File size: 1,183 Bytes
6b1f225 86a2fd4 6b1f225 bb2f0ee 125b739 bb2f0ee ecb53ee 04e4d7e ecb53ee bb2f0ee |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 |
---
license: mit
widget:
- text: "привет[SEP]привет![SEP]как дела?[RESPONSE_TOKEN]да, супер, вот только проснулся"
---
This classification model is based on [cointegrated/rubert-tiny2](https://huggingface.co/cointegrated/rubert-tiny2).
The model should be used to produce relevance and specificity of the last message in the context of a dialog.
It is pretrained on corpus of dialog data from social networks and finetuned on [tinkoff-ai/context_similarity](https://huggingface.co/tinkoff-ai/context_similarity).
The performance of the model on validation split [tinkoff-ai/context_similarity](https://huggingface.co/tinkoff-ai/context_similarity) (with the best thresholds for validation samples):
| | f0.5 | ROC AUC |
|:------------|-------:|----------:|
| relevance | 0.82 | 0.74 |
| specificity | 0.81 | 0.8 |
The model can be loaded as follows:
```python
# pip install transformers
from transformers import AutoTokenizer, AutoModel
tokenizer = AutoTokenizer.from_pretrained("tinkoff-ai/context_similarity")
model = AutoModel.from_pretrained("tinkoff-ai/context_similarity")
# model.cuda()
``` |