|
from functools import partial
|
|
from abc import abstractmethod
|
|
import torch
|
|
import torch.nn as nn
|
|
from einops import rearrange
|
|
import torch.nn.functional as F
|
|
from lvdm.models.utils_diffusion import timestep_embedding
|
|
from lvdm.common import checkpoint
|
|
from lvdm.basics import (
|
|
zero_module,
|
|
conv_nd,
|
|
linear,
|
|
avg_pool_nd,
|
|
normalization
|
|
)
|
|
from lvdm.modules.attention import SpatialTransformer, TemporalTransformer
|
|
|
|
|
|
class TimestepBlock(nn.Module):
|
|
"""
|
|
Any module where forward() takes timestep embeddings as a second argument.
|
|
"""
|
|
@abstractmethod
|
|
def forward(self, x, emb):
|
|
"""
|
|
Apply the module to `x` given `emb` timestep embeddings.
|
|
"""
|
|
|
|
|
|
class TimestepEmbedSequential(nn.Sequential, TimestepBlock):
|
|
"""
|
|
A sequential module that passes timestep embeddings to the children that
|
|
support it as an extra input.
|
|
"""
|
|
|
|
def forward(self, x, emb, context=None, batch_size=None):
|
|
for layer in self:
|
|
if isinstance(layer, TimestepBlock):
|
|
x = layer(x, emb, batch_size=batch_size)
|
|
elif isinstance(layer, SpatialTransformer):
|
|
x = layer(x, context)
|
|
elif isinstance(layer, TemporalTransformer):
|
|
x = rearrange(x, '(b f) c h w -> b c f h w', b=batch_size)
|
|
x = layer(x, context)
|
|
x = rearrange(x, 'b c f h w -> (b f) c h w')
|
|
else:
|
|
x = layer(x)
|
|
return x
|
|
|
|
|
|
class Downsample(nn.Module):
|
|
"""
|
|
A downsampling layer with an optional convolution.
|
|
:param channels: channels in the inputs and outputs.
|
|
:param use_conv: a bool determining if a convolution is applied.
|
|
:param dims: determines if the signal is 1D, 2D, or 3D. If 3D, then
|
|
downsampling occurs in the inner-two dimensions.
|
|
"""
|
|
|
|
def __init__(self, channels, use_conv, dims=2, out_channels=None, padding=1):
|
|
super().__init__()
|
|
self.channels = channels
|
|
self.out_channels = out_channels or channels
|
|
self.use_conv = use_conv
|
|
self.dims = dims
|
|
stride = 2 if dims != 3 else (1, 2, 2)
|
|
if use_conv:
|
|
self.op = conv_nd(
|
|
dims, self.channels, self.out_channels, 3, stride=stride, padding=padding
|
|
)
|
|
else:
|
|
assert self.channels == self.out_channels
|
|
self.op = avg_pool_nd(dims, kernel_size=stride, stride=stride)
|
|
|
|
def forward(self, x):
|
|
assert x.shape[1] == self.channels
|
|
return self.op(x)
|
|
|
|
|
|
class Upsample(nn.Module):
|
|
"""
|
|
An upsampling layer with an optional convolution.
|
|
:param channels: channels in the inputs and outputs.
|
|
:param use_conv: a bool determining if a convolution is applied.
|
|
:param dims: determines if the signal is 1D, 2D, or 3D. If 3D, then
|
|
upsampling occurs in the inner-two dimensions.
|
|
"""
|
|
|
|
def __init__(self, channels, use_conv, dims=2, out_channels=None, padding=1):
|
|
super().__init__()
|
|
self.channels = channels
|
|
self.out_channels = out_channels or channels
|
|
self.use_conv = use_conv
|
|
self.dims = dims
|
|
if use_conv:
|
|
self.conv = conv_nd(dims, self.channels, self.out_channels, 3, padding=padding)
|
|
|
|
def forward(self, x):
|
|
assert x.shape[1] == self.channels
|
|
if self.dims == 3:
|
|
x = F.interpolate(x, (x.shape[2], x.shape[3] * 2, x.shape[4] * 2), mode='nearest')
|
|
else:
|
|
x = F.interpolate(x, scale_factor=2, mode='nearest')
|
|
if self.use_conv:
|
|
x = self.conv(x)
|
|
return x
|
|
|
|
|
|
class ResBlock(TimestepBlock):
|
|
"""
|
|
A residual block that can optionally change the number of channels.
|
|
:param channels: the number of input channels.
|
|
:param emb_channels: the number of timestep embedding channels.
|
|
:param dropout: the rate of dropout.
|
|
:param out_channels: if specified, the number of out channels.
|
|
:param use_conv: if True and out_channels is specified, use a spatial
|
|
convolution instead of a smaller 1x1 convolution to change the
|
|
channels in the skip connection.
|
|
:param dims: determines if the signal is 1D, 2D, or 3D.
|
|
:param up: if True, use this block for upsampling.
|
|
:param down: if True, use this block for downsampling.
|
|
:param use_temporal_conv: if True, use the temporal convolution.
|
|
:param use_image_dataset: if True, the temporal parameters will not be optimized.
|
|
"""
|
|
|
|
def __init__(
|
|
self,
|
|
channels,
|
|
emb_channels,
|
|
dropout,
|
|
out_channels=None,
|
|
use_scale_shift_norm=False,
|
|
dims=2,
|
|
use_checkpoint=False,
|
|
use_conv=False,
|
|
up=False,
|
|
down=False,
|
|
use_temporal_conv=False,
|
|
tempspatial_aware=False
|
|
):
|
|
super().__init__()
|
|
self.channels = channels
|
|
self.emb_channels = emb_channels
|
|
self.dropout = dropout
|
|
self.out_channels = out_channels or channels
|
|
self.use_conv = use_conv
|
|
self.use_checkpoint = use_checkpoint
|
|
self.use_scale_shift_norm = use_scale_shift_norm
|
|
self.use_temporal_conv = use_temporal_conv
|
|
|
|
self.in_layers = nn.Sequential(
|
|
normalization(channels),
|
|
nn.SiLU(),
|
|
conv_nd(dims, channels, self.out_channels, 3, padding=1),
|
|
)
|
|
|
|
self.updown = up or down
|
|
|
|
if up:
|
|
self.h_upd = Upsample(channels, False, dims)
|
|
self.x_upd = Upsample(channels, False, dims)
|
|
elif down:
|
|
self.h_upd = Downsample(channels, False, dims)
|
|
self.x_upd = Downsample(channels, False, dims)
|
|
else:
|
|
self.h_upd = self.x_upd = nn.Identity()
|
|
|
|
self.emb_layers = nn.Sequential(
|
|
nn.SiLU(),
|
|
nn.Linear(
|
|
emb_channels,
|
|
2 * self.out_channels if use_scale_shift_norm else self.out_channels,
|
|
),
|
|
)
|
|
self.out_layers = nn.Sequential(
|
|
normalization(self.out_channels),
|
|
nn.SiLU(),
|
|
nn.Dropout(p=dropout),
|
|
zero_module(nn.Conv2d(self.out_channels, self.out_channels, 3, padding=1)),
|
|
)
|
|
|
|
if self.out_channels == channels:
|
|
self.skip_connection = nn.Identity()
|
|
elif use_conv:
|
|
self.skip_connection = conv_nd(dims, channels, self.out_channels, 3, padding=1)
|
|
else:
|
|
self.skip_connection = conv_nd(dims, channels, self.out_channels, 1)
|
|
|
|
if self.use_temporal_conv:
|
|
self.temopral_conv = TemporalConvBlock(
|
|
self.out_channels,
|
|
self.out_channels,
|
|
dropout=0.1,
|
|
spatial_aware=tempspatial_aware
|
|
)
|
|
|
|
def forward(self, x, emb, batch_size=None):
|
|
"""
|
|
Apply the block to a Tensor, conditioned on a timestep embedding.
|
|
:param x: an [N x C x ...] Tensor of features.
|
|
:param emb: an [N x emb_channels] Tensor of timestep embeddings.
|
|
:return: an [N x C x ...] Tensor of outputs.
|
|
"""
|
|
input_tuple = (x, emb)
|
|
if batch_size:
|
|
forward_batchsize = partial(self._forward, batch_size=batch_size)
|
|
return checkpoint(forward_batchsize, input_tuple, self.parameters(), self.use_checkpoint)
|
|
return checkpoint(self._forward, input_tuple, self.parameters(), self.use_checkpoint)
|
|
|
|
def _forward(self, x, emb, batch_size=None):
|
|
if self.updown:
|
|
in_rest, in_conv = self.in_layers[:-1], self.in_layers[-1]
|
|
h = in_rest(x)
|
|
h = self.h_upd(h)
|
|
x = self.x_upd(x)
|
|
h = in_conv(h)
|
|
else:
|
|
h = self.in_layers(x)
|
|
emb_out = self.emb_layers(emb).type(h.dtype)
|
|
while len(emb_out.shape) < len(h.shape):
|
|
emb_out = emb_out[..., None]
|
|
if self.use_scale_shift_norm:
|
|
out_norm, out_rest = self.out_layers[0], self.out_layers[1:]
|
|
scale, shift = torch.chunk(emb_out, 2, dim=1)
|
|
h = out_norm(h) * (1 + scale) + shift
|
|
h = out_rest(h)
|
|
else:
|
|
h = h + emb_out
|
|
h = self.out_layers(h)
|
|
h = self.skip_connection(x) + h
|
|
|
|
if self.use_temporal_conv and batch_size:
|
|
h = rearrange(h, '(b t) c h w -> b c t h w', b=batch_size)
|
|
h = self.temopral_conv(h)
|
|
h = rearrange(h, 'b c t h w -> (b t) c h w')
|
|
return h
|
|
|
|
|
|
class TemporalConvBlock(nn.Module):
|
|
"""
|
|
Adapted from modelscope: https://github.com/modelscope/modelscope/blob/master/modelscope/models/multi_modal/video_synthesis/unet_sd.py
|
|
"""
|
|
def __init__(self, in_channels, out_channels=None, dropout=0.0, spatial_aware=False):
|
|
super(TemporalConvBlock, self).__init__()
|
|
if out_channels is None:
|
|
out_channels = in_channels
|
|
self.in_channels = in_channels
|
|
self.out_channels = out_channels
|
|
th_kernel_shape = (3, 1, 1) if not spatial_aware else (3, 3, 1)
|
|
th_padding_shape = (1, 0, 0) if not spatial_aware else (1, 1, 0)
|
|
tw_kernel_shape = (3, 1, 1) if not spatial_aware else (3, 1, 3)
|
|
tw_padding_shape = (1, 0, 0) if not spatial_aware else (1, 0, 1)
|
|
|
|
|
|
self.conv1 = nn.Sequential(
|
|
nn.GroupNorm(32, in_channels), nn.SiLU(),
|
|
nn.Conv3d(in_channels, out_channels, th_kernel_shape, padding=th_padding_shape))
|
|
self.conv2 = nn.Sequential(
|
|
nn.GroupNorm(32, out_channels), nn.SiLU(), nn.Dropout(dropout),
|
|
nn.Conv3d(out_channels, in_channels, tw_kernel_shape, padding=tw_padding_shape))
|
|
self.conv3 = nn.Sequential(
|
|
nn.GroupNorm(32, out_channels), nn.SiLU(), nn.Dropout(dropout),
|
|
nn.Conv3d(out_channels, in_channels, th_kernel_shape, padding=th_padding_shape))
|
|
self.conv4 = nn.Sequential(
|
|
nn.GroupNorm(32, out_channels), nn.SiLU(), nn.Dropout(dropout),
|
|
nn.Conv3d(out_channels, in_channels, tw_kernel_shape, padding=tw_padding_shape))
|
|
|
|
|
|
nn.init.zeros_(self.conv4[-1].weight)
|
|
nn.init.zeros_(self.conv4[-1].bias)
|
|
|
|
def forward(self, x):
|
|
identity = x
|
|
x = self.conv1(x)
|
|
x = self.conv2(x)
|
|
x = self.conv3(x)
|
|
x = self.conv4(x)
|
|
|
|
return identity + x
|
|
|
|
class UNetModel(nn.Module):
|
|
"""
|
|
The full UNet model with attention and timestep embedding.
|
|
:param in_channels: in_channels in the input Tensor.
|
|
:param model_channels: base channel count for the model.
|
|
:param out_channels: channels in the output Tensor.
|
|
:param num_res_blocks: number of residual blocks per downsample.
|
|
:param attention_resolutions: a collection of downsample rates at which
|
|
attention will take place. May be a set, list, or tuple.
|
|
For example, if this contains 4, then at 4x downsampling, attention
|
|
will be used.
|
|
:param dropout: the dropout probability.
|
|
:param channel_mult: channel multiplier for each level of the UNet.
|
|
:param conv_resample: if True, use learned convolutions for upsampling and
|
|
downsampling.
|
|
:param dims: determines if the signal is 1D, 2D, or 3D.
|
|
:param num_classes: if specified (as an int), then this model will be
|
|
class-conditional with `num_classes` classes.
|
|
:param use_checkpoint: use gradient checkpointing to reduce memory usage.
|
|
:param num_heads: the number of attention heads in each attention layer.
|
|
:param num_heads_channels: if specified, ignore num_heads and instead use
|
|
a fixed channel width per attention head.
|
|
:param num_heads_upsample: works with num_heads to set a different number
|
|
of heads for upsampling. Deprecated.
|
|
:param use_scale_shift_norm: use a FiLM-like conditioning mechanism.
|
|
:param resblock_updown: use residual blocks for up/downsampling.
|
|
:param use_new_attention_order: use a different attention pattern for potentially
|
|
increased efficiency.
|
|
"""
|
|
|
|
def __init__(self,
|
|
in_channels,
|
|
model_channels,
|
|
out_channels,
|
|
num_res_blocks,
|
|
attention_resolutions,
|
|
dropout=0.0,
|
|
channel_mult=(1, 2, 4, 8),
|
|
conv_resample=True,
|
|
dims=2,
|
|
context_dim=None,
|
|
use_scale_shift_norm=False,
|
|
resblock_updown=False,
|
|
num_heads=-1,
|
|
num_head_channels=-1,
|
|
transformer_depth=1,
|
|
use_linear=False,
|
|
use_checkpoint=False,
|
|
temporal_conv=False,
|
|
tempspatial_aware=False,
|
|
temporal_attention=True,
|
|
use_relative_position=True,
|
|
use_causal_attention=False,
|
|
temporal_length=None,
|
|
use_fp16=False,
|
|
addition_attention=False,
|
|
temporal_selfatt_only=True,
|
|
image_cross_attention=False,
|
|
image_cross_attention_scale_learnable=False,
|
|
default_fs=4,
|
|
fs_condition=False,
|
|
):
|
|
super(UNetModel, self).__init__()
|
|
if num_heads == -1:
|
|
assert num_head_channels != -1, 'Either num_heads or num_head_channels has to be set'
|
|
if num_head_channels == -1:
|
|
assert num_heads != -1, 'Either num_heads or num_head_channels has to be set'
|
|
|
|
self.in_channels = in_channels
|
|
self.model_channels = model_channels
|
|
self.out_channels = out_channels
|
|
self.num_res_blocks = num_res_blocks
|
|
self.attention_resolutions = attention_resolutions
|
|
self.dropout = dropout
|
|
self.channel_mult = channel_mult
|
|
self.conv_resample = conv_resample
|
|
self.temporal_attention = temporal_attention
|
|
time_embed_dim = model_channels * 4
|
|
self.use_checkpoint = use_checkpoint
|
|
self.dtype = torch.float16 if use_fp16 else torch.float32
|
|
temporal_self_att_only = True
|
|
self.addition_attention = addition_attention
|
|
self.temporal_length = temporal_length
|
|
self.image_cross_attention = image_cross_attention
|
|
self.image_cross_attention_scale_learnable = image_cross_attention_scale_learnable
|
|
self.default_fs = default_fs
|
|
self.fs_condition = fs_condition
|
|
|
|
|
|
self.time_embed = nn.Sequential(
|
|
linear(model_channels, time_embed_dim),
|
|
nn.SiLU(),
|
|
linear(time_embed_dim, time_embed_dim),
|
|
)
|
|
if fs_condition:
|
|
self.fps_embedding = nn.Sequential(
|
|
linear(model_channels, time_embed_dim),
|
|
nn.SiLU(),
|
|
linear(time_embed_dim, time_embed_dim),
|
|
)
|
|
nn.init.zeros_(self.fps_embedding[-1].weight)
|
|
nn.init.zeros_(self.fps_embedding[-1].bias)
|
|
|
|
self.input_blocks = nn.ModuleList(
|
|
[
|
|
TimestepEmbedSequential(conv_nd(dims, in_channels, model_channels, 3, padding=1))
|
|
]
|
|
)
|
|
if self.addition_attention:
|
|
self.init_attn=TimestepEmbedSequential(
|
|
TemporalTransformer(
|
|
model_channels,
|
|
n_heads=8,
|
|
d_head=num_head_channels,
|
|
depth=transformer_depth,
|
|
context_dim=context_dim,
|
|
use_checkpoint=use_checkpoint, only_self_att=temporal_selfatt_only,
|
|
causal_attention=False, relative_position=use_relative_position,
|
|
temporal_length=temporal_length))
|
|
|
|
input_block_chans = [model_channels]
|
|
ch = model_channels
|
|
ds = 1
|
|
for level, mult in enumerate(channel_mult):
|
|
for _ in range(num_res_blocks):
|
|
layers = [
|
|
ResBlock(ch, time_embed_dim, dropout,
|
|
out_channels=mult * model_channels, dims=dims, use_checkpoint=use_checkpoint,
|
|
use_scale_shift_norm=use_scale_shift_norm, tempspatial_aware=tempspatial_aware,
|
|
use_temporal_conv=temporal_conv
|
|
)
|
|
]
|
|
ch = mult * model_channels
|
|
if ds in attention_resolutions:
|
|
if num_head_channels == -1:
|
|
dim_head = ch // num_heads
|
|
else:
|
|
num_heads = ch // num_head_channels
|
|
dim_head = num_head_channels
|
|
layers.append(
|
|
SpatialTransformer(ch, num_heads, dim_head,
|
|
depth=transformer_depth, context_dim=context_dim, use_linear=use_linear,
|
|
use_checkpoint=use_checkpoint, disable_self_attn=False,
|
|
video_length=temporal_length, image_cross_attention=self.image_cross_attention,
|
|
image_cross_attention_scale_learnable=self.image_cross_attention_scale_learnable,
|
|
)
|
|
)
|
|
if self.temporal_attention:
|
|
layers.append(
|
|
TemporalTransformer(ch, num_heads, dim_head,
|
|
depth=transformer_depth, context_dim=context_dim, use_linear=use_linear,
|
|
use_checkpoint=use_checkpoint, only_self_att=temporal_self_att_only,
|
|
causal_attention=use_causal_attention, relative_position=use_relative_position,
|
|
temporal_length=temporal_length
|
|
)
|
|
)
|
|
self.input_blocks.append(TimestepEmbedSequential(*layers))
|
|
input_block_chans.append(ch)
|
|
if level != len(channel_mult) - 1:
|
|
out_ch = ch
|
|
self.input_blocks.append(
|
|
TimestepEmbedSequential(
|
|
ResBlock(ch, time_embed_dim, dropout,
|
|
out_channels=out_ch, dims=dims, use_checkpoint=use_checkpoint,
|
|
use_scale_shift_norm=use_scale_shift_norm,
|
|
down=True
|
|
)
|
|
if resblock_updown
|
|
else Downsample(ch, conv_resample, dims=dims, out_channels=out_ch)
|
|
)
|
|
)
|
|
ch = out_ch
|
|
input_block_chans.append(ch)
|
|
ds *= 2
|
|
|
|
if num_head_channels == -1:
|
|
dim_head = ch // num_heads
|
|
else:
|
|
num_heads = ch // num_head_channels
|
|
dim_head = num_head_channels
|
|
layers = [
|
|
ResBlock(ch, time_embed_dim, dropout,
|
|
dims=dims, use_checkpoint=use_checkpoint,
|
|
use_scale_shift_norm=use_scale_shift_norm, tempspatial_aware=tempspatial_aware,
|
|
use_temporal_conv=temporal_conv
|
|
),
|
|
SpatialTransformer(ch, num_heads, dim_head,
|
|
depth=transformer_depth, context_dim=context_dim, use_linear=use_linear,
|
|
use_checkpoint=use_checkpoint, disable_self_attn=False, video_length=temporal_length,
|
|
image_cross_attention=self.image_cross_attention,image_cross_attention_scale_learnable=self.image_cross_attention_scale_learnable
|
|
)
|
|
]
|
|
if self.temporal_attention:
|
|
layers.append(
|
|
TemporalTransformer(ch, num_heads, dim_head,
|
|
depth=transformer_depth, context_dim=context_dim, use_linear=use_linear,
|
|
use_checkpoint=use_checkpoint, only_self_att=temporal_self_att_only,
|
|
causal_attention=use_causal_attention, relative_position=use_relative_position,
|
|
temporal_length=temporal_length
|
|
)
|
|
)
|
|
layers.append(
|
|
ResBlock(ch, time_embed_dim, dropout,
|
|
dims=dims, use_checkpoint=use_checkpoint,
|
|
use_scale_shift_norm=use_scale_shift_norm, tempspatial_aware=tempspatial_aware,
|
|
use_temporal_conv=temporal_conv
|
|
)
|
|
)
|
|
|
|
|
|
self.middle_block = TimestepEmbedSequential(*layers)
|
|
|
|
|
|
self.output_blocks = nn.ModuleList([])
|
|
for level, mult in list(enumerate(channel_mult))[::-1]:
|
|
for i in range(num_res_blocks + 1):
|
|
ich = input_block_chans.pop()
|
|
layers = [
|
|
ResBlock(ch + ich, time_embed_dim, dropout,
|
|
out_channels=mult * model_channels, dims=dims, use_checkpoint=use_checkpoint,
|
|
use_scale_shift_norm=use_scale_shift_norm, tempspatial_aware=tempspatial_aware,
|
|
use_temporal_conv=temporal_conv
|
|
)
|
|
]
|
|
ch = model_channels * mult
|
|
if ds in attention_resolutions:
|
|
if num_head_channels == -1:
|
|
dim_head = ch // num_heads
|
|
else:
|
|
num_heads = ch // num_head_channels
|
|
dim_head = num_head_channels
|
|
layers.append(
|
|
SpatialTransformer(ch, num_heads, dim_head,
|
|
depth=transformer_depth, context_dim=context_dim, use_linear=use_linear,
|
|
use_checkpoint=use_checkpoint, disable_self_attn=False, video_length=temporal_length,
|
|
image_cross_attention=self.image_cross_attention,image_cross_attention_scale_learnable=self.image_cross_attention_scale_learnable
|
|
)
|
|
)
|
|
if self.temporal_attention:
|
|
layers.append(
|
|
TemporalTransformer(ch, num_heads, dim_head,
|
|
depth=transformer_depth, context_dim=context_dim, use_linear=use_linear,
|
|
use_checkpoint=use_checkpoint, only_self_att=temporal_self_att_only,
|
|
causal_attention=use_causal_attention, relative_position=use_relative_position,
|
|
temporal_length=temporal_length
|
|
)
|
|
)
|
|
if level and i == num_res_blocks:
|
|
out_ch = ch
|
|
layers.append(
|
|
ResBlock(ch, time_embed_dim, dropout,
|
|
out_channels=out_ch, dims=dims, use_checkpoint=use_checkpoint,
|
|
use_scale_shift_norm=use_scale_shift_norm,
|
|
up=True
|
|
)
|
|
if resblock_updown
|
|
else Upsample(ch, conv_resample, dims=dims, out_channels=out_ch)
|
|
)
|
|
ds //= 2
|
|
self.output_blocks.append(TimestepEmbedSequential(*layers))
|
|
|
|
self.out = nn.Sequential(
|
|
normalization(ch),
|
|
nn.SiLU(),
|
|
zero_module(conv_nd(dims, model_channels, out_channels, 3, padding=1)),
|
|
)
|
|
|
|
def forward(self, x, timesteps, context=None, features_adapter=None, fs=None, **kwargs):
|
|
b,_,t,_,_ = x.shape
|
|
t_emb = timestep_embedding(timesteps, self.model_channels, repeat_only=False).type(x.dtype)
|
|
emb = self.time_embed(t_emb)
|
|
|
|
|
|
|
|
_, l_context, _ = context.shape
|
|
if l_context == 77 + t*16:
|
|
context_text, context_img = context[:,:77,:], context[:,77:,:]
|
|
context_text = context_text.repeat_interleave(repeats=t, dim=0)
|
|
context_img = rearrange(context_img, 'b (t l) c -> (b t) l c', t=t)
|
|
context = torch.cat([context_text, context_img], dim=1)
|
|
else:
|
|
context = context.repeat_interleave(repeats=t, dim=0)
|
|
emb = emb.repeat_interleave(repeats=t, dim=0)
|
|
|
|
|
|
x = rearrange(x, 'b c t h w -> (b t) c h w')
|
|
|
|
|
|
if self.fs_condition:
|
|
if fs is None:
|
|
fs = torch.tensor(
|
|
[self.default_fs] * b, dtype=torch.long, device=x.device)
|
|
fs_emb = timestep_embedding(fs, self.model_channels, repeat_only=False).type(x.dtype)
|
|
|
|
fs_embed = self.fps_embedding(fs_emb)
|
|
fs_embed = fs_embed.repeat_interleave(repeats=t, dim=0)
|
|
emb = emb + fs_embed
|
|
|
|
h = x.type(self.dtype)
|
|
adapter_idx = 0
|
|
hs = []
|
|
for id, module in enumerate(self.input_blocks):
|
|
h = module(h, emb, context=context, batch_size=b)
|
|
if id ==0 and self.addition_attention:
|
|
h = self.init_attn(h, emb, context=context, batch_size=b)
|
|
|
|
if ((id+1)%3 == 0) and features_adapter is not None:
|
|
h = h + features_adapter[adapter_idx]
|
|
adapter_idx += 1
|
|
hs.append(h)
|
|
if features_adapter is not None:
|
|
assert len(features_adapter)==adapter_idx, 'Wrong features_adapter'
|
|
|
|
h = self.middle_block(h, emb, context=context, batch_size=b)
|
|
for module in self.output_blocks:
|
|
h = torch.cat([h, hs.pop()], dim=1)
|
|
h = module(h, emb, context=context, batch_size=b)
|
|
h = h.type(x.dtype)
|
|
y = self.out(h)
|
|
|
|
|
|
y = rearrange(y, '(b t) c h w -> b c t h w', b=b)
|
|
return y |