syaha commited on
Commit
158e581
·
verified ·
1 Parent(s): 7071315

Create app.py

Browse files
Files changed (1) hide show
  1. app.py +40 -0
app.py ADDED
@@ -0,0 +1,40 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import gradio as gr
2
+ from tensorflow.keras.models import load_model
3
+ import numpy as np
4
+ from PIL import Image
5
+
6
+ # Load model from Hugging Face model repository
7
+ model = load_model("https://huggingface.co/syaha/skin_cancer_detection_model/resolve/main/skin_cancer_detection_model.h5")
8
+
9
+ # Preprocess function
10
+ def preprocess_image(image):
11
+ image = image.resize((224, 224)) # Resize to match model input size
12
+ image = np.array(image) / 255.0 # Normalize
13
+ image = np.expand_dims(image, axis=0) # Add batch dimension
14
+ return image
15
+
16
+ # Predict function
17
+ def predict_image(image):
18
+ img = preprocess_image(image)
19
+ prediction = model.predict(img)
20
+ predicted_class = np.argmax(prediction, axis=1)[0]
21
+
22
+ class_label = disease_info[predicted_class]['name']
23
+ description = disease_info[predicted_class]['description']
24
+
25
+ return f"Prediction: {class_label}\nDescription: {description}"
26
+
27
+ # Disease information mapping
28
+ disease_info = {
29
+ 0: {'name': 'Actinic Keratoses (akiec)', 'description': 'Rough, scaly patches caused by sun exposure.'},
30
+ 1: {'name': 'Basal Cell Carcinoma (bcc)', 'description': 'A type of skin cancer that rarely spreads.'},
31
+ 2: {'name': 'Benign Keratosis (bkl)', 'description': 'Non-cancerous skin lesions.'},
32
+ 3: {'name': 'Dermatofibroma (df)', 'description': 'A benign lesion often on the legs.'},
33
+ 4: {'name': 'Melanocytic Nevus (nv)', 'description': 'Common mole, can develop into melanoma.'},
34
+ 5: {'name': 'Vascular Lesions (vasc)', 'description': 'Blood vessel-related skin growths.'},
35
+ 6: {'name': 'Melanoma (mel)', 'description': 'Most dangerous skin cancer, early detection is key.'}
36
+ }
37
+
38
+ # Gradio interface
39
+ iface = gr.Interface(fn=predict_image, inputs="image", outputs="text")
40
+ iface.launch()