|
import os
|
|
import numpy as np
|
|
from tqdm import tqdm
|
|
from PIL import Image
|
|
from einops import rearrange
|
|
|
|
import torch
|
|
import torchvision
|
|
from torch import Tensor
|
|
from torchvision.utils import make_grid
|
|
from torchvision.transforms.functional import to_tensor
|
|
|
|
|
|
def frames_to_mp4(frame_dir,output_path,fps):
|
|
def read_first_n_frames(d: os.PathLike, num_frames: int):
|
|
if num_frames:
|
|
images = [Image.open(os.path.join(d, f)) for f in sorted(os.listdir(d))[:num_frames]]
|
|
else:
|
|
images = [Image.open(os.path.join(d, f)) for f in sorted(os.listdir(d))]
|
|
images = [to_tensor(x) for x in images]
|
|
return torch.stack(images)
|
|
videos = read_first_n_frames(frame_dir, num_frames=None)
|
|
videos = videos.mul(255).to(torch.uint8).permute(0, 2, 3, 1)
|
|
torchvision.io.write_video(output_path, videos, fps=fps, video_codec='h264', options={'crf': '10'})
|
|
|
|
|
|
def tensor_to_mp4(video, savepath, fps, rescale=True, nrow=None):
|
|
"""
|
|
video: torch.Tensor, b,c,t,h,w, 0-1
|
|
if -1~1, enable rescale=True
|
|
"""
|
|
n = video.shape[0]
|
|
video = video.permute(2, 0, 1, 3, 4)
|
|
nrow = int(np.sqrt(n)) if nrow is None else nrow
|
|
frame_grids = [torchvision.utils.make_grid(framesheet, nrow=nrow, padding=0) for framesheet in video]
|
|
grid = torch.stack(frame_grids, dim=0)
|
|
grid = torch.clamp(grid.float(), -1., 1.)
|
|
if rescale:
|
|
grid = (grid + 1.0) / 2.0
|
|
grid = (grid * 255).to(torch.uint8).permute(0, 2, 3, 1)
|
|
torchvision.io.write_video(savepath, grid, fps=fps, video_codec='h264', options={'crf': '10'})
|
|
|
|
|
|
def tensor2videogrids(video, root, filename, fps, rescale=True, clamp=True):
|
|
assert(video.dim() == 5)
|
|
assert(isinstance(video, torch.Tensor))
|
|
|
|
video = video.detach().cpu()
|
|
if clamp:
|
|
video = torch.clamp(video, -1., 1.)
|
|
n = video.shape[0]
|
|
video = video.permute(2, 0, 1, 3, 4)
|
|
frame_grids = [torchvision.utils.make_grid(framesheet, nrow=int(np.sqrt(n))) for framesheet in video]
|
|
grid = torch.stack(frame_grids, dim=0)
|
|
if rescale:
|
|
grid = (grid + 1.0) / 2.0
|
|
grid = (grid * 255).to(torch.uint8).permute(0, 2, 3, 1)
|
|
path = os.path.join(root, filename)
|
|
torchvision.io.write_video(path, grid, fps=fps, video_codec='h264', options={'crf': '10'})
|
|
|
|
|
|
def log_local(batch_logs, save_dir, filename, save_fps=10, rescale=True):
|
|
if batch_logs is None:
|
|
return None
|
|
""" save images and videos from images dict """
|
|
def save_img_grid(grid, path, rescale):
|
|
if rescale:
|
|
grid = (grid + 1.0) / 2.0
|
|
grid = grid.transpose(0, 1).transpose(1, 2).squeeze(-1)
|
|
grid = grid.numpy()
|
|
grid = (grid * 255).astype(np.uint8)
|
|
os.makedirs(os.path.split(path)[0], exist_ok=True)
|
|
Image.fromarray(grid).save(path)
|
|
|
|
for key in batch_logs:
|
|
value = batch_logs[key]
|
|
if isinstance(value, list) and isinstance(value[0], str):
|
|
|
|
path = os.path.join(save_dir, "%s-%s.txt"%(key, filename))
|
|
with open(path, 'w') as f:
|
|
for i, txt in enumerate(value):
|
|
f.write(f'idx={i}, txt={txt}\n')
|
|
f.close()
|
|
elif isinstance(value, torch.Tensor) and value.dim() == 5:
|
|
|
|
video = value
|
|
|
|
if video.shape[1] != 1 and video.shape[1] != 3:
|
|
continue
|
|
n = video.shape[0]
|
|
video = video.permute(2, 0, 1, 3, 4)
|
|
frame_grids = [torchvision.utils.make_grid(framesheet, nrow=int(1), padding=0) for framesheet in video]
|
|
grid = torch.stack(frame_grids, dim=0)
|
|
if rescale:
|
|
grid = (grid + 1.0) / 2.0
|
|
grid = (grid * 255).to(torch.uint8).permute(0, 2, 3, 1)
|
|
path = os.path.join(save_dir, "%s-%s.mp4"%(key, filename))
|
|
torchvision.io.write_video(path, grid, fps=save_fps, video_codec='h264', options={'crf': '10'})
|
|
|
|
|
|
img = value
|
|
video_frames = rearrange(img, 'b c t h w -> (b t) c h w')
|
|
t = img.shape[2]
|
|
grid = torchvision.utils.make_grid(video_frames, nrow=t, padding=0)
|
|
path = os.path.join(save_dir, "%s-%s.jpg"%(key, filename))
|
|
|
|
elif isinstance(value, torch.Tensor) and value.dim() == 4:
|
|
|
|
img = value
|
|
|
|
if img.shape[1] != 1 and img.shape[1] != 3:
|
|
continue
|
|
n = img.shape[0]
|
|
grid = torchvision.utils.make_grid(img, nrow=1, padding=0)
|
|
path = os.path.join(save_dir, "%s-%s.jpg"%(key, filename))
|
|
save_img_grid(grid, path, rescale)
|
|
else:
|
|
pass
|
|
|
|
def prepare_to_log(batch_logs, max_images=100000, clamp=True):
|
|
if batch_logs is None:
|
|
return None
|
|
|
|
for key in batch_logs:
|
|
N = batch_logs[key].shape[0] if hasattr(batch_logs[key], 'shape') else len(batch_logs[key])
|
|
N = min(N, max_images)
|
|
batch_logs[key] = batch_logs[key][:N]
|
|
|
|
if isinstance(batch_logs[key], torch.Tensor):
|
|
batch_logs[key] = batch_logs[key].detach().cpu()
|
|
if clamp:
|
|
try:
|
|
batch_logs[key] = torch.clamp(batch_logs[key].float(), -1., 1.)
|
|
except RuntimeError:
|
|
print("clamp_scalar_cpu not implemented for Half")
|
|
return batch_logs
|
|
|
|
|
|
|
|
def fill_with_black_squares(video, desired_len: int) -> Tensor:
|
|
if len(video) >= desired_len:
|
|
return video
|
|
|
|
return torch.cat([
|
|
video,
|
|
torch.zeros_like(video[0]).unsqueeze(0).repeat(desired_len - len(video), 1, 1, 1),
|
|
], dim=0)
|
|
|
|
|
|
def load_num_videos(data_path, num_videos):
|
|
|
|
if isinstance(data_path, str):
|
|
videos = np.load(data_path)['arr_0']
|
|
elif isinstance(data_path, np.ndarray):
|
|
videos = data_path
|
|
else:
|
|
raise Exception
|
|
|
|
if num_videos is not None:
|
|
videos = videos[:num_videos, :, :, :, :]
|
|
return videos
|
|
|
|
def npz_to_video_grid(data_path, out_path, num_frames, fps, num_videos=None, nrow=None, verbose=True):
|
|
|
|
if isinstance(data_path, str):
|
|
videos = load_num_videos(data_path, num_videos)
|
|
elif isinstance(data_path, np.ndarray):
|
|
videos = data_path
|
|
else:
|
|
raise Exception
|
|
n,t,h,w,c = videos.shape
|
|
videos_th = []
|
|
for i in range(n):
|
|
video = videos[i, :,:,:,:]
|
|
images = [video[j, :,:,:] for j in range(t)]
|
|
images = [to_tensor(img) for img in images]
|
|
video = torch.stack(images)
|
|
videos_th.append(video)
|
|
if verbose:
|
|
videos = [fill_with_black_squares(v, num_frames) for v in tqdm(videos_th, desc='Adding empty frames')]
|
|
else:
|
|
videos = [fill_with_black_squares(v, num_frames) for v in videos_th]
|
|
|
|
frame_grids = torch.stack(videos).permute(1, 0, 2, 3, 4)
|
|
if nrow is None:
|
|
nrow = int(np.ceil(np.sqrt(n)))
|
|
if verbose:
|
|
frame_grids = [make_grid(fs, nrow=nrow) for fs in tqdm(frame_grids, desc='Making grids')]
|
|
else:
|
|
frame_grids = [make_grid(fs, nrow=nrow) for fs in frame_grids]
|
|
|
|
if os.path.dirname(out_path) != "":
|
|
os.makedirs(os.path.dirname(out_path), exist_ok=True)
|
|
frame_grids = (torch.stack(frame_grids) * 255).to(torch.uint8).permute(0, 2, 3, 1)
|
|
torchvision.io.write_video(out_path, frame_grids, fps=fps, video_codec='h264', options={'crf': '10'})
|
|
|