File size: 4,391 Bytes
52cde40
 
5a7c3f4
52cde40
 
 
 
 
 
f8e46d5
 
 
 
 
 
 
 
 
52cde40
 
45cb777
 
9d2ca05
3b0ac1a
9d2ca05
3b0ac1a
6fefe99
 
f7c6583
52cde40
 
 
 
 
 
 
 
 
6fefe99
f8e46d5
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
0e657d7
 
 
e79c2a1
f8e46d5
0e657d7
 
f8e46d5
0e657d7
 
 
 
fa18a9b
f8e46d5
440b040
52cde40
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f8e46d5
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
---
library_name: transformers
license: mit
base_model: bert-base-multilingual-cased
tags:
- generated_from_trainer
model-index:
- name: fine_tune_bert_output
  results: []
datasets:
- unimelb-nlp/wikiann
language:
- es
metrics:
- recall
- precision
- f1
pipeline_tag: token-classification
---

![image/png](https://cdn-uploads.huggingface.co/production/uploads/6478787f79f2d49511ec4f5e/zlC7cw2dkAsm-J_cNOpmE.png)

---
# **spanish_bert_based_ner**
---

# fine_tune_bert_output

This model is a fine-tuned version of [bert-base-multilingual-cased](https://huggingface.co/bert-base-multilingual-cased) on an [wikiann](https://huggingface.co/datasets/unimelb-nlp/wikiann) dataset.
It achieves the following results on the evaluation set:
- Loss: 0.3320
- Overall Precision: 0.9051
- Overall Recall: 0.9121
- Overall F1: 0.9086
- Overall Accuracy: 0.9577
- Loc F1: 0.9190
- Org F1: 0.8663
- Per F1: 0.9367

## Labels
The following table represents the labels used by the model along with their corresponding indices:

| Index | Label   |
|-------|---------|
| 0     | O       |
| 1     | B-PER   |
| 2     | I-PER   |
| 3     | B-ORG   |
| 4     | I-ORG   |
| 5     | B-LOC   |
| 6     | I-LOC   |

### Label Descriptions
- **O**: Outside of a named entity.
- **B-PER**: Beginning of a person's name.
- **I-PER**: Inside a person's name.
- **B-ORG**: Beginning of an organization's name.
- **I-ORG**: Inside an organization's name.
- **B-LOC**: Beginning of a location name.
- **I-LOC**: Inside a location name.

## Inference Example
```python
from transformers import pipeline

# Load the model
ner_pipeline = pipeline("ner", model="syubraj/spanish_bert_based_ner")

# Example text
text = "Elon Musk vive en Estados Unidos y es dueño de Space X, Tesla y Starlink"

# Perform inference
entities = ner_pipeline(text)
for ent in entities:
  print(f"Word: {ent['word']} | Label: {ent['entity']}")

```

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 16
- eval_batch_size: 16
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 10

### Training results

| Training Loss | Epoch | Step  | Validation Loss | Overall Precision | Overall Recall | Overall F1 | Overall Accuracy | Loc F1 | Org F1 | Per F1 |
|:-------------:|:-----:|:-----:|:---------------:|:-----------------:|:--------------:|:----------:|:----------------:|:------:|:------:|:------:|
| 0.2713        | 0.8   | 1000  | 0.2236          | 0.8498            | 0.8672         | 0.8584     | 0.9401           | 0.8834 | 0.8019 | 0.8790 |
| 0.1537        | 1.6   | 2000  | 0.1909          | 0.8772            | 0.8943         | 0.8857     | 0.9495           | 0.9002 | 0.8369 | 0.9164 |
| 0.1152        | 2.4   | 3000  | 0.2095          | 0.8848            | 0.8981         | 0.8914     | 0.9523           | 0.9039 | 0.8432 | 0.9220 |
| 0.0889        | 3.2   | 4000  | 0.2223          | 0.8978            | 0.8998         | 0.8988     | 0.9546           | 0.9080 | 0.8569 | 0.9290 |
| 0.0701        | 4.0   | 5000  | 0.2152          | 0.8937            | 0.9042         | 0.8989     | 0.9544           | 0.9113 | 0.8565 | 0.9246 |
| 0.0457        | 4.8   | 6000  | 0.2365          | 0.9017            | 0.9069         | 0.9043     | 0.9563           | 0.9164 | 0.8616 | 0.9310 |
| 0.0364        | 5.6   | 7000  | 0.2622          | 0.9037            | 0.9086         | 0.9061     | 0.9578           | 0.9148 | 0.8639 | 0.9365 |
| 0.026         | 6.4   | 8000  | 0.2916          | 0.9037            | 0.9159         | 0.9097     | 0.9585           | 0.9183 | 0.8712 | 0.9366 |
| 0.0215        | 7.2   | 9000  | 0.2985          | 0.9022            | 0.9128         | 0.9074     | 0.9565           | 0.9178 | 0.8676 | 0.9323 |
| 0.0134        | 8.0   | 10000 | 0.3071          | 0.904             | 0.9131         | 0.9085     | 0.9574           | 0.9198 | 0.8671 | 0.9344 |
| 0.0091        | 8.8   | 11000 | 0.3335          | 0.9056            | 0.9115         | 0.9085     | 0.9573           | 0.9175 | 0.8670 | 0.9373 |
| 0.0074        | 9.6   | 12000 | 0.3320          | 0.9051            | 0.9121         | 0.9086     | 0.9577           | 0.9190 | 0.8663 | 0.9367 |


### Framework versions

- Transformers 4.44.2
- Pytorch 2.4.1+cu121
- Datasets 3.2.0
- Tokenizers 0.19.1