File size: 2,662 Bytes
6b1f225 86a2fd4 58a3b93 8b1fccf 58a3b93 8b1fccf 58a3b93 8b1fccf 6b1f225 bb2f0ee 125b739 8539235 bb2f0ee 8539235 a8f8dcb 8539235 e81ff35 799292a ea35c2a 799292a a8f8dcb bb2f0ee ecb53ee 1ff1a29 ecb53ee bb2f0ee 566945e bb2f0ee fa005e0 58a3b93 ea35c2a e81ff35 fa005e0 2468cee fa005e0 e81ff35 84a19e3 ea35c2a 799292a ea35c2a |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 |
---
license: mit
widget:
- text: "[CLS]привет[SEP]привет![SEP]как дела?[RESPONSE_TOKEN]супер, вот только проснулся, у тебя как?"
example_title: "Dialog example 1"
- text: "[CLS]привет[SEP]привет![SEP]как дела?[RESPONSE_TOKEN]норм"
example_title: "Dialog example 2"
- text: "[CLS]привет[SEP]привет![SEP]как дела?[RESPONSE_TOKEN]норм, у тя как?"
example_title: "Dialog example 3"
---
This classification model is based on [cointegrated/rubert-tiny2](https://huggingface.co/cointegrated/rubert-tiny2).
The model should be used to produce relevance and specificity of the last message in the context of a dialogue.
The labels explanation:
- `relevance`: is the last message in the dialogue relevant in the context of the full dialogue.
- `specificity`: is the last message in the dialogue interesting and promotes the continuation of the dialogue.
It is pretrained on a large corpus of dialog data in unsupervised manner: the model is trained to predict whether last response was in a real dialog, or it was pulled from some other dialog at random.
Then it was finetuned on manually labelled examples (dataset will be posted soon).
The model was trained with three messages in the context and one response. Each message was tokenized separately with ``` max_length = 32 ```.
The performance of the model on validation split (dataset will be posted soon) (with the best thresholds for validation samples):
| | threshold | f0.5 | ROC AUC |
|:------------|------------:|-------:|----------:|
| relevance | 0.51 | 0.82 | 0.74 |
| specificity | 0.54 | 0.81 | 0.8 |
How to use:
```python
import torch
from transformers import AutoTokenizer, AutoModelForSequenceClassification
tokenizer = AutoTokenizer.from_pretrained('tinkoff-ai/response-quality-classifier-tiny')
model = AutoModelForSequenceClassification.from_pretrained('tinkoff-ai/response-quality-classifier-tiny')
inputs = tokenizer('[CLS]привет[SEP]привет![SEP]как дела?[RESPONSE_TOKEN]норм, у тя как?', max_length=128, add_special_tokens=False, return_tensors='pt')
with torch.inference_mode():
logits = model(**inputs).logits
probas = torch.sigmoid(logits)[0].cpu().detach().numpy()
relevance, specificity = probas
```
The [app](https://huggingface.co/spaces/tinkoff-ai/response-quality-classifiers) where you can easily interact with this model.
The work was done during internship at Tinkoff by [egoriyaa](https://github.com/egoriyaa), mentored by [solemn-leader](https://huggingface.co/solemn-leader). |