|
import os
|
|
from contextlib import contextmanager
|
|
import torch
|
|
import numpy as np
|
|
from einops import rearrange
|
|
import torch.nn.functional as F
|
|
import pytorch_lightning as pl
|
|
from lvdm.modules.networks.ae_modules import Encoder, Decoder
|
|
from lvdm.distributions import DiagonalGaussianDistribution
|
|
from utils.utils import instantiate_from_config
|
|
|
|
TIMESTEPS=16
|
|
class AutoencoderKL(pl.LightningModule):
|
|
def __init__(self,
|
|
ddconfig,
|
|
lossconfig,
|
|
embed_dim,
|
|
ckpt_path=None,
|
|
ignore_keys=[],
|
|
image_key="image",
|
|
colorize_nlabels=None,
|
|
monitor=None,
|
|
test=False,
|
|
logdir=None,
|
|
input_dim=4,
|
|
test_args=None,
|
|
additional_decode_keys=None,
|
|
use_checkpoint=False,
|
|
diff_boost_factor=3.0,
|
|
):
|
|
super().__init__()
|
|
self.image_key = image_key
|
|
self.encoder = Encoder(**ddconfig)
|
|
self.decoder = Decoder(**ddconfig)
|
|
self.loss = instantiate_from_config(lossconfig)
|
|
assert ddconfig["double_z"]
|
|
self.quant_conv = torch.nn.Conv2d(2*ddconfig["z_channels"], 2*embed_dim, 1)
|
|
self.post_quant_conv = torch.nn.Conv2d(embed_dim, ddconfig["z_channels"], 1)
|
|
self.embed_dim = embed_dim
|
|
self.input_dim = input_dim
|
|
self.test = test
|
|
self.test_args = test_args
|
|
self.logdir = logdir
|
|
if colorize_nlabels is not None:
|
|
assert type(colorize_nlabels)==int
|
|
self.register_buffer("colorize", torch.randn(3, colorize_nlabels, 1, 1))
|
|
if monitor is not None:
|
|
self.monitor = monitor
|
|
if ckpt_path is not None:
|
|
self.init_from_ckpt(ckpt_path, ignore_keys=ignore_keys)
|
|
if self.test:
|
|
self.init_test()
|
|
|
|
def init_test(self,):
|
|
self.test = True
|
|
save_dir = os.path.join(self.logdir, "test")
|
|
if 'ckpt' in self.test_args:
|
|
ckpt_name = os.path.basename(self.test_args.ckpt).split('.ckpt')[0] + f'_epoch{self._cur_epoch}'
|
|
self.root = os.path.join(save_dir, ckpt_name)
|
|
else:
|
|
self.root = save_dir
|
|
if 'test_subdir' in self.test_args:
|
|
self.root = os.path.join(save_dir, self.test_args.test_subdir)
|
|
|
|
self.root_zs = os.path.join(self.root, "zs")
|
|
self.root_dec = os.path.join(self.root, "reconstructions")
|
|
self.root_inputs = os.path.join(self.root, "inputs")
|
|
os.makedirs(self.root, exist_ok=True)
|
|
|
|
if self.test_args.save_z:
|
|
os.makedirs(self.root_zs, exist_ok=True)
|
|
if self.test_args.save_reconstruction:
|
|
os.makedirs(self.root_dec, exist_ok=True)
|
|
if self.test_args.save_input:
|
|
os.makedirs(self.root_inputs, exist_ok=True)
|
|
assert(self.test_args is not None)
|
|
self.test_maximum = getattr(self.test_args, 'test_maximum', None)
|
|
self.count = 0
|
|
self.eval_metrics = {}
|
|
self.decodes = []
|
|
self.save_decode_samples = 2048
|
|
|
|
def init_from_ckpt(self, path, ignore_keys=list()):
|
|
sd = torch.load(path, map_location="cpu")
|
|
try:
|
|
self._cur_epoch = sd['epoch']
|
|
sd = sd["state_dict"]
|
|
except:
|
|
self._cur_epoch = 'null'
|
|
keys = list(sd.keys())
|
|
for k in keys:
|
|
for ik in ignore_keys:
|
|
if k.startswith(ik):
|
|
print("Deleting key {} from state_dict.".format(k))
|
|
del sd[k]
|
|
self.load_state_dict(sd, strict=False)
|
|
|
|
print(f"Restored from {path}")
|
|
|
|
def encode(self, x, return_hidden_states=False, **kwargs):
|
|
if return_hidden_states:
|
|
h, hidden = self.encoder(x, return_hidden_states)
|
|
moments = self.quant_conv(h)
|
|
posterior = DiagonalGaussianDistribution(moments)
|
|
return posterior, hidden
|
|
else:
|
|
h = self.encoder(x)
|
|
moments = self.quant_conv(h)
|
|
posterior = DiagonalGaussianDistribution(moments)
|
|
return posterior
|
|
|
|
def decode(self, z, **kwargs):
|
|
if len(kwargs) == 0:
|
|
z = self.post_quant_conv(z)
|
|
dec = self.decoder(z, **kwargs)
|
|
return dec
|
|
|
|
def forward(self, input, sample_posterior=True, **additional_decode_kwargs):
|
|
input_tuple = (input, )
|
|
forward_temp = partial(self._forward, sample_posterior=sample_posterior, **additional_decode_kwargs)
|
|
return checkpoint(forward_temp, input_tuple, self.parameters(), self.use_checkpoint)
|
|
|
|
|
|
def _forward(self, input, sample_posterior=True, **additional_decode_kwargs):
|
|
posterior = self.encode(input)
|
|
if sample_posterior:
|
|
z = posterior.sample()
|
|
else:
|
|
z = posterior.mode()
|
|
dec = self.decode(z, **additional_decode_kwargs)
|
|
|
|
return dec, posterior
|
|
|
|
def get_input(self, batch, k):
|
|
x = batch[k]
|
|
if x.dim() == 5 and self.input_dim == 4:
|
|
b,c,t,h,w = x.shape
|
|
self.b = b
|
|
self.t = t
|
|
x = rearrange(x, 'b c t h w -> (b t) c h w')
|
|
|
|
return x
|
|
|
|
def training_step(self, batch, batch_idx, optimizer_idx):
|
|
inputs = self.get_input(batch, self.image_key)
|
|
reconstructions, posterior = self(inputs)
|
|
|
|
if optimizer_idx == 0:
|
|
|
|
aeloss, log_dict_ae = self.loss(inputs, reconstructions, posterior, optimizer_idx, self.global_step,
|
|
last_layer=self.get_last_layer(), split="train")
|
|
self.log("aeloss", aeloss, prog_bar=True, logger=True, on_step=True, on_epoch=True)
|
|
self.log_dict(log_dict_ae, prog_bar=False, logger=True, on_step=True, on_epoch=False)
|
|
return aeloss
|
|
|
|
if optimizer_idx == 1:
|
|
|
|
discloss, log_dict_disc = self.loss(inputs, reconstructions, posterior, optimizer_idx, self.global_step,
|
|
last_layer=self.get_last_layer(), split="train")
|
|
|
|
self.log("discloss", discloss, prog_bar=True, logger=True, on_step=True, on_epoch=True)
|
|
self.log_dict(log_dict_disc, prog_bar=False, logger=True, on_step=True, on_epoch=False)
|
|
return discloss
|
|
|
|
def validation_step(self, batch, batch_idx):
|
|
inputs = self.get_input(batch, self.image_key)
|
|
reconstructions, posterior = self(inputs)
|
|
aeloss, log_dict_ae = self.loss(inputs, reconstructions, posterior, 0, self.global_step,
|
|
last_layer=self.get_last_layer(), split="val")
|
|
|
|
discloss, log_dict_disc = self.loss(inputs, reconstructions, posterior, 1, self.global_step,
|
|
last_layer=self.get_last_layer(), split="val")
|
|
|
|
self.log("val/rec_loss", log_dict_ae["val/rec_loss"])
|
|
self.log_dict(log_dict_ae)
|
|
self.log_dict(log_dict_disc)
|
|
return self.log_dict
|
|
|
|
def configure_optimizers(self):
|
|
lr = self.learning_rate
|
|
opt_ae = torch.optim.Adam(list(self.encoder.parameters())+
|
|
list(self.decoder.parameters())+
|
|
list(self.quant_conv.parameters())+
|
|
list(self.post_quant_conv.parameters()),
|
|
lr=lr, betas=(0.5, 0.9))
|
|
opt_disc = torch.optim.Adam(self.loss.discriminator.parameters(),
|
|
lr=lr, betas=(0.5, 0.9))
|
|
return [opt_ae, opt_disc], []
|
|
|
|
def get_last_layer(self):
|
|
return self.decoder.conv_out.weight
|
|
|
|
@torch.no_grad()
|
|
def log_images(self, batch, only_inputs=False, **kwargs):
|
|
log = dict()
|
|
x = self.get_input(batch, self.image_key)
|
|
x = x.to(self.device)
|
|
if not only_inputs:
|
|
xrec, posterior = self(x)
|
|
if x.shape[1] > 3:
|
|
|
|
assert xrec.shape[1] > 3
|
|
x = self.to_rgb(x)
|
|
xrec = self.to_rgb(xrec)
|
|
log["samples"] = self.decode(torch.randn_like(posterior.sample()))
|
|
log["reconstructions"] = xrec
|
|
log["inputs"] = x
|
|
return log
|
|
|
|
def to_rgb(self, x):
|
|
assert self.image_key == "segmentation"
|
|
if not hasattr(self, "colorize"):
|
|
self.register_buffer("colorize", torch.randn(3, x.shape[1], 1, 1).to(x))
|
|
x = F.conv2d(x, weight=self.colorize)
|
|
x = 2.*(x-x.min())/(x.max()-x.min()) - 1.
|
|
return x
|
|
|
|
class IdentityFirstStage(torch.nn.Module):
|
|
def __init__(self, *args, vq_interface=False, **kwargs):
|
|
self.vq_interface = vq_interface
|
|
super().__init__()
|
|
|
|
def encode(self, x, *args, **kwargs):
|
|
return x
|
|
|
|
def decode(self, x, *args, **kwargs):
|
|
return x
|
|
|
|
def quantize(self, x, *args, **kwargs):
|
|
if self.vq_interface:
|
|
return x, None, [None, None, None]
|
|
return x
|
|
|
|
def forward(self, x, *args, **kwargs):
|
|
return x
|
|
|
|
from lvdm.models.autoencoder_dualref import VideoDecoder
|
|
class AutoencoderKL_Dualref(AutoencoderKL):
|
|
def __init__(self,
|
|
ddconfig,
|
|
lossconfig,
|
|
embed_dim,
|
|
ckpt_path=None,
|
|
ignore_keys=[],
|
|
image_key="image",
|
|
colorize_nlabels=None,
|
|
monitor=None,
|
|
test=False,
|
|
logdir=None,
|
|
input_dim=4,
|
|
test_args=None,
|
|
additional_decode_keys=None,
|
|
use_checkpoint=False,
|
|
diff_boost_factor=3.0,
|
|
):
|
|
super().__init__(ddconfig, lossconfig, embed_dim, ckpt_path, ignore_keys, image_key, colorize_nlabels, monitor, test, logdir, input_dim, test_args, additional_decode_keys, use_checkpoint, diff_boost_factor)
|
|
self.decoder = VideoDecoder(**ddconfig)
|
|
|
|
def _forward(self, input, sample_posterior=True, **additional_decode_kwargs):
|
|
posterior, hidden_states = self.encode(input, return_hidden_states=True)
|
|
|
|
hidden_states_first_last = []
|
|
|
|
for hid in hidden_states:
|
|
hid = rearrange(hid, '(b t) c h w -> b c t h w', t=TIMESTEPS)
|
|
hid_new = torch.cat([hid[:, :, 0:1], hid[:, :, -1:]], dim=2)
|
|
hidden_states_first_last.append(hid_new)
|
|
|
|
if sample_posterior:
|
|
z = posterior.sample()
|
|
else:
|
|
z = posterior.mode()
|
|
dec = self.decode(z, ref_context=hidden_states_first_last, **additional_decode_kwargs)
|
|
|
|
return dec, posterior |