swan330 commited on
Commit
038eb98
·
verified ·
1 Parent(s): 83d11f3

Model card auto-generated by SimpleTuner

Browse files
Files changed (1) hide show
  1. README.md +139 -0
README.md ADDED
@@ -0,0 +1,139 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ license: other
3
+ base_model: "stabilityai/stable-diffusion-3-medium-diffusers"
4
+ tags:
5
+ - sd3
6
+ - sd3-diffusers
7
+ - text-to-image
8
+ - diffusers
9
+ - simpletuner
10
+ - not-for-all-audiences
11
+ - lora
12
+ - template:sd-lora
13
+ - lycoris
14
+ inference: true
15
+ widget:
16
+ - text: 'unconditional (blank prompt)'
17
+ parameters:
18
+ negative_prompt: 'blurry, cropped, ugly'
19
+ output:
20
+ url: ./assets/image_0_0.png
21
+ - text: 'A photo-realistic image of livingroom'
22
+ parameters:
23
+ negative_prompt: 'blurry, cropped, ugly'
24
+ output:
25
+ url: ./assets/image_1_0.png
26
+ ---
27
+
28
+ # simpletuner-lora
29
+
30
+ This is a LyCORIS adapter derived from [stabilityai/stable-diffusion-3-medium-diffusers](https://huggingface.co/stabilityai/stable-diffusion-3-medium-diffusers).
31
+
32
+
33
+ The main validation prompt used during training was:
34
+
35
+
36
+
37
+ ```
38
+ A photo-realistic image of livingroom
39
+ ```
40
+
41
+ ## Validation settings
42
+ - CFG: `3.0`
43
+ - CFG Rescale: `0.0`
44
+ - Steps: `20`
45
+ - Sampler: `None`
46
+ - Seed: `42`
47
+ - Resolution: `1024x1024`
48
+
49
+ Note: The validation settings are not necessarily the same as the [training settings](#training-settings).
50
+
51
+ You can find some example images in the following gallery:
52
+
53
+
54
+ <Gallery />
55
+
56
+ The text encoder **was not** trained.
57
+ You may reuse the base model text encoder for inference.
58
+
59
+
60
+ ## Training settings
61
+
62
+ - Training epochs: 0
63
+ - Training steps: 500
64
+ - Learning rate: 0.0001
65
+ - Effective batch size: 1
66
+ - Micro-batch size: 1
67
+ - Gradient accumulation steps: 1
68
+ - Number of GPUs: 1
69
+ - Prediction type: flow-matching
70
+ - Rescaled betas zero SNR: False
71
+ - Optimizer: adamw_bf16
72
+ - Precision: Pure BF16
73
+ - Quantised: No
74
+ - Xformers: Not used
75
+ - LyCORIS Config:
76
+ ```json
77
+ {
78
+ "algo": "lora",
79
+ "multiplier": 1.0,
80
+ "linear_dim": 64,
81
+ "linear_alpha": 32,
82
+ "apply_preset": {
83
+ "target_module": [
84
+ "Attention",
85
+ "FeedForward"
86
+ ],
87
+ "module_algo_map": {
88
+ "Attention": {
89
+ "factor": 16
90
+ },
91
+ "FeedForward": {
92
+ "factor": 8
93
+ }
94
+ }
95
+ }
96
+ }
97
+ ```
98
+
99
+ ## Datasets
100
+
101
+ ### my-dataset-1024
102
+ - Repeats: 10
103
+ - Total number of images: 1020
104
+ - Total number of aspect buckets: 1
105
+ - Resolution: 1.048576 megapixels
106
+ - Cropped: False
107
+ - Crop style: None
108
+ - Crop aspect: None
109
+
110
+
111
+ ## Inference
112
+
113
+
114
+ ```python
115
+ import torch
116
+ from diffusers import DiffusionPipeline
117
+ from lycoris import create_lycoris_from_weights
118
+
119
+ model_id = 'stabilityai/stable-diffusion-3-medium-diffusers'
120
+ adapter_id = 'pytorch_lora_weights.safetensors' # you will have to download this manually
121
+ lora_scale = 1.0
122
+ wrapper, _ = create_lycoris_from_weights(lora_scale, adapter_id, pipeline.transformer)
123
+ wrapper.merge_to()
124
+
125
+ prompt = "A photo-realistic image of livingroom"
126
+ negative_prompt = 'blurry, cropped, ugly'
127
+ pipeline.to('cuda' if torch.cuda.is_available() else 'mps' if torch.backends.mps.is_available() else 'cpu')
128
+ image = pipeline(
129
+ prompt=prompt,
130
+ negative_prompt=negative_prompt,
131
+ num_inference_steps=20,
132
+ generator=torch.Generator(device='cuda' if torch.cuda.is_available() else 'mps' if torch.backends.mps.is_available() else 'cpu').manual_seed(1641421826),
133
+ width=1024,
134
+ height=1024,
135
+ guidance_scale=3.0,
136
+ ).images[0]
137
+ image.save("output.png", format="PNG")
138
+ ```
139
+