|
import os |
|
import time |
|
from omegaconf import OmegaConf |
|
import torch |
|
from scripts.evaluation.funcs import load_model_checkpoint, save_videos, batch_ddim_sampling, get_latent_z |
|
from utils.utils import instantiate_from_config |
|
from huggingface_hub import hf_hub_download |
|
from einops import repeat |
|
import torchvision.transforms as transforms |
|
from pytorch_lightning import seed_everything |
|
from einops import rearrange |
|
import argparse |
|
import glob |
|
from PIL import Image |
|
import numpy as np |
|
from moviepy.editor import VideoFileClip, concatenate_videoclips |
|
|
|
class Image2Video(): |
|
def __init__(self, result_dir='./tmp/', gpu_num=1, resolution='256_256') -> None: |
|
self.resolution = (int(resolution.split('_')[0]), int(resolution.split('_')[1])) |
|
self.download_model() |
|
|
|
self.result_dir = result_dir |
|
if not os.path.exists(self.result_dir): |
|
os.mkdir(self.result_dir) |
|
ckpt_path='checkpoints/tooncrafter_'+resolution.split('_')[1]+'_interp_v1/model.ckpt' |
|
config_file='configs/inference_'+resolution.split('_')[1]+'_v1.0.yaml' |
|
config = OmegaConf.load(config_file) |
|
model_config = config.pop("model", OmegaConf.create()) |
|
model_config['params']['unet_config']['params']['use_checkpoint']=False |
|
model_list = [] |
|
for gpu_id in range(gpu_num): |
|
model = instantiate_from_config(model_config) |
|
print(ckpt_path) |
|
assert os.path.exists(ckpt_path), "Error: checkpoint Not Found!" |
|
model = load_model_checkpoint(model, ckpt_path) |
|
model.eval() |
|
model_list.append(model) |
|
self.model_list = model_list |
|
self.save_fps = 8 |
|
|
|
def get_image(self, image, prompt, steps=50, cfg_scale=7.5, eta=1.0, fs=3, seed=123, image2=None): |
|
img_name = "" |
|
if type(image) == type(""): |
|
img_name = os.path.basename(image).split('.')[0] |
|
image = np.asarray(Image.open(image)) |
|
if type(image2) == type(""): |
|
image2 = np.asarray(Image.open(image2)) |
|
|
|
seed_everything(seed) |
|
transform = transforms.Compose([ |
|
transforms.Resize(min(self.resolution)), |
|
transforms.CenterCrop(self.resolution), |
|
]) |
|
torch.cuda.empty_cache() |
|
print('start:', prompt, time.strftime('%Y-%m-%d %H:%M:%S',time.localtime(time.time()))) |
|
start = time.time() |
|
gpu_id=0 |
|
if steps > 60: |
|
steps = 60 |
|
model = self.model_list[gpu_id] |
|
model = model.half().cuda() |
|
batch_size=1 |
|
channels = model.model.diffusion_model.out_channels |
|
frames = model.temporal_length |
|
h, w = self.resolution[0] // 8, self.resolution[1] // 8 |
|
noise_shape = [batch_size, channels, frames, h, w] |
|
|
|
with torch.no_grad(), torch.cuda.amp.autocast(): |
|
text_emb = model.get_learned_conditioning([prompt]) |
|
img_tensor = torch.from_numpy(image).permute(2, 0, 1).float().half().to(model.device) |
|
img_tensor = (img_tensor / 255. - 0.5) * 2 |
|
image_tensor_resized = transform(img_tensor) |
|
videos = image_tensor_resized.unsqueeze(0).unsqueeze(2) |
|
videos = repeat(videos, 'b c t h w -> b c (repeat t) h w', repeat=frames//2) |
|
|
|
if image2 is not None: |
|
img_tensor2 = torch.from_numpy(image2).permute(2, 0, 1).float().half().to(model.device) |
|
img_tensor2 = (img_tensor2 / 255. - 0.5) * 2 |
|
image_tensor_resized2 = transform(img_tensor2) |
|
videos2 = image_tensor_resized2.unsqueeze(0).unsqueeze(2) |
|
videos2 = repeat(videos2, 'b c t h w -> b c (repeat t) h w', repeat=frames//2) |
|
videos = torch.cat([videos, videos2], dim=2) |
|
|
|
z, hs = self.get_latent_z_with_hidden_states(model, videos) |
|
img_tensor_repeat = torch.zeros_like(z) |
|
img_tensor_repeat[:,:,:1,:,:] = z[:,:,:1,:,:] |
|
img_tensor_repeat[:,:,-1:,:,:] = z[:,:,-1:,:,:] |
|
|
|
cond_images = model.embedder(img_tensor.unsqueeze(0)) |
|
img_emb = model.image_proj_model(cond_images) |
|
imtext_cond = torch.cat([text_emb, img_emb], dim=1) |
|
fs = torch.tensor([fs], dtype=torch.long, device=model.device) |
|
cond = {"c_crossattn": [imtext_cond], "fs": fs, "c_concat": [img_tensor_repeat]} |
|
|
|
batch_samples = batch_ddim_sampling(model, cond, noise_shape, n_samples=1, ddim_steps=steps, ddim_eta=eta, cfg_scale=cfg_scale, hs=hs) |
|
if image2 is None: |
|
batch_samples = batch_samples[:,:,:,:-1,...] |
|
prompt_str = prompt.replace("/", "_slash_") if "/" in prompt else prompt |
|
prompt_str = prompt_str.replace(" ", "_") if " " in prompt else prompt_str |
|
prompt_str=prompt_str[:40] |
|
if len(prompt_str) == 0: |
|
prompt_str = 'empty_prompt' |
|
|
|
|
|
|
|
video_filename = f"{img_name}" |
|
save_videos(batch_samples, self.result_dir, filenames=[video_filename], fps=self.save_fps) |
|
print(f"Saved in {video_filename}. Time used: {(time.time() - start):.2f} seconds") |
|
model = model.cpu() |
|
video_filename += ".mp4" |
|
return os.path.join(self.result_dir, video_filename) |
|
|
|
def download_model(self): |
|
REPO_ID = 'Doubiiu/ToonCrafter' |
|
filename_list = ['model.ckpt'] |
|
if not os.path.exists('./checkpoints/tooncrafter_'+str(self.resolution[1])+'_interp_v1/'): |
|
os.makedirs('./checkpoints/tooncrafter_'+str(self.resolution[1])+'_interp_v1/') |
|
for filename in filename_list: |
|
local_file = os.path.join('./checkpoints/tooncrafter_'+str(self.resolution[1])+'_interp_v1/', filename) |
|
if not os.path.exists(local_file): |
|
hf_hub_download(repo_id=REPO_ID, filename=filename, local_dir='./checkpoints/tooncrafter_'+str(self.resolution[1])+'_interp_v1/', local_dir_use_symlinks=False) |
|
|
|
def get_latent_z_with_hidden_states(self, model, videos): |
|
b, c, t, h, w = videos.shape |
|
x = rearrange(videos, 'b c t h w -> (b t) c h w') |
|
encoder_posterior, hidden_states = model.first_stage_model.encode(x, return_hidden_states=True) |
|
|
|
hidden_states_first_last = [] |
|
for hid in hidden_states: |
|
hid = rearrange(hid, '(b t) c h w -> b c t h w', t=t) |
|
hid_new = torch.cat([hid[:, :, 0:1], hid[:, :, -1:]], dim=2) |
|
hidden_states_first_last.append(hid_new) |
|
|
|
z = model.get_first_stage_encoding(encoder_posterior).detach() |
|
z = rearrange(z, '(b t) c h w -> b c t h w', b=b, t=t) |
|
return z, hidden_states_first_last |
|
|
|
if __name__ == '__main__': |
|
parser = argparse.ArgumentParser(description='Image to Video Conversion') |
|
parser.add_argument('--image_dir', type=str, required=True, help='Path to the directory containing input images') |
|
parser.add_argument('--prompt', type=str, required=True, help='Prompt for the video') |
|
parser.add_argument('--steps', type=int, default=50, help='Number of steps') |
|
parser.add_argument('--cfg_scale', type=float, default=7.5, help='CFG scale') |
|
parser.add_argument('--eta', type=float, default=1.0, help='Eta value') |
|
parser.add_argument('--fs', type=int, default=3, help='FS value') |
|
parser.add_argument('--seed', type=int, default=123, help='Seed value') |
|
args = parser.parse_args() |
|
|
|
i2v = Image2Video("results" ,resolution = "320_512") |
|
image_paths = sorted(glob.glob(os.path.join(args.image_dir, '*.png'))) |
|
|
|
video_paths = [] |
|
for i in range(len(image_paths) - 1): |
|
img_path = image_paths[i] |
|
img2_path = image_paths[i + 1] |
|
video_path = i2v.get_image(img_path, args.prompt, args.steps, args.cfg_scale, args.eta, args.fs, args.seed, img2_path) |
|
video_paths.append(video_path) |
|
print('done', video_path) |
|
|
|
|
|
first_image_name = os.path.basename(image_paths[0]).split('.')[0] |
|
final_video_path = os.path.join(i2v.result_dir, f"{first_image_name}_final.mp4") |
|
|
|
|
|
clips = [VideoFileClip(vp) for vp in video_paths] |
|
final_clip = concatenate_videoclips(clips, method="compose") |
|
final_clip.write_videofile(final_video_path, codec="libx264", fps=i2v.save_fps) |
|
|
|
print(f"Final video saved at {final_video_path}") |