File size: 6,990 Bytes
2840956
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
import math
import numpy as np
import torch
import torch.nn.functional as F
from einops import repeat


def timestep_embedding(timesteps, dim, max_period=10000, repeat_only=False):
    """

    Create sinusoidal timestep embeddings.

    :param timesteps: a 1-D Tensor of N indices, one per batch element.

                      These may be fractional.

    :param dim: the dimension of the output.

    :param max_period: controls the minimum frequency of the embeddings.

    :return: an [N x dim] Tensor of positional embeddings.

    """
    if not repeat_only:
        half = dim // 2
        freqs = torch.exp(
            -math.log(max_period) * torch.arange(start=0, end=half, dtype=torch.float32) / half
        ).to(device=timesteps.device)
        args = timesteps[:, None].float() * freqs[None]
        embedding = torch.cat([torch.cos(args), torch.sin(args)], dim=-1)
        if dim % 2:
            embedding = torch.cat([embedding, torch.zeros_like(embedding[:, :1])], dim=-1)
    else:
        embedding = repeat(timesteps, 'b -> b d', d=dim)
    return embedding


def make_beta_schedule(schedule, n_timestep, linear_start=1e-4, linear_end=2e-2, cosine_s=8e-3):
    if schedule == "linear":
        betas = (
                torch.linspace(linear_start ** 0.5, linear_end ** 0.5, n_timestep, dtype=torch.float64) ** 2
        )

    elif schedule == "cosine":
        timesteps = (
                torch.arange(n_timestep + 1, dtype=torch.float64) / n_timestep + cosine_s
        )
        alphas = timesteps / (1 + cosine_s) * np.pi / 2
        alphas = torch.cos(alphas).pow(2)
        alphas = alphas / alphas[0]
        betas = 1 - alphas[1:] / alphas[:-1]
        betas = np.clip(betas, a_min=0, a_max=0.999)

    elif schedule == "sqrt_linear":
        betas = torch.linspace(linear_start, linear_end, n_timestep, dtype=torch.float64)
    elif schedule == "sqrt":
        betas = torch.linspace(linear_start, linear_end, n_timestep, dtype=torch.float64) ** 0.5
    else:
        raise ValueError(f"schedule '{schedule}' unknown.")
    return betas.numpy()


def make_ddim_timesteps(ddim_discr_method, num_ddim_timesteps, num_ddpm_timesteps, verbose=True):
    if ddim_discr_method == 'uniform':
        c = num_ddpm_timesteps // num_ddim_timesteps
        ddim_timesteps = np.asarray(list(range(0, num_ddpm_timesteps, c)))
        steps_out = ddim_timesteps + 1
    elif ddim_discr_method == 'uniform_trailing':
        c = num_ddpm_timesteps / num_ddim_timesteps
        ddim_timesteps = np.flip(np.round(np.arange(num_ddpm_timesteps, 0, -c))).astype(np.int64)
        steps_out = ddim_timesteps - 1
    elif ddim_discr_method == 'quad':
        ddim_timesteps = ((np.linspace(0, np.sqrt(num_ddpm_timesteps * .8), num_ddim_timesteps)) ** 2).astype(int)
        steps_out = ddim_timesteps + 1
    else:
        raise NotImplementedError(f'There is no ddim discretization method called "{ddim_discr_method}"')

    # assert ddim_timesteps.shape[0] == num_ddim_timesteps
    # add one to get the final alpha values right (the ones from first scale to data during sampling)
    # steps_out = ddim_timesteps + 1
    if verbose:
        print(f'Selected timesteps for ddim sampler: {steps_out}')
    return steps_out


def make_ddim_sampling_parameters(alphacums, ddim_timesteps, eta, verbose=True):
    # select alphas for computing the variance schedule
    # print(f'ddim_timesteps={ddim_timesteps}, len_alphacums={len(alphacums)}')
    alphas = alphacums[ddim_timesteps]
    alphas_prev = np.asarray([alphacums[0]] + alphacums[ddim_timesteps[:-1]].tolist())

    # according the formula provided in https://arxiv.org/abs/2010.02502
    sigmas = eta * np.sqrt((1 - alphas_prev) / (1 - alphas) * (1 - alphas / alphas_prev))
    if verbose:
        print(f'Selected alphas for ddim sampler: a_t: {alphas}; a_(t-1): {alphas_prev}')
        print(f'For the chosen value of eta, which is {eta}, '
              f'this results in the following sigma_t schedule for ddim sampler {sigmas}')
    return sigmas, alphas, alphas_prev


def betas_for_alpha_bar(num_diffusion_timesteps, alpha_bar, max_beta=0.999):
    """

    Create a beta schedule that discretizes the given alpha_t_bar function,

    which defines the cumulative product of (1-beta) over time from t = [0,1].

    :param num_diffusion_timesteps: the number of betas to produce.

    :param alpha_bar: a lambda that takes an argument t from 0 to 1 and

                      produces the cumulative product of (1-beta) up to that

                      part of the diffusion process.

    :param max_beta: the maximum beta to use; use values lower than 1 to

                     prevent singularities.

    """
    betas = []
    for i in range(num_diffusion_timesteps):
        t1 = i / num_diffusion_timesteps
        t2 = (i + 1) / num_diffusion_timesteps
        betas.append(min(1 - alpha_bar(t2) / alpha_bar(t1), max_beta))
    return np.array(betas)

def rescale_zero_terminal_snr(betas):
    """

    Rescales betas to have zero terminal SNR Based on https://arxiv.org/pdf/2305.08891.pdf (Algorithm 1)



    Args:

        betas (`numpy.ndarray`):

            the betas that the scheduler is being initialized with.



    Returns:

        `numpy.ndarray`: rescaled betas with zero terminal SNR

    """
    # Convert betas to alphas_bar_sqrt
    alphas = 1.0 - betas
    alphas_cumprod = np.cumprod(alphas, axis=0)
    alphas_bar_sqrt = np.sqrt(alphas_cumprod)

    # Store old values.
    alphas_bar_sqrt_0 = alphas_bar_sqrt[0].copy()
    alphas_bar_sqrt_T = alphas_bar_sqrt[-1].copy()

    # Shift so the last timestep is zero.
    alphas_bar_sqrt -= alphas_bar_sqrt_T

    # Scale so the first timestep is back to the old value.
    alphas_bar_sqrt *= alphas_bar_sqrt_0 / (alphas_bar_sqrt_0 - alphas_bar_sqrt_T)

    # Convert alphas_bar_sqrt to betas
    alphas_bar = alphas_bar_sqrt**2  # Revert sqrt
    alphas = alphas_bar[1:] / alphas_bar[:-1]  # Revert cumprod
    alphas = np.concatenate([alphas_bar[0:1], alphas])
    betas = 1 - alphas

    return betas


def rescale_noise_cfg(noise_cfg, noise_pred_text, guidance_rescale=0.0):
    """

    Rescale `noise_cfg` according to `guidance_rescale`. Based on findings of [Common Diffusion Noise Schedules and

    Sample Steps are Flawed](https://arxiv.org/pdf/2305.08891.pdf). See Section 3.4

    """
    std_text = noise_pred_text.std(dim=list(range(1, noise_pred_text.ndim)), keepdim=True)
    std_cfg = noise_cfg.std(dim=list(range(1, noise_cfg.ndim)), keepdim=True)
    # rescale the results from guidance (fixes overexposure)
    noise_pred_rescaled = noise_cfg * (std_text / std_cfg)
    # mix with the original results from guidance by factor guidance_rescale to avoid "plain looking" images
    noise_cfg = guidance_rescale * noise_pred_rescaled + (1 - guidance_rescale) * noise_cfg
    return noise_cfg