File size: 4,425 Bytes
2840956 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 |
model:
pretrained_checkpoint: checkpoints/dynamicrafter_1024_v1/model.ckpt
base_learning_rate: 1.0e-05
scale_lr: False
target: lvdm.models.ddpm3d.LatentVisualDiffusion
params:
rescale_betas_zero_snr: True
parameterization: "v"
linear_start: 0.00085
linear_end: 0.012
num_timesteps_cond: 1
log_every_t: 200
timesteps: 1000
first_stage_key: video
cond_stage_key: caption
cond_stage_trainable: False
image_proj_model_trainable: True
conditioning_key: hybrid
image_size: [72, 128]
channels: 4
scale_by_std: False
scale_factor: 0.18215
use_ema: False
uncond_prob: 0.05
uncond_type: 'empty_seq'
rand_cond_frame: true
use_dynamic_rescale: true
base_scale: 0.3
fps_condition_type: 'fps'
perframe_ae: True
unet_config:
target: lvdm.modules.networks.openaimodel3d.UNetModel
params:
in_channels: 8
out_channels: 4
model_channels: 320
attention_resolutions:
- 4
- 2
- 1
num_res_blocks: 2
channel_mult:
- 1
- 2
- 4
- 4
dropout: 0.1
num_head_channels: 64
transformer_depth: 1
context_dim: 1024
use_linear: true
use_checkpoint: True
temporal_conv: True
temporal_attention: True
temporal_selfatt_only: true
use_relative_position: false
use_causal_attention: False
temporal_length: 16
addition_attention: true
image_cross_attention: true
default_fs: 10
fs_condition: true
first_stage_config:
target: lvdm.models.autoencoder.AutoencoderKL
params:
embed_dim: 4
monitor: val/rec_loss
ddconfig:
double_z: True
z_channels: 4
resolution: 256
in_channels: 3
out_ch: 3
ch: 128
ch_mult:
- 1
- 2
- 4
- 4
num_res_blocks: 2
attn_resolutions: []
dropout: 0.0
lossconfig:
target: torch.nn.Identity
cond_stage_config:
target: lvdm.modules.encoders.condition.FrozenOpenCLIPEmbedder
params:
freeze: true
layer: "penultimate"
img_cond_stage_config:
target: lvdm.modules.encoders.condition.FrozenOpenCLIPImageEmbedderV2
params:
freeze: true
image_proj_stage_config:
target: lvdm.modules.encoders.resampler.Resampler
params:
dim: 1024
depth: 4
dim_head: 64
heads: 12
num_queries: 16
embedding_dim: 1280
output_dim: 1024
ff_mult: 4
video_length: 16
data:
target: utils_data.DataModuleFromConfig
params:
batch_size: 1
num_workers: 12
wrap: false
train:
target: lvdm.data.webvid.WebVid
params:
data_dir: <WebVid10M DATA>
meta_path: <.csv FILE>
video_length: 16
frame_stride: 6
load_raw_resolution: true
resolution: [576, 1024]
spatial_transform: resize_center_crop
random_fs: true ## if true, we uniformly sample fs with max_fs=frame_stride (above)
lightning:
precision: 16
# strategy: deepspeed_stage_2
trainer:
benchmark: True
accumulate_grad_batches: 2
max_steps: 100000
# logger
log_every_n_steps: 50
# val
val_check_interval: 0.5
gradient_clip_algorithm: 'norm'
gradient_clip_val: 0.5
callbacks:
model_checkpoint:
target: pytorch_lightning.callbacks.ModelCheckpoint
params:
every_n_train_steps: 9000 #1000
filename: "{epoch}-{step}"
save_weights_only: True
metrics_over_trainsteps_checkpoint:
target: pytorch_lightning.callbacks.ModelCheckpoint
params:
filename: '{epoch}-{step}'
save_weights_only: True
every_n_train_steps: 10000 #20000 # 3s/step*2w=
batch_logger:
target: callbacks.ImageLogger
params:
batch_frequency: 500
to_local: False
max_images: 8
log_images_kwargs:
ddim_steps: 50
unconditional_guidance_scale: 7.5
timestep_spacing: uniform_trailing
guidance_rescale: 0.7 |