
"--gpus_num", type=int, default=1, help="the number of GPUs you want to use."
)
parser.add_argument(
"--temperature", type=float, default=0.01, help="Temperature setting"
)
parser.add_argument(
"--model_path", type=str, help="Path to the model", default="/data4/sft_output/qwen2.5-7b-base-0923/checkpoint-2000"
)
parser.add_argument(
"--eval_dataset_path",
type=str,
default="table_related_benchmarks/evalset/TableBench",
help="Test Set Path",
)
parser.add_argument(
"--inference_output_dir",
type=str,
default="table_related_benchmarks/evalset/TableBench/eval_results",
help="Max iteration for llm to run each code correction task",
)
parser.add_argument(
"--model_type",
choices=["base_model", "chat_model"],
default="chat_model",
help="Base model or Chat model",
)
parser.add_argument(
"--max_model_len", type=int, default=15000, help="Max model length"
)
parser.add_argument(
"--max_new_tokens",
type=int,
default=2048,
help="Maximum number of output tokens",
)
parser.add_argument(
"--template",
type=str,
choices=[None, "llama3", "baichuan", "chatglm"],
default=None,
help="The template must be specified if not present in the config file",
)
args = parser.parse_args()
os.environ["TOKENIZERS_PARALLELISM"] = "false"
main(args) |