|
--- |
|
language: |
|
- en |
|
license: mit |
|
tags: |
|
- summarization |
|
- t5-large-summarization |
|
- pipeline:summarization |
|
thumbnail: https://huggingface.co/front/thumbnails/facebook.png |
|
model-index: |
|
- name: sysresearch101/t5-large-finetuned-xsum-cnn |
|
results: |
|
- task: |
|
type: summarization |
|
name: Summarization |
|
dataset: |
|
name: xsum |
|
type: xsum |
|
config: default |
|
split: test |
|
metrics: |
|
- type: rouge |
|
value: 36.7656 |
|
name: ROUGE-1 |
|
verified: true |
|
verifyToken: >- |
|
eyJhbGciOiJFZERTQSIsInR5cCI6IkpXVCJ9.eyJoYXNoIjoiN2QzMDg4NTM0ZTc5MjAzNTY4MmY1YTRiMWI3M2I2NDdjMTM4ZGNhYzZhOWQzMWI0MjJlYmU3MTg0ZjVjMTEyZSIsInZlcnNpb24iOjF9.AuKHql0LQs0zDQNn7zvySnX50GAC8jEWyYz-LtBgWj0dcad86J8yfHbIDswmgx2ur0S3yttw72qNExag_Fw7Dw |
|
- type: rouge |
|
value: 14.6898 |
|
name: ROUGE-2 |
|
verified: true |
|
verifyToken: >- |
|
eyJhbGciOiJFZERTQSIsInR5cCI6IkpXVCJ9.eyJoYXNoIjoiZTE3ZTExY2M3MTIwMWY0ODRkZDI1YjU2ZjRkOGJjOGQyYjcxMTMxOWExN2Q0OGNkZmNiYzYzYzVhODY4YzEwOSIsInZlcnNpb24iOjF9.F1Q17sa8IAsW8ouQ2VDLq_VvHDxjuMjVU3rMfvkbmKxAjTDKVTiaG6Eg9uSKIYzgJoDSsxhsZcjH-J0gGQv3Dg |
|
- type: rouge |
|
value: 30.0646 |
|
name: ROUGE-L |
|
verified: true |
|
verifyToken: >- |
|
eyJhbGciOiJFZERTQSIsInR5cCI6IkpXVCJ9.eyJoYXNoIjoiYzI1NjE0NmI5Nzc3ODFiNDI5YzVhNjUzNzU1NzA0ZDMwMjFjZDE1YzUxNjZmZTAwZTM0MmVmN2ZkYWUwMjBiZSIsInZlcnNpb24iOjF9.xehN8zOV6050WvoLZIJ-l2zB93jWY_ugcydDDqV06XwdKwZ7l0TI8BoLDOO7Mw7dRmHOWLNruDJZnOnW3_3pCQ |
|
- type: rouge |
|
value: 30.0563 |
|
name: ROUGE-LSUM |
|
verified: true |
|
verifyToken: >- |
|
eyJhbGciOiJFZERTQSIsInR5cCI6IkpXVCJ9.eyJoYXNoIjoiZmU0OTVhYTY0ZDJmOTU3OWE5MzgxYzdhNmQ3MjM3YzM2MGIzOGViY2ZkMTI1ZWI4NDMwOTlkODBjOGE4NTE4ZCIsInZlcnNpb24iOjF9.FtNN06HKSgEB1tiWpToEVnNfzhQs9ZR59386YynOY6T6oKWxbIiRyItzYXobNw96lg5c2sE4vdJSfdtbBpkyDA |
|
- type: loss |
|
value: 1.6373405456542969 |
|
name: loss |
|
verified: true |
|
verifyToken: >- |
|
eyJhbGciOiJFZERTQSIsInR5cCI6IkpXVCJ9.eyJoYXNoIjoiYTVjYzI0MmMyY2IzYTE0NDUxY2FiMDM4Mjk2NTI1NTk0NjFiYTY2OWMxODRjNWJhYjU4ZWU5OTk4Y2E5N2RkOSIsInZlcnNpb24iOjF9.Cz5AQ-B8IAXmf1Xc_7UJ0pI9XKYHxDEwmoP3ZFsS2Wmbk1pUB8o_Y8AErBR8-Q60qR_ndw8eSwrI0EnPohYHCw |
|
- type: gen_len |
|
value: 18.6054 |
|
name: gen_len |
|
verified: true |
|
verifyToken: >- |
|
eyJhbGciOiJFZERTQSIsInR5cCI6IkpXVCJ9.eyJoYXNoIjoiMWRlMjM5MzAyMjEzYzdkODFmNDk4NDg5NWM4NWIxMTU4YWMxNzZjMGFjOWJiMDdkMjQyMTY0ZGFmYzA2OTA0YiIsInZlcnNpb24iOjF9.IFiGJEsyD7Uhj8bo9SsAgibk9qCXZH6IWaLKULLxBz5N8WXF2vc2Mfg5OThEzdrydPhJInRgp0jd8m-kF5nNCA |
|
datasets: |
|
- abisee/cnn_dailymail |
|
- EdinburghNLP/xsum |
|
base_model: |
|
- google-t5/t5-large |
|
--- |
|
|
|
# T5-Large Fine-tuned on the combined XSum + CNN/DailyMail Datasets |
|
|
|
**Task:** Abstractive Summarization (English) |
|
**Base Model:** google-t5/t5-large |
|
**License:** MIT |
|
|
|
## Overview |
|
|
|
This model is a T5-Large checkpoint fine-tuned jointly on [XSum](https://huggingface.co/datasets/EdinburghNLP/xsum) and [CNN/DailyMail](https://huggingface.co/datasets/abisee/cnn_dailymail) datasets. It produces concise, abstractive summaries and has been widely adopted as a baseline in summarization research. |
|
|
|
## Performance ~ On XSum test set |
|
|
|
| Metric | Score | |
|
|--------|-------| |
|
| ROUGE-1 | 36.77 | |
|
| ROUGE-2 | 14.69 | |
|
| ROUGE-L | 30.06 | |
|
| Loss | 1.64 | |
|
| Avg. Length | 18.6 tokens | |
|
|
|
|
|
|
|
## Usage |
|
|
|
### Quick Start |
|
|
|
```python |
|
from transformers import pipeline |
|
|
|
summarizer = pipeline("summarization", model="sysresearch101/t5-large-finetuned-xsum-cnn") |
|
|
|
article = "Your article text here..." |
|
summary = summarizer(article, max_length=80, min_length=20, do_sample=False) |
|
print(summary[0]['summary_text']) |
|
``` |
|
|
|
### Advanced Usage |
|
|
|
```python |
|
from transformers import AutoTokenizer, AutoModelForSeq2SeqLM |
|
|
|
tokenizer = AutoTokenizer.from_pretrained("sysresearch101/t5-large-finetuned-xsum-cnn") |
|
model = AutoModelForSeq2SeqLM.from_pretrained("sysresearch101/t5-large-finetuned-xsum-cnn") |
|
|
|
inputs = tokenizer("summarize: " + article, return_tensors="pt", max_length=512, truncation=True) |
|
outputs = model.generate( |
|
**inputs, |
|
max_length=80, |
|
min_length=20, |
|
num_beams=4, |
|
no_repeat_ngram_size=2, |
|
length_penalty=1.0, |
|
repetition_penalty=2.5, |
|
use_cache=True, |
|
early_stopping=True, |
|
do_sample = True, |
|
temperature = 0.8, |
|
top_k = 50, |
|
top_p = 0.95 |
|
) |
|
|
|
summary = tokenizer.decode(outputs[0], skip_special_tokens=True) |
|
``` |
|
|
|
## Training Data |
|
|
|
- [XSum](https://huggingface.co/datasets/EdinburghNLP/xsum): BBC articles with single-sentence summaries |
|
- [CNN/DailyMail](https://huggingface.co/datasets/abisee/cnn_dailymail): News articles with multi-sentence summaries |
|
- |
|
## Intended Use |
|
- **Primary:** Summarization. |
|
- **Secondary:** Educational demonstrations, reproducible baselines, Research benchmarking, academic studies on summarization |
|
|
|
|
|
## Limitations |
|
- Optimized for English news text; performance may vary on other domains |
|
- Tends to produce very concise summaries (18-20 tokens average) |
|
- No built-in fact-checking or content filtering |
|
|
|
|
|
## Citation |
|
|
|
```bibtex |
|
@misc{stept2023_t5_large_xsum_cnn_summarization, |
|
author = {Shlomo Stept (sysresearch101)}, |
|
title = {T5-Large Fine-tuned on XSum + CNN/DailyMail for Abstractive Summarization}, |
|
year = {2023}, |
|
publisher = {Hugging Face}, |
|
url = {https://huggingface.co/sysresearch101/t5-large-finetuned-xsum-cnn} |
|
} |
|
``` |
|
|
|
|
|
## Papers Using This Model |
|
* [Zhu et al. (2023). *Annotating and Detecting Fine-grained Factual Errors for Dialogue Summarization.* ACL 2023 (Long).](https://aclanthology.org/2023.acl-long.377.pdf) |
|
* European Food Safety Authority. (2023). Implementing AI Vertical use cases – Scenario 1. EFSA Journal, Special Publication EN-8223. https://doi.org/10.2903/sp.efsa.2023.EN-8223 |
|
* *(Forthcoming)* Budget-Constrained Learning to Defer for Autoregressive Generation (under review, ICLR 2025) |
|
|
|
|
|
|
|
## Contact |
|
|
|
Created by [Shlomo Stept](https://shlomostept.com) ([ORCID: 0009-0009-3185-589X](https://orcid.org/0009-0009-3185-589X)) |
|
DARMIS AI |
|
|
|
- Website: [shlomostept.com](https://shlomostept.com) |
|
- LinkedIn: [linkedin.com/in/shlomo-stept](https://linkedin.com/in/shlomo-stept) |