estimation-model-v3
This model is a fine-tuned version of google/gemma-2-2b-jpn-it on an unknown dataset. It achieves the following results on the evaluation set:
- Loss: 2.0232
- Accuracy: 0.5739
- Spearmanr: 0.3397
- Kendalltau: 0.2651
- Pearsonr: 0.3174
- Rmse: 1.4493
- Mae: 1.0966
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 1e-05
- train_batch_size: 8
- eval_batch_size: 16
- seed: 42
- optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: cosine_with_min_lr
- lr_scheduler_warmup_ratio: 0.1
- num_epochs: 3.0
Training results
Training Loss | Epoch | Step | Validation Loss | Accuracy | Spearmanr | Kendalltau | Pearsonr | Rmse | Mae |
---|---|---|---|---|---|---|---|---|---|
5.4448 | 0.1567 | 500 | 5.2447 | 0.3697 | 0.1294 | 0.0999 | 0.1030 | 1.5116 | 1.1748 |
3.5747 | 0.3135 | 1000 | 3.6366 | 0.4647 | 0.1303 | 0.1009 | 0.0898 | 1.6046 | 1.2388 |
3.2813 | 0.4702 | 1500 | 3.0585 | 0.4625 | 0.1429 | 0.1108 | 0.1173 | 1.5283 | 1.1646 |
3.1132 | 0.6270 | 2000 | 2.5819 | 0.5048 | 0.1707 | 0.1324 | 0.1416 | 1.5356 | 1.1687 |
2.5897 | 0.7837 | 2500 | 2.3855 | 0.5182 | 0.1987 | 0.1541 | 0.1669 | 1.5235 | 1.1543 |
2.0304 | 0.9404 | 3000 | 2.2636 | 0.5293 | 0.2220 | 0.1729 | 0.1969 | 1.4558 | 1.0804 |
1.9453 | 1.0972 | 3500 | 2.2381 | 0.5338 | 0.2413 | 0.1876 | 0.2098 | 1.5274 | 1.1662 |
2.4994 | 1.2539 | 4000 | 2.1722 | 0.5419 | 0.2640 | 0.2057 | 0.2346 | 1.4880 | 1.1202 |
2.3851 | 1.4107 | 4500 | 2.1235 | 0.5419 | 0.2764 | 0.2164 | 0.2521 | 1.4205 | 1.0493 |
2.1885 | 1.5674 | 5000 | 2.0991 | 0.5464 | 0.2864 | 0.2241 | 0.2689 | 1.4017 | 1.0326 |
1.8545 | 1.7241 | 5500 | 2.0855 | 0.5486 | 0.3038 | 0.2368 | 0.2769 | 1.4451 | 1.0769 |
1.9475 | 1.8809 | 6000 | 2.0571 | 0.5627 | 0.3133 | 0.2445 | 0.2914 | 1.4352 | 1.0740 |
1.5089 | 2.0376 | 6500 | 2.0469 | 0.5635 | 0.3228 | 0.2519 | 0.3009 | 1.4361 | 1.0791 |
2.0828 | 2.1944 | 7000 | 2.0393 | 0.5687 | 0.3290 | 0.2568 | 0.3054 | 1.4403 | 1.0836 |
1.7599 | 2.3511 | 7500 | 2.0405 | 0.5679 | 0.3300 | 0.2575 | 0.3058 | 1.4577 | 1.1024 |
2.1807 | 2.5078 | 8000 | 2.0301 | 0.5679 | 0.3332 | 0.2601 | 0.3104 | 1.4349 | 1.0783 |
1.9166 | 2.6646 | 8500 | 2.0201 | 0.5642 | 0.3360 | 0.2626 | 0.3177 | 1.4096 | 1.0529 |
2.1982 | 2.8213 | 9000 | 2.0223 | 0.5709 | 0.3384 | 0.2640 | 0.3171 | 1.4399 | 1.0868 |
2.1137 | 2.9781 | 9500 | 2.0232 | 0.5739 | 0.3397 | 0.2651 | 0.3174 | 1.4493 | 1.0966 |
Framework versions
- PEFT 0.15.0
- Transformers 4.49.0
- Pytorch 2.4.1+cu124
- Datasets 3.4.1
- Tokenizers 0.21.1
- Downloads last month
- 12
Inference Providers
NEW
This model isn't deployed by any Inference Provider.
๐
Ask for provider support
HF Inference deployability: The model has no pipeline_tag.