|
import argparse |
|
import logging |
|
import os |
|
import shutil |
|
|
|
import accelerate |
|
import torch |
|
|
|
from utils import huggingface_utils |
|
|
|
logger = logging.getLogger(__name__) |
|
logging.basicConfig(level=logging.INFO) |
|
|
|
|
|
|
|
EPOCH_STATE_NAME = "{}-{:06d}-state" |
|
EPOCH_FILE_NAME = "{}-{:06d}" |
|
EPOCH_DIFFUSERS_DIR_NAME = "{}-{:06d}" |
|
LAST_STATE_NAME = "{}-state" |
|
STEP_STATE_NAME = "{}-step{:08d}-state" |
|
STEP_FILE_NAME = "{}-step{:08d}" |
|
STEP_DIFFUSERS_DIR_NAME = "{}-step{:08d}" |
|
|
|
|
|
def get_sanitized_config_or_none(args: argparse.Namespace): |
|
|
|
|
|
|
|
|
|
if not args.log_config: |
|
return None |
|
|
|
sensitive_args = ["wandb_api_key", "huggingface_token"] |
|
sensitive_path_args = [ |
|
"dit", |
|
"vae", |
|
"text_encoder1", |
|
"text_encoder2", |
|
"base_weights", |
|
"network_weights", |
|
"output_dir", |
|
"logging_dir", |
|
] |
|
filtered_args = {} |
|
for k, v in vars(args).items(): |
|
|
|
if k not in sensitive_args + sensitive_path_args: |
|
|
|
if v is None or isinstance(v, bool) or isinstance(v, str) or isinstance(v, float) or isinstance(v, int): |
|
filtered_args[k] = v |
|
|
|
elif isinstance(v, list): |
|
filtered_args[k] = f"{v}" |
|
|
|
elif isinstance(v, object): |
|
filtered_args[k] = f"{v}" |
|
|
|
return filtered_args |
|
|
|
|
|
class LossRecorder: |
|
def __init__(self): |
|
self.loss_list: list[float] = [] |
|
self.loss_total: float = 0.0 |
|
|
|
def add(self, *, epoch: int, step: int, loss: float) -> None: |
|
if epoch == 0: |
|
self.loss_list.append(loss) |
|
else: |
|
while len(self.loss_list) <= step: |
|
self.loss_list.append(0.0) |
|
self.loss_total -= self.loss_list[step] |
|
self.loss_list[step] = loss |
|
self.loss_total += loss |
|
|
|
@property |
|
def moving_average(self) -> float: |
|
return self.loss_total / len(self.loss_list) |
|
|
|
|
|
def get_epoch_ckpt_name(model_name, epoch_no: int): |
|
return EPOCH_FILE_NAME.format(model_name, epoch_no) + ".safetensors" |
|
|
|
|
|
def get_step_ckpt_name(model_name, step_no: int): |
|
return STEP_FILE_NAME.format(model_name, step_no) + ".safetensors" |
|
|
|
|
|
def get_last_ckpt_name(model_name): |
|
return model_name + ".safetensors" |
|
|
|
|
|
def get_remove_epoch_no(args: argparse.Namespace, epoch_no: int): |
|
if args.save_last_n_epochs is None: |
|
return None |
|
|
|
remove_epoch_no = epoch_no - args.save_every_n_epochs * args.save_last_n_epochs |
|
if remove_epoch_no < 0: |
|
return None |
|
return remove_epoch_no |
|
|
|
|
|
def get_remove_step_no(args: argparse.Namespace, step_no: int): |
|
if args.save_last_n_steps is None: |
|
return None |
|
|
|
|
|
|
|
remove_step_no = step_no - args.save_last_n_steps - 1 |
|
remove_step_no = remove_step_no - (remove_step_no % args.save_every_n_steps) |
|
if remove_step_no < 0: |
|
return None |
|
return remove_step_no |
|
|
|
|
|
def save_and_remove_state_on_epoch_end(args: argparse.Namespace, accelerator: accelerate.Accelerator, epoch_no: int): |
|
model_name = args.output_name |
|
|
|
logger.info("") |
|
logger.info(f"saving state at epoch {epoch_no}") |
|
os.makedirs(args.output_dir, exist_ok=True) |
|
|
|
state_dir = os.path.join(args.output_dir, EPOCH_STATE_NAME.format(model_name, epoch_no)) |
|
accelerator.save_state(state_dir) |
|
if args.save_state_to_huggingface: |
|
logger.info("uploading state to huggingface.") |
|
huggingface_utils.upload(args, state_dir, "/" + EPOCH_STATE_NAME.format(model_name, epoch_no)) |
|
|
|
last_n_epochs = args.save_last_n_epochs_state if args.save_last_n_epochs_state else args.save_last_n_epochs |
|
if last_n_epochs is not None: |
|
remove_epoch_no = epoch_no - args.save_every_n_epochs * last_n_epochs |
|
state_dir_old = os.path.join(args.output_dir, EPOCH_STATE_NAME.format(model_name, remove_epoch_no)) |
|
if os.path.exists(state_dir_old): |
|
logger.info(f"removing old state: {state_dir_old}") |
|
shutil.rmtree(state_dir_old) |
|
|
|
|
|
def save_and_remove_state_stepwise(args: argparse.Namespace, accelerator: accelerate.Accelerator, step_no: int): |
|
model_name = args.output_name |
|
|
|
logger.info("") |
|
logger.info(f"saving state at step {step_no}") |
|
os.makedirs(args.output_dir, exist_ok=True) |
|
|
|
state_dir = os.path.join(args.output_dir, STEP_STATE_NAME.format(model_name, step_no)) |
|
accelerator.save_state(state_dir) |
|
if args.save_state_to_huggingface: |
|
logger.info("uploading state to huggingface.") |
|
huggingface_utils.upload(args, state_dir, "/" + STEP_STATE_NAME.format(model_name, step_no)) |
|
|
|
last_n_steps = args.save_last_n_steps_state if args.save_last_n_steps_state else args.save_last_n_steps |
|
if last_n_steps is not None: |
|
|
|
remove_step_no = step_no - last_n_steps - 1 |
|
remove_step_no = remove_step_no - (remove_step_no % args.save_every_n_steps) |
|
|
|
if remove_step_no > 0: |
|
state_dir_old = os.path.join(args.output_dir, STEP_STATE_NAME.format(model_name, remove_step_no)) |
|
if os.path.exists(state_dir_old): |
|
logger.info(f"removing old state: {state_dir_old}") |
|
shutil.rmtree(state_dir_old) |
|
|
|
|
|
def save_state_on_train_end(args: argparse.Namespace, accelerator: accelerate.Accelerator): |
|
model_name = args.output_name |
|
|
|
logger.info("") |
|
logger.info("saving last state.") |
|
os.makedirs(args.output_dir, exist_ok=True) |
|
|
|
state_dir = os.path.join(args.output_dir, LAST_STATE_NAME.format(model_name)) |
|
accelerator.save_state(state_dir) |
|
|
|
if args.save_state_to_huggingface: |
|
logger.info("uploading last state to huggingface.") |
|
huggingface_utils.upload(args, state_dir, "/" + LAST_STATE_NAME.format(model_name)) |
|
|
|
|