File size: 35,520 Bytes
2840956
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
# pytorch_diffusion + derived encoder decoder
import math

import torch
import numpy as np
import torch.nn as nn
from einops import rearrange

from utils.utils import instantiate_from_config
from lvdm.modules.attention import LinearAttention

def nonlinearity(x):
    # swish
    return x*torch.sigmoid(x)


def Normalize(in_channels, num_groups=32):
    return torch.nn.GroupNorm(num_groups=num_groups, num_channels=in_channels, eps=1e-6, affine=True)



class LinAttnBlock(LinearAttention):
    """to match AttnBlock usage"""
    def __init__(self, in_channels):
        super().__init__(dim=in_channels, heads=1, dim_head=in_channels)


class AttnBlock(nn.Module):
    def __init__(self, in_channels):
        super().__init__()
        self.in_channels = in_channels

        self.norm = Normalize(in_channels)
        self.q = torch.nn.Conv2d(in_channels,
                                 in_channels,
                                 kernel_size=1,
                                 stride=1,
                                 padding=0)
        self.k = torch.nn.Conv2d(in_channels,
                                 in_channels,
                                 kernel_size=1,
                                 stride=1,
                                 padding=0)
        self.v = torch.nn.Conv2d(in_channels,
                                 in_channels,
                                 kernel_size=1,
                                 stride=1,
                                 padding=0)
        self.proj_out = torch.nn.Conv2d(in_channels,
                                        in_channels,
                                        kernel_size=1,
                                        stride=1,
                                        padding=0)

    def forward(self, x):
        h_ = x
        h_ = self.norm(h_)
        q = self.q(h_)
        k = self.k(h_)
        v = self.v(h_)

        # compute attention
        b,c,h,w = q.shape
        q = q.reshape(b,c,h*w) # bcl
        q = q.permute(0,2,1)   # bcl -> blc l=hw
        k = k.reshape(b,c,h*w) # bcl
        
        w_ = torch.bmm(q,k)    # b,hw,hw    w[b,i,j]=sum_c q[b,i,c]k[b,c,j]
        w_ = w_ * (int(c)**(-0.5))
        w_ = torch.nn.functional.softmax(w_, dim=2)

        # attend to values
        v = v.reshape(b,c,h*w)
        w_ = w_.permute(0,2,1)   # b,hw,hw (first hw of k, second of q)
        h_ = torch.bmm(v,w_)     # b, c,hw (hw of q) h_[b,c,j] = sum_i v[b,c,i] w_[b,i,j]
        h_ = h_.reshape(b,c,h,w)

        h_ = self.proj_out(h_)

        return x+h_

def make_attn(in_channels, attn_type="vanilla"):
    assert attn_type in ["vanilla", "linear", "none"], f'attn_type {attn_type} unknown'
    #print(f"making attention of type '{attn_type}' with {in_channels} in_channels")
    if attn_type == "vanilla":
        return AttnBlock(in_channels)
    elif attn_type == "none":
        return nn.Identity(in_channels)
    else:
        return LinAttnBlock(in_channels)
 
class Downsample(nn.Module):
    def __init__(self, in_channels, with_conv):
        super().__init__()
        self.with_conv = with_conv
        self.in_channels = in_channels
        if self.with_conv:
            # no asymmetric padding in torch conv, must do it ourselves
            self.conv = torch.nn.Conv2d(in_channels,
                                        in_channels,
                                        kernel_size=3,
                                        stride=2,
                                        padding=0)
    def forward(self, x):
        if self.with_conv:
            pad = (0,1,0,1)
            x = torch.nn.functional.pad(x, pad, mode="constant", value=0)
            x = self.conv(x)
        else:
            x = torch.nn.functional.avg_pool2d(x, kernel_size=2, stride=2)
        return x

class Upsample(nn.Module):
    def __init__(self, in_channels, with_conv):
        super().__init__()
        self.with_conv = with_conv
        self.in_channels = in_channels
        if self.with_conv:
            self.conv = torch.nn.Conv2d(in_channels,
                                        in_channels,
                                        kernel_size=3,
                                        stride=1,
                                        padding=1)

    def forward(self, x):
        x = torch.nn.functional.interpolate(x, scale_factor=2.0, mode="nearest")
        if self.with_conv:
            x = self.conv(x)
        return x

def get_timestep_embedding(timesteps, embedding_dim):
    """

    This matches the implementation in Denoising Diffusion Probabilistic Models:

    From Fairseq.

    Build sinusoidal embeddings.

    This matches the implementation in tensor2tensor, but differs slightly

    from the description in Section 3.5 of "Attention Is All You Need".

    """
    assert len(timesteps.shape) == 1

    half_dim = embedding_dim // 2
    emb = math.log(10000) / (half_dim - 1)
    emb = torch.exp(torch.arange(half_dim, dtype=torch.float32) * -emb)
    emb = emb.to(device=timesteps.device)
    emb = timesteps.float()[:, None] * emb[None, :]
    emb = torch.cat([torch.sin(emb), torch.cos(emb)], dim=1)
    if embedding_dim % 2 == 1:  # zero pad
        emb = torch.nn.functional.pad(emb, (0,1,0,0))
    return emb



class ResnetBlock(nn.Module):
    def __init__(self, *, in_channels, out_channels=None, conv_shortcut=False,

                 dropout, temb_channels=512):
        super().__init__()
        self.in_channels = in_channels
        out_channels = in_channels if out_channels is None else out_channels
        self.out_channels = out_channels
        self.use_conv_shortcut = conv_shortcut

        self.norm1 = Normalize(in_channels)
        self.conv1 = torch.nn.Conv2d(in_channels,
                                     out_channels,
                                     kernel_size=3,
                                     stride=1,
                                     padding=1)
        if temb_channels > 0:
            self.temb_proj = torch.nn.Linear(temb_channels,
                                             out_channels)
        self.norm2 = Normalize(out_channels)
        self.dropout = torch.nn.Dropout(dropout)
        self.conv2 = torch.nn.Conv2d(out_channels,
                                     out_channels,
                                     kernel_size=3,
                                     stride=1,
                                     padding=1)
        if self.in_channels != self.out_channels:
            if self.use_conv_shortcut:
                self.conv_shortcut = torch.nn.Conv2d(in_channels,
                                                     out_channels,
                                                     kernel_size=3,
                                                     stride=1,
                                                     padding=1)
            else:
                self.nin_shortcut = torch.nn.Conv2d(in_channels,
                                                    out_channels,
                                                    kernel_size=1,
                                                    stride=1,
                                                    padding=0)

    def forward(self, x, temb):
        h = x
        h = self.norm1(h)
        h = nonlinearity(h)
        h = self.conv1(h)

        if temb is not None:
            h = h + self.temb_proj(nonlinearity(temb))[:,:,None,None]

        h = self.norm2(h)
        h = nonlinearity(h)
        h = self.dropout(h)
        h = self.conv2(h)

        if self.in_channels != self.out_channels:
            if self.use_conv_shortcut:
                x = self.conv_shortcut(x)
            else:
                x = self.nin_shortcut(x)

        return x+h

class Model(nn.Module):
    def __init__(self, *, ch, out_ch, ch_mult=(1,2,4,8), num_res_blocks,

                 attn_resolutions, dropout=0.0, resamp_with_conv=True, in_channels,

                 resolution, use_timestep=True, use_linear_attn=False, attn_type="vanilla"):
        super().__init__()
        if use_linear_attn: attn_type = "linear"
        self.ch = ch
        self.temb_ch = self.ch*4
        self.num_resolutions = len(ch_mult)
        self.num_res_blocks = num_res_blocks
        self.resolution = resolution
        self.in_channels = in_channels

        self.use_timestep = use_timestep
        if self.use_timestep:
            # timestep embedding
            self.temb = nn.Module()
            self.temb.dense = nn.ModuleList([
                torch.nn.Linear(self.ch,
                                self.temb_ch),
                torch.nn.Linear(self.temb_ch,
                                self.temb_ch),
            ])

        # downsampling
        self.conv_in = torch.nn.Conv2d(in_channels,
                                       self.ch,
                                       kernel_size=3,
                                       stride=1,
                                       padding=1)

        curr_res = resolution
        in_ch_mult = (1,)+tuple(ch_mult)
        self.down = nn.ModuleList()
        for i_level in range(self.num_resolutions):
            block = nn.ModuleList()
            attn = nn.ModuleList()
            block_in = ch*in_ch_mult[i_level]
            block_out = ch*ch_mult[i_level]
            for i_block in range(self.num_res_blocks):
                block.append(ResnetBlock(in_channels=block_in,
                                         out_channels=block_out,
                                         temb_channels=self.temb_ch,
                                         dropout=dropout))
                block_in = block_out
                if curr_res in attn_resolutions:
                    attn.append(make_attn(block_in, attn_type=attn_type))
            down = nn.Module()
            down.block = block
            down.attn = attn
            if i_level != self.num_resolutions-1:
                down.downsample = Downsample(block_in, resamp_with_conv)
                curr_res = curr_res // 2
            self.down.append(down)

        # middle
        self.mid = nn.Module()
        self.mid.block_1 = ResnetBlock(in_channels=block_in,
                                       out_channels=block_in,
                                       temb_channels=self.temb_ch,
                                       dropout=dropout)
        self.mid.attn_1 = make_attn(block_in, attn_type=attn_type)
        self.mid.block_2 = ResnetBlock(in_channels=block_in,
                                       out_channels=block_in,
                                       temb_channels=self.temb_ch,
                                       dropout=dropout)

        # upsampling
        self.up = nn.ModuleList()
        for i_level in reversed(range(self.num_resolutions)):
            block = nn.ModuleList()
            attn = nn.ModuleList()
            block_out = ch*ch_mult[i_level]
            skip_in = ch*ch_mult[i_level]
            for i_block in range(self.num_res_blocks+1):
                if i_block == self.num_res_blocks:
                    skip_in = ch*in_ch_mult[i_level]
                block.append(ResnetBlock(in_channels=block_in+skip_in,
                                         out_channels=block_out,
                                         temb_channels=self.temb_ch,
                                         dropout=dropout))
                block_in = block_out
                if curr_res in attn_resolutions:
                    attn.append(make_attn(block_in, attn_type=attn_type))
            up = nn.Module()
            up.block = block
            up.attn = attn
            if i_level != 0:
                up.upsample = Upsample(block_in, resamp_with_conv)
                curr_res = curr_res * 2
            self.up.insert(0, up) # prepend to get consistent order

        # end
        self.norm_out = Normalize(block_in)
        self.conv_out = torch.nn.Conv2d(block_in,
                                        out_ch,
                                        kernel_size=3,
                                        stride=1,
                                        padding=1)

    def forward(self, x, t=None, context=None):
        #assert x.shape[2] == x.shape[3] == self.resolution
        if context is not None:
            # assume aligned context, cat along channel axis
            x = torch.cat((x, context), dim=1)
        if self.use_timestep:
            # timestep embedding
            assert t is not None
            temb = get_timestep_embedding(t, self.ch)
            temb = self.temb.dense[0](temb)
            temb = nonlinearity(temb)
            temb = self.temb.dense[1](temb)
        else:
            temb = None

        # downsampling
        hs = [self.conv_in(x)]
        for i_level in range(self.num_resolutions):
            for i_block in range(self.num_res_blocks):
                h = self.down[i_level].block[i_block](hs[-1], temb)
                if len(self.down[i_level].attn) > 0:
                    h = self.down[i_level].attn[i_block](h)
                hs.append(h)
            if i_level != self.num_resolutions-1:
                hs.append(self.down[i_level].downsample(hs[-1]))

        # middle
        h = hs[-1]
        h = self.mid.block_1(h, temb)
        h = self.mid.attn_1(h)
        h = self.mid.block_2(h, temb)

        # upsampling
        for i_level in reversed(range(self.num_resolutions)):
            for i_block in range(self.num_res_blocks+1):
                h = self.up[i_level].block[i_block](
                    torch.cat([h, hs.pop()], dim=1), temb)
                if len(self.up[i_level].attn) > 0:
                    h = self.up[i_level].attn[i_block](h)
            if i_level != 0:
                h = self.up[i_level].upsample(h)

        # end
        h = self.norm_out(h)
        h = nonlinearity(h)
        h = self.conv_out(h)
        return h

    def get_last_layer(self):
        return self.conv_out.weight


class Encoder(nn.Module):
    def __init__(self, *, ch, out_ch, ch_mult=(1,2,4,8), num_res_blocks,

                 attn_resolutions, dropout=0.0, resamp_with_conv=True, in_channels,

                 resolution, z_channels, double_z=True, use_linear_attn=False, attn_type="vanilla",

                 **ignore_kwargs):
        super().__init__()
        if use_linear_attn: attn_type = "linear"
        self.ch = ch
        self.temb_ch = 0
        self.num_resolutions = len(ch_mult)
        self.num_res_blocks = num_res_blocks
        self.resolution = resolution
        self.in_channels = in_channels

        # downsampling
        self.conv_in = torch.nn.Conv2d(in_channels,
                                       self.ch,
                                       kernel_size=3,
                                       stride=1,
                                       padding=1)

        curr_res = resolution
        in_ch_mult = (1,)+tuple(ch_mult)
        self.in_ch_mult = in_ch_mult
        self.down = nn.ModuleList()
        for i_level in range(self.num_resolutions):
            block = nn.ModuleList()
            attn = nn.ModuleList()
            block_in = ch*in_ch_mult[i_level]
            block_out = ch*ch_mult[i_level]
            for i_block in range(self.num_res_blocks):
                block.append(ResnetBlock(in_channels=block_in,
                                         out_channels=block_out,
                                         temb_channels=self.temb_ch,
                                         dropout=dropout))
                block_in = block_out
                if curr_res in attn_resolutions:
                    attn.append(make_attn(block_in, attn_type=attn_type))
            down = nn.Module()
            down.block = block
            down.attn = attn
            if i_level != self.num_resolutions-1:
                down.downsample = Downsample(block_in, resamp_with_conv)
                curr_res = curr_res // 2
            self.down.append(down)

        # middle
        self.mid = nn.Module()
        self.mid.block_1 = ResnetBlock(in_channels=block_in,
                                       out_channels=block_in,
                                       temb_channels=self.temb_ch,
                                       dropout=dropout)
        self.mid.attn_1 = make_attn(block_in, attn_type=attn_type)
        self.mid.block_2 = ResnetBlock(in_channels=block_in,
                                       out_channels=block_in,
                                       temb_channels=self.temb_ch,
                                       dropout=dropout)

        # end
        self.norm_out = Normalize(block_in)
        self.conv_out = torch.nn.Conv2d(block_in,
                                        2*z_channels if double_z else z_channels,
                                        kernel_size=3,
                                        stride=1,
                                        padding=1)

    def forward(self, x, return_hidden_states=False):
        # timestep embedding
        temb = None

        # print(f'encoder-input={x.shape}')
        # downsampling
        hs = [self.conv_in(x)]

        ## if we return hidden states for decoder usage, we will store them in a list
        if return_hidden_states:
            hidden_states = []
        # print(f'encoder-conv in feat={hs[0].shape}')
        for i_level in range(self.num_resolutions):
            for i_block in range(self.num_res_blocks):
                h = self.down[i_level].block[i_block](hs[-1], temb)
                # print(f'encoder-down feat={h.shape}')
                if len(self.down[i_level].attn) > 0:
                    h = self.down[i_level].attn[i_block](h)
                hs.append(h)
            if return_hidden_states:
                hidden_states.append(h)
            if i_level != self.num_resolutions-1:
                # print(f'encoder-downsample (input)={hs[-1].shape}')
                hs.append(self.down[i_level].downsample(hs[-1]))
                # print(f'encoder-downsample (output)={hs[-1].shape}')
        if return_hidden_states:
            hidden_states.append(hs[0])
        # middle
        h = hs[-1]
        h = self.mid.block_1(h, temb)
        # print(f'encoder-mid1 feat={h.shape}')
        h = self.mid.attn_1(h)
        h = self.mid.block_2(h, temb)
        # print(f'encoder-mid2 feat={h.shape}')

        # end
        h = self.norm_out(h)
        h = nonlinearity(h)
        h = self.conv_out(h)
        # print(f'end feat={h.shape}')
        if return_hidden_states:
            return h, hidden_states
        else:
            return h


class Decoder(nn.Module):
    def __init__(self, *, ch, out_ch, ch_mult=(1,2,4,8), num_res_blocks,

                 attn_resolutions, dropout=0.0, resamp_with_conv=True, in_channels,

                 resolution, z_channels, give_pre_end=False, tanh_out=False, use_linear_attn=False,

                 attn_type="vanilla", **ignorekwargs):
        super().__init__()
        if use_linear_attn: attn_type = "linear"
        self.ch = ch
        self.temb_ch = 0
        self.num_resolutions = len(ch_mult)
        self.num_res_blocks = num_res_blocks
        self.resolution = resolution
        self.in_channels = in_channels
        self.give_pre_end = give_pre_end
        self.tanh_out = tanh_out

        # compute in_ch_mult, block_in and curr_res at lowest res
        in_ch_mult = (1,)+tuple(ch_mult)
        block_in = ch*ch_mult[self.num_resolutions-1]
        curr_res = resolution // 2**(self.num_resolutions-1)
        self.z_shape = (1,z_channels,curr_res,curr_res)
        print("AE working on z of shape {} = {} dimensions.".format(
            self.z_shape, np.prod(self.z_shape)))

        # z to block_in
        self.conv_in = torch.nn.Conv2d(z_channels,
                                       block_in,
                                       kernel_size=3,
                                       stride=1,
                                       padding=1)

        # middle
        self.mid = nn.Module()
        self.mid.block_1 = ResnetBlock(in_channels=block_in,
                                       out_channels=block_in,
                                       temb_channels=self.temb_ch,
                                       dropout=dropout)
        self.mid.attn_1 = make_attn(block_in, attn_type=attn_type)
        self.mid.block_2 = ResnetBlock(in_channels=block_in,
                                       out_channels=block_in,
                                       temb_channels=self.temb_ch,
                                       dropout=dropout)

        # upsampling
        self.up = nn.ModuleList()
        for i_level in reversed(range(self.num_resolutions)):
            block = nn.ModuleList()
            attn = nn.ModuleList()
            block_out = ch*ch_mult[i_level]
            for i_block in range(self.num_res_blocks+1):
                block.append(ResnetBlock(in_channels=block_in,
                                         out_channels=block_out,
                                         temb_channels=self.temb_ch,
                                         dropout=dropout))
                block_in = block_out
                if curr_res in attn_resolutions:
                    attn.append(make_attn(block_in, attn_type=attn_type))
            up = nn.Module()
            up.block = block
            up.attn = attn
            if i_level != 0:
                up.upsample = Upsample(block_in, resamp_with_conv)
                curr_res = curr_res * 2
            self.up.insert(0, up) # prepend to get consistent order

        # end
        self.norm_out = Normalize(block_in)
        self.conv_out = torch.nn.Conv2d(block_in,
                                        out_ch,
                                        kernel_size=3,
                                        stride=1,
                                        padding=1)

    def forward(self, z):
        #assert z.shape[1:] == self.z_shape[1:]
        self.last_z_shape = z.shape

        # print(f'decoder-input={z.shape}')
        # timestep embedding
        temb = None

        # z to block_in
        h = self.conv_in(z)
        # print(f'decoder-conv in feat={h.shape}')

        # middle
        h = self.mid.block_1(h, temb)
        h = self.mid.attn_1(h)
        h = self.mid.block_2(h, temb)
        # print(f'decoder-mid feat={h.shape}')

        # upsampling
        for i_level in reversed(range(self.num_resolutions)):
            for i_block in range(self.num_res_blocks+1):
                h = self.up[i_level].block[i_block](h, temb)
                if len(self.up[i_level].attn) > 0:
                    h = self.up[i_level].attn[i_block](h)
                # print(f'decoder-up feat={h.shape}')
            if i_level != 0:
                h = self.up[i_level].upsample(h)
                # print(f'decoder-upsample feat={h.shape}')

        # end
        if self.give_pre_end:
            return h

        h = self.norm_out(h)
        h = nonlinearity(h)
        h = self.conv_out(h)
        # print(f'decoder-conv_out feat={h.shape}')
        if self.tanh_out:
            h = torch.tanh(h)
        return h


class SimpleDecoder(nn.Module):
    def __init__(self, in_channels, out_channels, *args, **kwargs):
        super().__init__()
        self.model = nn.ModuleList([nn.Conv2d(in_channels, in_channels, 1),
                                     ResnetBlock(in_channels=in_channels,
                                                 out_channels=2 * in_channels,
                                                 temb_channels=0, dropout=0.0),
                                     ResnetBlock(in_channels=2 * in_channels,
                                                out_channels=4 * in_channels,
                                                temb_channels=0, dropout=0.0),
                                     ResnetBlock(in_channels=4 * in_channels,
                                                out_channels=2 * in_channels,
                                                temb_channels=0, dropout=0.0),
                                     nn.Conv2d(2*in_channels, in_channels, 1),
                                     Upsample(in_channels, with_conv=True)])
        # end
        self.norm_out = Normalize(in_channels)
        self.conv_out = torch.nn.Conv2d(in_channels,
                                        out_channels,
                                        kernel_size=3,
                                        stride=1,
                                        padding=1)

    def forward(self, x):
        for i, layer in enumerate(self.model):
            if i in [1,2,3]:
                x = layer(x, None)
            else:
                x = layer(x)

        h = self.norm_out(x)
        h = nonlinearity(h)
        x = self.conv_out(h)
        return x


class UpsampleDecoder(nn.Module):
    def __init__(self, in_channels, out_channels, ch, num_res_blocks, resolution,

                 ch_mult=(2,2), dropout=0.0):
        super().__init__()
        # upsampling
        self.temb_ch = 0
        self.num_resolutions = len(ch_mult)
        self.num_res_blocks = num_res_blocks
        block_in = in_channels
        curr_res = resolution // 2 ** (self.num_resolutions - 1)
        self.res_blocks = nn.ModuleList()
        self.upsample_blocks = nn.ModuleList()
        for i_level in range(self.num_resolutions):
            res_block = []
            block_out = ch * ch_mult[i_level]
            for i_block in range(self.num_res_blocks + 1):
                res_block.append(ResnetBlock(in_channels=block_in,
                                         out_channels=block_out,
                                         temb_channels=self.temb_ch,
                                         dropout=dropout))
                block_in = block_out
            self.res_blocks.append(nn.ModuleList(res_block))
            if i_level != self.num_resolutions - 1:
                self.upsample_blocks.append(Upsample(block_in, True))
                curr_res = curr_res * 2

        # end
        self.norm_out = Normalize(block_in)
        self.conv_out = torch.nn.Conv2d(block_in,
                                        out_channels,
                                        kernel_size=3,
                                        stride=1,
                                        padding=1)

    def forward(self, x):
        # upsampling
        h = x
        for k, i_level in enumerate(range(self.num_resolutions)):
            for i_block in range(self.num_res_blocks + 1):
                h = self.res_blocks[i_level][i_block](h, None)
            if i_level != self.num_resolutions - 1:
                h = self.upsample_blocks[k](h)
        h = self.norm_out(h)
        h = nonlinearity(h)
        h = self.conv_out(h)
        return h


class LatentRescaler(nn.Module):
    def __init__(self, factor, in_channels, mid_channels, out_channels, depth=2):
        super().__init__()
        # residual block, interpolate, residual block
        self.factor = factor
        self.conv_in = nn.Conv2d(in_channels,
                                 mid_channels,
                                 kernel_size=3,
                                 stride=1,
                                 padding=1)
        self.res_block1 = nn.ModuleList([ResnetBlock(in_channels=mid_channels,
                                                     out_channels=mid_channels,
                                                     temb_channels=0,
                                                     dropout=0.0) for _ in range(depth)])
        self.attn = AttnBlock(mid_channels)
        self.res_block2 = nn.ModuleList([ResnetBlock(in_channels=mid_channels,
                                                     out_channels=mid_channels,
                                                     temb_channels=0,
                                                     dropout=0.0) for _ in range(depth)])

        self.conv_out = nn.Conv2d(mid_channels,
                                  out_channels,
                                  kernel_size=1,
                                  )

    def forward(self, x):
        x = self.conv_in(x)
        for block in self.res_block1:
            x = block(x, None)
        x = torch.nn.functional.interpolate(x, size=(int(round(x.shape[2]*self.factor)), int(round(x.shape[3]*self.factor))))
        x = self.attn(x)
        for block in self.res_block2:
            x = block(x, None)
        x = self.conv_out(x)
        return x


class MergedRescaleEncoder(nn.Module):
    def __init__(self, in_channels, ch, resolution, out_ch, num_res_blocks,

                 attn_resolutions, dropout=0.0, resamp_with_conv=True,

                 ch_mult=(1,2,4,8), rescale_factor=1.0, rescale_module_depth=1):
        super().__init__()
        intermediate_chn = ch * ch_mult[-1]
        self.encoder = Encoder(in_channels=in_channels, num_res_blocks=num_res_blocks, ch=ch, ch_mult=ch_mult,
                               z_channels=intermediate_chn, double_z=False, resolution=resolution,
                               attn_resolutions=attn_resolutions, dropout=dropout, resamp_with_conv=resamp_with_conv,
                               out_ch=None)
        self.rescaler = LatentRescaler(factor=rescale_factor, in_channels=intermediate_chn,
                                       mid_channels=intermediate_chn, out_channels=out_ch, depth=rescale_module_depth)

    def forward(self, x):
        x = self.encoder(x)
        x = self.rescaler(x)
        return x


class MergedRescaleDecoder(nn.Module):
    def __init__(self, z_channels, out_ch, resolution, num_res_blocks, attn_resolutions, ch, ch_mult=(1,2,4,8),

                 dropout=0.0, resamp_with_conv=True, rescale_factor=1.0, rescale_module_depth=1):
        super().__init__()
        tmp_chn = z_channels*ch_mult[-1]
        self.decoder = Decoder(out_ch=out_ch, z_channels=tmp_chn, attn_resolutions=attn_resolutions, dropout=dropout,
                               resamp_with_conv=resamp_with_conv, in_channels=None, num_res_blocks=num_res_blocks,
                               ch_mult=ch_mult, resolution=resolution, ch=ch)
        self.rescaler = LatentRescaler(factor=rescale_factor, in_channels=z_channels, mid_channels=tmp_chn,
                                       out_channels=tmp_chn, depth=rescale_module_depth)

    def forward(self, x):
        x = self.rescaler(x)
        x = self.decoder(x)
        return x


class Upsampler(nn.Module):
    def __init__(self, in_size, out_size, in_channels, out_channels, ch_mult=2):
        super().__init__()
        assert out_size >= in_size
        num_blocks = int(np.log2(out_size//in_size))+1
        factor_up = 1.+ (out_size % in_size)
        print(f"Building {self.__class__.__name__} with in_size: {in_size} --> out_size {out_size} and factor {factor_up}")
        self.rescaler = LatentRescaler(factor=factor_up, in_channels=in_channels, mid_channels=2*in_channels,
                                       out_channels=in_channels)
        self.decoder = Decoder(out_ch=out_channels, resolution=out_size, z_channels=in_channels, num_res_blocks=2,
                               attn_resolutions=[], in_channels=None, ch=in_channels,
                               ch_mult=[ch_mult for _ in range(num_blocks)])

    def forward(self, x):
        x = self.rescaler(x)
        x = self.decoder(x)
        return x


class Resize(nn.Module):
    def __init__(self, in_channels=None, learned=False, mode="bilinear"):
        super().__init__()
        self.with_conv = learned
        self.mode = mode
        if self.with_conv:
            print(f"Note: {self.__class__.__name} uses learned downsampling and will ignore the fixed {mode} mode")
            raise NotImplementedError()
            assert in_channels is not None
            # no asymmetric padding in torch conv, must do it ourselves
            self.conv = torch.nn.Conv2d(in_channels,
                                        in_channels,
                                        kernel_size=4,
                                        stride=2,
                                        padding=1)

    def forward(self, x, scale_factor=1.0):
        if scale_factor==1.0:
            return x
        else:
            x = torch.nn.functional.interpolate(x, mode=self.mode, align_corners=False, scale_factor=scale_factor)
        return x

class FirstStagePostProcessor(nn.Module):

    def __init__(self, ch_mult:list, in_channels,

                 pretrained_model:nn.Module=None,

                 reshape=False,

                 n_channels=None,

                 dropout=0.,

                 pretrained_config=None):
        super().__init__()
        if pretrained_config is None:
            assert pretrained_model is not None, 'Either "pretrained_model" or "pretrained_config" must not be None'
            self.pretrained_model = pretrained_model
        else:
            assert pretrained_config is not None, 'Either "pretrained_model" or "pretrained_config" must not be None'
            self.instantiate_pretrained(pretrained_config)

        self.do_reshape = reshape

        if n_channels is None:
            n_channels = self.pretrained_model.encoder.ch

        self.proj_norm = Normalize(in_channels,num_groups=in_channels//2)
        self.proj = nn.Conv2d(in_channels,n_channels,kernel_size=3,
                            stride=1,padding=1)

        blocks = []
        downs = []
        ch_in = n_channels
        for m in ch_mult:
            blocks.append(ResnetBlock(in_channels=ch_in,out_channels=m*n_channels,dropout=dropout))
            ch_in = m * n_channels
            downs.append(Downsample(ch_in, with_conv=False))

        self.model = nn.ModuleList(blocks)
        self.downsampler = nn.ModuleList(downs)


    def instantiate_pretrained(self, config):
        model = instantiate_from_config(config)
        self.pretrained_model = model.eval()
        # self.pretrained_model.train = False
        for param in self.pretrained_model.parameters():
            param.requires_grad = False


    @torch.no_grad()
    def encode_with_pretrained(self,x):
        c = self.pretrained_model.encode(x)
        if isinstance(c, DiagonalGaussianDistribution):
            c = c.mode()
        return  c

    def forward(self,x):
        z_fs = self.encode_with_pretrained(x)
        z = self.proj_norm(z_fs)
        z = self.proj(z)
        z = nonlinearity(z)

        for submodel, downmodel in zip(self.model,self.downsampler):
            z = submodel(z,temb=None)
            z = downmodel(z)

        if self.do_reshape:
            z = rearrange(z,'b c h w -> b (h w) c')
        return z