File size: 2,662 Bytes
6b1f225
 
86a2fd4
58a3b93
8b1fccf
58a3b93
8b1fccf
58a3b93
8b1fccf
6b1f225
bb2f0ee
125b739
8539235
bb2f0ee
8539235
a8f8dcb
 
8539235
e81ff35
 
799292a
ea35c2a
799292a
a8f8dcb
bb2f0ee
ecb53ee
1ff1a29
 
 
 
ecb53ee
bb2f0ee
566945e
bb2f0ee
 
fa005e0
58a3b93
 
ea35c2a
 
e81ff35
fa005e0
2468cee
fa005e0
e81ff35
84a19e3
 
ea35c2a
799292a
ea35c2a
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
---
license: mit
widget:
- text: "[CLS]привет[SEP]привет![SEP]как дела?[RESPONSE_TOKEN]супер, вот только проснулся, у тебя как?"
  example_title: "Dialog example 1"
- text: "[CLS]привет[SEP]привет![SEP]как дела?[RESPONSE_TOKEN]норм"
  example_title: "Dialog example 2"
- text: "[CLS]привет[SEP]привет![SEP]как дела?[RESPONSE_TOKEN]норм, у тя как?"
  example_title: "Dialog example 3"
---

This classification model is based on [cointegrated/rubert-tiny2](https://huggingface.co/cointegrated/rubert-tiny2).
The model should be used to produce relevance and specificity of the last message in the context of a dialogue.

The labels explanation:
- `relevance`: is the last message in the dialogue relevant in the context of the full dialogue.
- `specificity`: is the last message in the dialogue interesting and promotes the continuation of the dialogue.

It is pretrained on a large corpus of dialog data in unsupervised manner: the model is trained to predict whether last response was in a real dialog, or it was pulled from some other dialog at random.
Then it was finetuned on manually labelled examples (dataset will be posted soon).

The model was trained with three messages in the context and one response. Each message was tokenized separately with ```  max_length = 32 ```.

The performance of the model on validation split (dataset will be posted soon) (with the best thresholds for validation samples):


|             |   threshold |   f0.5 |   ROC AUC |
|:------------|------------:|-------:|----------:|
| relevance   |        0.51 |   0.82 |      0.74 |
| specificity |        0.54 |   0.81 |      0.8  |


How to use:

```python
import torch
from transformers import AutoTokenizer, AutoModelForSequenceClassification

tokenizer = AutoTokenizer.from_pretrained('tinkoff-ai/response-quality-classifier-tiny')
model = AutoModelForSequenceClassification.from_pretrained('tinkoff-ai/response-quality-classifier-tiny')
inputs = tokenizer('[CLS]привет[SEP]привет![SEP]как дела?[RESPONSE_TOKEN]норм, у тя как?', max_length=128, add_special_tokens=False, return_tensors='pt')
with torch.inference_mode():
    logits = model(**inputs).logits
    probas = torch.sigmoid(logits)[0].cpu().detach().numpy()
relevance, specificity = probas
```

The [app](https://huggingface.co/spaces/tinkoff-ai/response-quality-classifiers) where you can easily interact with this model.

The work was done during internship at Tinkoff by [egoriyaa](https://github.com/egoriyaa), mentored by [solemn-leader](https://huggingface.co/solemn-leader).