File size: 7,649 Bytes
2840956
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
import argparse, os, sys, datetime
from omegaconf import OmegaConf
from transformers import logging as transf_logging
import pytorch_lightning as pl
from pytorch_lightning import seed_everything
from pytorch_lightning.trainer import Trainer
import torch
sys.path.insert(1, os.path.join(sys.path[0], '..'))
from utils.utils import instantiate_from_config
from utils_train import get_trainer_callbacks, get_trainer_logger, get_trainer_strategy
from utils_train import set_logger, init_workspace, load_checkpoints


def get_parser(**parser_kwargs):
    parser = argparse.ArgumentParser(**parser_kwargs)
    parser.add_argument("--seed", "-s", type=int, default=20230211, help="seed for seed_everything")
    parser.add_argument("--name", "-n", type=str, default="", help="experiment name, as saving folder")

    parser.add_argument("--base", "-b", nargs="*", metavar="base_config.yaml", help="paths to base configs. Loaded from left-to-right. "
                            "Parameters can be overwritten or added with command-line options of the form `--key value`.", default=list())
    
    parser.add_argument("--train", "-t", action='store_true', default=False, help='train')
    parser.add_argument("--val", "-v", action='store_true', default=False, help='val')
    parser.add_argument("--test", action='store_true', default=False, help='test')

    parser.add_argument("--logdir", "-l", type=str, default="logs", help="directory for logging dat shit")
    parser.add_argument("--auto_resume", action='store_true', default=False, help="resume from full-info checkpoint")
    parser.add_argument("--auto_resume_weight_only", action='store_true', default=False, help="resume from weight-only checkpoint")
    parser.add_argument("--debug", "-d", action='store_true', default=False, help="enable post-mortem debugging")

    return parser
    
def get_nondefault_trainer_args(args):
    parser = argparse.ArgumentParser()
    parser = Trainer.add_argparse_args(parser)
    default_trainer_args = parser.parse_args([])
    return sorted(k for k in vars(default_trainer_args) if getattr(args, k) != getattr(default_trainer_args, k))


if __name__ == "__main__":
    now = datetime.datetime.now().strftime("%Y-%m-%dT%H-%M-%S")
    local_rank = int(os.environ.get('LOCAL_RANK'))
    global_rank = int(os.environ.get('RANK'))
    num_rank = int(os.environ.get('WORLD_SIZE'))

    parser = get_parser()
    ## Extends existing argparse by default Trainer attributes
    parser = Trainer.add_argparse_args(parser)
    args, unknown = parser.parse_known_args()
    ## disable transformer warning
    transf_logging.set_verbosity_error()
    seed_everything(args.seed)

    ## yaml configs: "model" | "data" | "lightning"
    configs = [OmegaConf.load(cfg) for cfg in args.base]
    cli = OmegaConf.from_dotlist(unknown)
    config = OmegaConf.merge(*configs, cli)
    lightning_config = config.pop("lightning", OmegaConf.create())
    trainer_config = lightning_config.get("trainer", OmegaConf.create()) 

    ## setup workspace directories
    workdir, ckptdir, cfgdir, loginfo = init_workspace(args.name, args.logdir, config, lightning_config, global_rank)
    logger = set_logger(logfile=os.path.join(loginfo, 'log_%d:%s.txt'%(global_rank, now)))
    logger.info("@lightning version: %s [>=1.8 required]"%(pl.__version__))  

    ## MODEL CONFIG >>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>
    logger.info("***** Configing Model *****")
    config.model.params.logdir = workdir
    model = instantiate_from_config(config.model)

    ## load checkpoints
    model = load_checkpoints(model, config.model)

    ## register_schedule again to make ZTSNR work
    if model.rescale_betas_zero_snr:
        model.register_schedule(given_betas=model.given_betas, beta_schedule=model.beta_schedule, timesteps=model.timesteps,
                                linear_start=model.linear_start, linear_end=model.linear_end, cosine_s=model.cosine_s)

    ## update trainer config
    for k in get_nondefault_trainer_args(args):
        trainer_config[k] = getattr(args, k)
        
    num_nodes = trainer_config.num_nodes
    ngpu_per_node = trainer_config.devices
    logger.info(f"Running on {num_rank}={num_nodes}x{ngpu_per_node} GPUs")

    ## setup learning rate
    base_lr = config.model.base_learning_rate
    bs = config.data.params.batch_size
    if getattr(config.model, 'scale_lr', True):
        model.learning_rate = num_rank * bs * base_lr
    else:
        model.learning_rate = base_lr


    ## DATA CONFIG >>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>
    logger.info("***** Configing Data *****")
    data = instantiate_from_config(config.data)
    data.setup()
    for k in data.datasets:
        logger.info(f"{k}, {data.datasets[k].__class__.__name__}, {len(data.datasets[k])}")


    ## TRAINER CONFIG >>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>
    logger.info("***** Configing Trainer *****")
    if "accelerator" not in trainer_config:
        trainer_config["accelerator"] = "gpu"

    ## setup trainer args: pl-logger and callbacks
    trainer_kwargs = dict()
    trainer_kwargs["num_sanity_val_steps"] = 0
    logger_cfg = get_trainer_logger(lightning_config, workdir, args.debug)
    trainer_kwargs["logger"] = instantiate_from_config(logger_cfg)
    
    ## setup callbacks
    callbacks_cfg = get_trainer_callbacks(lightning_config, config, workdir, ckptdir, logger)
    trainer_kwargs["callbacks"] = [instantiate_from_config(callbacks_cfg[k]) for k in callbacks_cfg]
    strategy_cfg = get_trainer_strategy(lightning_config)
    trainer_kwargs["strategy"] = strategy_cfg if type(strategy_cfg) == str else instantiate_from_config(strategy_cfg)
    trainer_kwargs['precision'] = lightning_config.get('precision', 32)
    trainer_kwargs["sync_batchnorm"] = False

    ## trainer config: others

    trainer_args = argparse.Namespace(**trainer_config)
    trainer = Trainer.from_argparse_args(trainer_args, **trainer_kwargs)

    ## allow checkpointing via USR1
    def melk(*args, **kwargs):
        ## run all checkpoint hooks
        if trainer.global_rank == 0:
            print("Summoning checkpoint.")
            ckpt_path = os.path.join(ckptdir, "last_summoning.ckpt")
            trainer.save_checkpoint(ckpt_path)

    def divein(*args, **kwargs):
        if trainer.global_rank == 0:
            import pudb;
            pudb.set_trace()

    import signal
    signal.signal(signal.SIGUSR1, melk)
    signal.signal(signal.SIGUSR2, divein)

    ## Running LOOP >>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>
    logger.info("***** Running the Loop *****")
    if args.train:
        try:
            if "strategy" in lightning_config and lightning_config['strategy'].startswith('deepspeed'):
                logger.info("<Training in DeepSpeed Mode>")
                ## deepspeed
                if trainer_kwargs['precision'] == 16:
                    with torch.cuda.amp.autocast():
                        trainer.fit(model, data)
                else:
                    trainer.fit(model, data)
            else:
                logger.info("<Training in DDPSharded Mode>") ## this is default
                ## ddpsharded
                trainer.fit(model, data)
        except Exception:
            #melk()
            raise

    # if args.val:
    #     trainer.validate(model, data)
    # if args.test or not trainer.interrupted:
    #     trainer.test(model, data)