|
import os
|
|
import time
|
|
from omegaconf import OmegaConf
|
|
import torch
|
|
from scripts.evaluation.funcs import load_model_checkpoint, save_videos, batch_ddim_sampling, get_latent_z
|
|
from utils.utils import instantiate_from_config
|
|
from huggingface_hub import hf_hub_download
|
|
from einops import repeat
|
|
import torchvision.transforms as transforms
|
|
from pytorch_lightning import seed_everything
|
|
from einops import rearrange
|
|
|
|
class Image2Video():
|
|
def __init__(self,result_dir='./tmp/',gpu_num=1,resolution='256_256') -> None:
|
|
self.resolution = (int(resolution.split('_')[0]), int(resolution.split('_')[1]))
|
|
self.download_model()
|
|
|
|
self.result_dir = result_dir
|
|
if not os.path.exists(self.result_dir):
|
|
os.mkdir(self.result_dir)
|
|
ckpt_path='checkpoints/tooncrafter_'+resolution.split('_')[1]+'_interp_v1/model.ckpt'
|
|
config_file='configs/inference_'+resolution.split('_')[1]+'_v1.0.yaml'
|
|
config = OmegaConf.load(config_file)
|
|
model_config = config.pop("model", OmegaConf.create())
|
|
model_config['params']['unet_config']['params']['use_checkpoint']=False
|
|
model_list = []
|
|
for gpu_id in range(gpu_num):
|
|
model = instantiate_from_config(model_config)
|
|
|
|
print(ckpt_path)
|
|
assert os.path.exists(ckpt_path), "Error: checkpoint Not Found!"
|
|
model = load_model_checkpoint(model, ckpt_path)
|
|
model.eval()
|
|
model_list.append(model)
|
|
self.model_list = model_list
|
|
self.save_fps = 8
|
|
|
|
def get_image(self, image, prompt, steps=50, cfg_scale=7.5, eta=1.0, fs=3, seed=123, image2=None):
|
|
seed_everything(seed)
|
|
transform = transforms.Compose([
|
|
transforms.Resize(min(self.resolution)),
|
|
transforms.CenterCrop(self.resolution),
|
|
])
|
|
torch.cuda.empty_cache()
|
|
print('start:', prompt, time.strftime('%Y-%m-%d %H:%M:%S',time.localtime(time.time())))
|
|
start = time.time()
|
|
gpu_id=0
|
|
if steps > 60:
|
|
steps = 60
|
|
model = self.model_list[gpu_id]
|
|
|
|
model = model.half().cuda()
|
|
batch_size=1
|
|
channels = model.model.diffusion_model.out_channels
|
|
frames = model.temporal_length
|
|
h, w = self.resolution[0] // 8, self.resolution[1] // 8
|
|
noise_shape = [batch_size, channels, frames, h, w]
|
|
|
|
|
|
with torch.no_grad(), torch.cuda.amp.autocast():
|
|
text_emb = model.get_learned_conditioning([prompt])
|
|
|
|
|
|
|
|
img_tensor = torch.from_numpy(image).permute(2, 0, 1).float().half().to(model.device)
|
|
img_tensor = (img_tensor / 255. - 0.5) * 2
|
|
|
|
image_tensor_resized = transform(img_tensor)
|
|
videos = image_tensor_resized.unsqueeze(0).unsqueeze(2)
|
|
|
|
|
|
videos = repeat(videos, 'b c t h w -> b c (repeat t) h w', repeat=frames//2)
|
|
|
|
|
|
|
|
|
|
|
|
img_tensor2 = torch.from_numpy(image2).permute(2, 0, 1).float().half().to(model.device)
|
|
img_tensor2 = (img_tensor2 / 255. - 0.5) * 2
|
|
image_tensor_resized2 = transform(img_tensor2)
|
|
videos2 = image_tensor_resized2.unsqueeze(0).unsqueeze(2)
|
|
videos2 = repeat(videos2, 'b c t h w -> b c (repeat t) h w', repeat=frames//2)
|
|
|
|
|
|
videos = torch.cat([videos, videos2], dim=2)
|
|
z, hs = self.get_latent_z_with_hidden_states(model, videos)
|
|
|
|
img_tensor_repeat = torch.zeros_like(z)
|
|
|
|
img_tensor_repeat[:,:,:1,:,:] = z[:,:,:1,:,:]
|
|
img_tensor_repeat[:,:,-1:,:,:] = z[:,:,-1:,:,:]
|
|
|
|
|
|
cond_images = model.embedder(img_tensor.unsqueeze(0))
|
|
img_emb = model.image_proj_model(cond_images)
|
|
|
|
imtext_cond = torch.cat([text_emb, img_emb], dim=1)
|
|
|
|
fs = torch.tensor([fs], dtype=torch.long, device=model.device)
|
|
cond = {"c_crossattn": [imtext_cond], "fs": fs, "c_concat": [img_tensor_repeat]}
|
|
|
|
|
|
batch_samples = batch_ddim_sampling(model, cond, noise_shape, n_samples=1, ddim_steps=steps, ddim_eta=eta, cfg_scale=cfg_scale, hs=hs)
|
|
|
|
|
|
if image2 is None:
|
|
batch_samples = batch_samples[:,:,:,:-1,...]
|
|
|
|
prompt_str = prompt.replace("/", "_slash_") if "/" in prompt else prompt
|
|
prompt_str = prompt_str.replace(" ", "_") if " " in prompt else prompt_str
|
|
prompt_str=prompt_str[:40]
|
|
if len(prompt_str) == 0:
|
|
prompt_str = 'empty_prompt'
|
|
|
|
save_videos(batch_samples, self.result_dir, filenames=[prompt_str], fps=self.save_fps)
|
|
print(f"Saved in {prompt_str}. Time used: {(time.time() - start):.2f} seconds")
|
|
model = model.cpu()
|
|
return os.path.join(self.result_dir, f"{prompt_str}.mp4")
|
|
|
|
def download_model(self):
|
|
REPO_ID = 'Doubiiu/ToonCrafter'
|
|
filename_list = ['model.ckpt']
|
|
if not os.path.exists('./checkpoints/tooncrafter_'+str(self.resolution[1])+'_interp_v1/'):
|
|
os.makedirs('./checkpoints/tooncrafter_'+str(self.resolution[1])+'_interp_v1/')
|
|
for filename in filename_list:
|
|
local_file = os.path.join('./checkpoints/tooncrafter_'+str(self.resolution[1])+'_interp_v1/', filename)
|
|
if not os.path.exists(local_file):
|
|
hf_hub_download(repo_id=REPO_ID, filename=filename, local_dir='./checkpoints/tooncrafter_'+str(self.resolution[1])+'_interp_v1/', local_dir_use_symlinks=False)
|
|
|
|
def get_latent_z_with_hidden_states(self, model, videos):
|
|
b, c, t, h, w = videos.shape
|
|
x = rearrange(videos, 'b c t h w -> (b t) c h w')
|
|
encoder_posterior, hidden_states = model.first_stage_model.encode(x, return_hidden_states=True)
|
|
|
|
hidden_states_first_last = []
|
|
|
|
for hid in hidden_states:
|
|
hid = rearrange(hid, '(b t) c h w -> b c t h w', t=t)
|
|
hid_new = torch.cat([hid[:, :, 0:1], hid[:, :, -1:]], dim=2)
|
|
hidden_states_first_last.append(hid_new)
|
|
|
|
z = model.get_first_stage_encoding(encoder_posterior).detach()
|
|
z = rearrange(z, '(b t) c h w -> b c t h w', b=b, t=t)
|
|
return z, hidden_states_first_last
|
|
if __name__ == '__main__':
|
|
i2v = Image2Video()
|
|
video_path = i2v.get_image('prompts/art.png','man fishing in a boat at sunset')
|
|
print('done', video_path) |