File size: 15,779 Bytes
019d164 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 |
import argparse
import traceback
import logging
import yaml
import sys
import os
import torch
import numpy as np
from boundarydiffusion import BoundaryDiffusion
from configs.paths_config import HYBRID_MODEL_PATHS
def parse_args_and_config():
parser = argparse.ArgumentParser(description=globals()['__doc__'])
# Mode
parser.add_argument('--radius', action='store_true')
parser.add_argument('--unconditional', action='store_true')
parser.add_argument('--boundary_search', action='store_true')
parser.add_argument('--diffusion_hyperplane', action='store_true')
parser.add_argument('--clip_finetune', action='store_true')
parser.add_argument('--clip_latent_optim', action='store_true')
parser.add_argument('--edit_images_from_dataset', action='store_true')
parser.add_argument('--edit_one_image', action='store_true')
parser.add_argument('--unseen2unseen', action='store_true')
parser.add_argument('--clip_finetune_eff', action='store_true')
parser.add_argument('--edit_one_image_eff', action='store_true')
parser.add_argument('--edit_image_boundary', action='store_true')
# Default
parser.add_argument('--config', type=str, required=True, help='Path to the config file')
parser.add_argument('--seed', type=int, default=1006, help='Random seed')
parser.add_argument('--exp', type=str, default='./runs/', help='Path for saving running related data.')
parser.add_argument('--comment', type=str, default='', help='A string for experiment comment')
parser.add_argument('--verbose', type=str, default='info', help='Verbose level: info | debug | warning | critical')
parser.add_argument('--ni', type=int, default=1, help="No interaction. Suitable for Slurm Job launcher")
parser.add_argument('--align_face', type=int, default=1, help='align face or not')
# Text
parser.add_argument('--edit_attr', type=str, default=None, help='Attribute to edit defiend in ./utils/text_dic.py')
parser.add_argument('--src_txts', type=str, action='append', help='Source text e.g. Face')
parser.add_argument('--trg_txts', type=str, action='append', help='Target text e.g. Angry Face')
parser.add_argument('--target_class_num', type=str, default=None)
# Sampling
parser.add_argument('--t_0', type=int, default=400, help='Return step in [0, 1000)')
parser.add_argument('--n_inv_step', type=int, default=40, help='# of steps during generative pross for inversion')
parser.add_argument('--n_train_step', type=int, default=6, help='# of steps during generative pross for train')
parser.add_argument('--n_test_step', type=int, default=40, help='# of steps during generative pross for test')
parser.add_argument('--sample_type', type=str, default='ddim', help='ddpm for Markovian sampling, ddim for non-Markovian sampling')
parser.add_argument('--eta', type=float, default=0.0, help='Controls of varaince of the generative process')
parser.add_argument('--start_distance', type=float, default=-150.0, help='Starting distance of the editing space')
parser.add_argument('--end_distance', type=float, default=150.0, help='Ending distance of the editing space')
parser.add_argument('--edit_img_number', type=int, default=20, help='Number of editing images')
# Train & Test
parser.add_argument('--do_train', type=int, default=1, help='Whether to train or not during CLIP finetuning')
parser.add_argument('--do_test', type=int, default=1, help='Whether to test or not during CLIP finetuning')
parser.add_argument('--save_train_image', type=int, default=1, help='Wheter to save training results during CLIP fineuning')
parser.add_argument('--bs_train', type=int, default=1, help='Training batch size during CLIP fineuning')
parser.add_argument('--bs_test', type=int, default=1, help='Test batch size during CLIP fineuning')
parser.add_argument('--n_precomp_img', type=int, default=100, help='# of images to precompute latents')
parser.add_argument('--n_train_img', type=int, default=50, help='# of training images')
parser.add_argument('--n_test_img', type=int, default=10, help='# of test images')
parser.add_argument('--model_path', type=str, default=None, help='Test model path')
parser.add_argument('--img_path', type=str, default=None, help='Image path to test')
parser.add_argument('--deterministic_inv', type=int, default=1, help='Whether to use deterministic inversion during inference')
parser.add_argument('--hybrid_noise', type=int, default=0, help='Whether to change multiple attributes by mixing multiple models')
parser.add_argument('--model_ratio', type=float, default=1, help='Degree of change, noise ratio from original and finetuned model.')
# Loss & Optimization
parser.add_argument('--clip_loss_w', type=int, default=0, help='Weights of CLIP loss')
parser.add_argument('--l1_loss_w', type=float, default=0, help='Weights of L1 loss')
parser.add_argument('--id_loss_w', type=float, default=0, help='Weights of ID loss')
parser.add_argument('--clip_model_name', type=str, default='ViT-B/16', help='ViT-B/16, ViT-B/32, RN50x16 etc')
parser.add_argument('--lr_clip_finetune', type=float, default=2e-6, help='Initial learning rate for finetuning')
parser.add_argument('--lr_clip_lat_opt', type=float, default=2e-2, help='Initial learning rate for latent optim')
parser.add_argument('--n_iter', type=int, default=1, help='# of iterations of a generative process with `n_train_img` images')
parser.add_argument('--scheduler', type=int, default=1, help='Whether to increase the learning rate')
parser.add_argument('--sch_gamma', type=float, default=1.3, help='Scheduler gamma')
args = parser.parse_args()
# parse config file
with open(os.path.join('configs', args.config), 'r') as f:
config = yaml.safe_load(f)
new_config = dict2namespace(config)
if args.diffusion_hyperplane:
if args.edit_attr is not None:
args.exp = args.exp + f'_SP_{new_config.data.category}_{args.edit_attr}_t{args.t_0}_ninv{args.n_inv_step}_ngen{args.n_train_step}_id{args.id_loss_w}_l1{args.l1_loss_w}_lr{args.lr_clip_finetune}'
else:
args.exp = args.exp + f'_SP_{new_config.data.category}_{args.trg_txts}_t{args.t_0}_ninv{args.n_inv_step}_ngen{args.n_train_step}_id{args.id_loss_w}_l1{args.l1_loss_w}_lr{args.lr_clip_finetune}'
elif args.radius:
if args.edit_attr is not None:
args.exp = args.exp + f'_R_{new_config.data.category}_{args.edit_attr}_t{args.t_0}_ninv{args.n_inv_step}_ngen{args.n_train_step}_id{args.id_loss_w}_l1{args.l1_loss_w}_lr{args.lr_clip_finetune}'
else:
args.exp = args.exp + f'_R_{new_config.data.category}_{args.trg_txts}_t{args.t_0}_ninv{args.n_inv_step}_ngen{args.n_train_step}_id{args.id_loss_w}_l1{args.l1_loss_w}_lr{args.lr_clip_finetune}'
elif args.unconditional:
if args.edit_attr is not None:
args.exp = args.exp + f'_UN_{new_config.data.category}_{args.edit_attr}_t{args.t_0}_ninv{args.n_inv_step}_ngen{args.n_train_step}_id{args.id_loss_w}_l1{args.l1_loss_w}_lr{args.lr_clip_finetune}'
else:
args.exp = args.exp + f'_UN_{new_config.data.category}_{args.trg_txts}_t{args.t_0}_ninv{args.n_inv_step}_ngen{args.n_train_step}_id{args.id_loss_w}_l1{args.l1_loss_w}_lr{args.lr_clip_finetune}'
elif args.boundary_search:
if args.edit_attr is not None:
args.exp = args.exp + f'_BCLIP_{new_config.data.category}_{args.edit_attr}_t{args.t_0}_ninv{args.n_inv_step}_ngen{args.n_train_step}_id{args.id_loss_w}_l1{args.l1_loss_w}_lr{args.lr_clip_finetune}'
else:
args.exp = args.exp + f'_BCLIP_{new_config.data.category}_{args.trg_txts}_t{args.t_0}_ninv{args.n_inv_step}_ngen{args.n_train_step}_id{args.id_loss_w}_l1{args.l1_loss_w}_lr{args.lr_clip_finetune}'
elif args.clip_finetune or args.clip_finetune_eff :
if args.edit_attr is not None:
args.exp = args.exp + f'_FT_{new_config.data.category}_{args.edit_attr}_t{args.t_0}_ninv{args.n_inv_step}_ngen{args.n_train_step}_id{args.id_loss_w}_l1{args.l1_loss_w}_lr{args.lr_clip_finetune}'
else:
args.exp = args.exp + f'_FT_{new_config.data.category}_{args.trg_txts}_t{args.t_0}_ninv{args.n_inv_step}_ngen{args.n_train_step}_id{args.id_loss_w}_l1{args.l1_loss_w}_lr{args.lr_clip_finetune}'
elif args.clip_latent_optim:
if args.edit_attr is not None:
args.exp = args.exp + f'_LO_{new_config.data.category}_{args.img_path.split("/")[-1].split(".")[0]}_{args.edit_attr}_t{args.t_0}_ninv{args.n_inv_step}_ngen{args.n_train_step}_id{args.id_loss_w}_l1{args.l1_loss_w}_lr{args.lr_clip_lat_opt}'
else:
args.exp = args.exp + f'_LO_{new_config.data.category}_{args.img_path.split("/")[-1].split(".")[0]}_{args.trg_txts}_t{args.t_0}_ninv{args.n_inv_step}_ngen{args.n_train_step}_id{args.id_loss_w}_l1{args.l1_loss_w}_lr{args.lr_clip_lat_opt}'
elif args.edit_images_from_dataset:
if args.model_path:
args.exp = args.exp + f'_ED_{new_config.data.category}_t{args.t_0}_ninv{args.n_inv_step}_ngen{args.n_train_step}_{os.path.split(args.model_path)[-1].replace(".pth","")}'
elif args.hybrid_noise:
hb_str = '_'
for i, model_name in enumerate(HYBRID_MODEL_PATHS):
hb_str = hb_str + model_name.split('_')[1]
if i != len(HYBRID_MODEL_PATHS) - 1:
hb_str = hb_str + '_'
args.exp = args.exp + f'_ED_{new_config.data.category}_t{args.t_0}_ninv{args.n_train_step}_ngen{args.n_train_step}' + hb_str
else:
args.exp = args.exp + f'_ED_{new_config.data.category}_t{args.t_0}_ninv{args.n_train_step}_ngen{args.n_train_step}_orig'
elif args.edit_image_boundary:
if args.model_path:
args.exp = args.exp + f'_E1_t{args.t_0}_{new_config.data.category}_{args.img_path.split("/")[-1].split(".")[0]}_t{args.t_0}_ninv{args.n_inv_step}_{os.path.split(args.model_path)[-1].replace(".pth", "")}'
elif args.hybrid_noise:
hb_str = '_'
for i, model_name in enumerate(HYBRID_MODEL_PATHS):
hb_str = hb_str + model_name.split('_')[1]
if i != len(HYBRID_MODEL_PATHS) - 1:
hb_str = hb_str + '_'
args.exp = args.exp + f'_E1_{new_config.data.category}_{args.img_path.split("/")[-1].split(".")[0]}_t{args.t_0}_ninv{args.n_train_step}' + hb_str
else:
args.exp = args.exp + f'_E1_{new_config.data.category}_{args.img_path.split("/")[-1].split(".")[0]}_t{args.t_0}_ninv{args.n_train_step}_orig'
elif args.edit_one_image:
if args.model_path:
args.exp = args.exp + f'_E1_t{args.t_0}_{new_config.data.category}_{args.img_path.split("/")[-1].split(".")[0]}_t{args.t_0}_ninv{args.n_inv_step}_{os.path.split(args.model_path)[-1].replace(".pth", "")}'
elif args.hybrid_noise:
hb_str = '_'
for i, model_name in enumerate(HYBRID_MODEL_PATHS):
hb_str = hb_str + model_name.split('_')[1]
if i != len(HYBRID_MODEL_PATHS) - 1:
hb_str = hb_str + '_'
args.exp = args.exp + f'_E1_{new_config.data.category}_{args.img_path.split("/")[-1].split(".")[0]}_t{args.t_0}_ninv{args.n_train_step}' + hb_str
else:
args.exp = args.exp + f'_E1_{new_config.data.category}_{args.img_path.split("/")[-1].split(".")[0]}_t{args.t_0}_ninv{args.n_train_step}_orig'
elif args.unseen2unseen:
if args.model_path:
args.exp = args.exp + f'_U2U_t{args.t_0}_{new_config.data.category}_{args.img_path.split("/")[-1].split(".")[0]}_t{args.t_0}_ninv{args.n_inv_step}_ngen{args.n_train_step}_{os.path.split(args.model_path)[-1].replace(".pth", "")}'
elif args.hybrid_noise:
hb_str = '_'
for i, model_name in enumerate(HYBRID_MODEL_PATHS):
hb_str = hb_str + model_name.split('_')[1]
if i != len(HYBRID_MODEL_PATHS) - 1:
hb_str = hb_str + '_'
args.exp = args.exp + f'_U2U_{new_config.data.category}_{args.img_path.split("/")[-1].split(".")[0]}_t{args.t_0}_ninv{args.n_train_step}_ngen{args.n_train_step}' + hb_str
else:
args.exp = args.exp + f'_U2U_{new_config.data.category}_{args.img_path.split("/")[-1].split(".")[0]}_t{args.t_0}_ninv{args.n_train_step}_ngen{args.n_train_step}_orig'
elif args.recon_exp:
args.exp = args.exp + f'_REC_{new_config.data.category}_{args.img_path.split("/")[-1].split(".")[0]}_t{args.t_0}_ninv{args.n_train_step}'
elif args.find_best_image:
args.exp = args.exp + f'_FOpt_{new_config.data.category}_{args.trg_txts[0]}_t{args.t_0}_ninv{args.n_train_step}'
level = getattr(logging, args.verbose.upper(), None)
if not isinstance(level, int):
raise ValueError('level {} not supported'.format(args.verbose))
handler1 = logging.StreamHandler()
formatter = logging.Formatter('%(levelname)s - %(filename)s - %(asctime)s - %(message)s')
handler1.setFormatter(formatter)
logger = logging.getLogger()
logger.addHandler(handler1)
logger.setLevel(level)
os.makedirs(args.exp, exist_ok=True)
os.makedirs('checkpoint', exist_ok=True)
os.makedirs('precomputed', exist_ok=True)
os.makedirs('runs', exist_ok=True)
os.makedirs(args.exp, exist_ok=True)
args.image_folder = os.path.join(args.exp, 'image_samples')
if not os.path.exists(args.image_folder):
os.makedirs(args.image_folder)
else:
overwrite = False
if args.ni:
overwrite = True
else:
response = input("Image folder already exists. Overwrite? (Y/N)")
if response.upper() == 'Y':
overwrite = True
if overwrite:
# shutil.rmtree(args.image_folder)
os.makedirs(args.image_folder, exist_ok=True)
else:
print("Output image folder exists. Program halted.")
sys.exit(0)
# add device
device = torch.device('cuda') if torch.cuda.is_available() else torch.device('cpu')
logging.info("Using device: {}".format(device))
new_config.device = device
# set random seed
torch.manual_seed(args.seed)
np.random.seed(args.seed)
if torch.cuda.is_available():
torch.cuda.manual_seed_all(args.seed)
torch.backends.cudnn.benchmark = True
return args, new_config
def dict2namespace(config):
namespace = argparse.Namespace()
for key, value in config.items():
if isinstance(value, dict):
new_value = dict2namespace(value)
else:
new_value = value
setattr(namespace, key, new_value)
return namespace
def main():
args, config = parse_args_and_config()
print(">" * 80)
logging.info("Exp instance id = {}".format(os.getpid()))
logging.info("Exp comment = {}".format(args.comment))
logging.info("Config =")
print("<" * 80)
runner = BoundaryDiffusion(args, config)
try:
if args.clip_finetune:
runner.clip_finetune()
elif args.radius:
runner.radius()
elif args.unconditional:
runner.unconditional()
elif args.diffusion_hyperplane:
runner.diffusion_hyperplane()
elif args.boundary_search:
runner.boundary_search()
elif args.edit_image_boundary:
runner.edit_image_boundary()
else:
print('Choose one mode!')
raise ValueError
except Exception:
logging.error(traceback.format_exc())
return 0
if __name__ == '__main__':
sys.exit(main())
|