|
|
|
|
|
|
|
|
|
|
|
import math |
|
import os |
|
from typing import Dict, List, Optional, Type, Union |
|
from diffusers import AutoencoderKL |
|
from transformers import CLIPTextModel |
|
import numpy as np |
|
import torch |
|
import torch.nn as nn |
|
|
|
import logging |
|
|
|
logger = logging.getLogger(__name__) |
|
logging.basicConfig(level=logging.INFO) |
|
|
|
HUNYUAN_TARGET_REPLACE_MODULES = ["MMDoubleStreamBlock", "MMSingleStreamBlock"] |
|
|
|
|
|
class LoRAModule(torch.nn.Module): |
|
""" |
|
replaces forward method of the original Linear, instead of replacing the original Linear module. |
|
""" |
|
|
|
def __init__( |
|
self, |
|
lora_name, |
|
org_module: torch.nn.Module, |
|
multiplier=1.0, |
|
lora_dim=4, |
|
alpha=1, |
|
dropout=None, |
|
rank_dropout=None, |
|
module_dropout=None, |
|
split_dims: Optional[List[int]] = None, |
|
): |
|
""" |
|
if alpha == 0 or None, alpha is rank (no scaling). |
|
|
|
split_dims is used to mimic the split qkv of multi-head attention. |
|
""" |
|
super().__init__() |
|
self.lora_name = lora_name |
|
|
|
if org_module.__class__.__name__ == "Conv2d": |
|
in_dim = org_module.in_channels |
|
out_dim = org_module.out_channels |
|
else: |
|
in_dim = org_module.in_features |
|
out_dim = org_module.out_features |
|
|
|
self.lora_dim = lora_dim |
|
self.split_dims = split_dims |
|
|
|
if split_dims is None: |
|
if org_module.__class__.__name__ == "Conv2d": |
|
kernel_size = org_module.kernel_size |
|
stride = org_module.stride |
|
padding = org_module.padding |
|
self.lora_down = torch.nn.Conv2d(in_dim, self.lora_dim, kernel_size, stride, padding, bias=False) |
|
self.lora_up = torch.nn.Conv2d(self.lora_dim, out_dim, (1, 1), (1, 1), bias=False) |
|
else: |
|
self.lora_down = torch.nn.Linear(in_dim, self.lora_dim, bias=False) |
|
self.lora_up = torch.nn.Linear(self.lora_dim, out_dim, bias=False) |
|
|
|
torch.nn.init.kaiming_uniform_(self.lora_down.weight, a=math.sqrt(5)) |
|
torch.nn.init.zeros_(self.lora_up.weight) |
|
else: |
|
|
|
assert sum(split_dims) == out_dim, "sum of split_dims must be equal to out_dim" |
|
assert org_module.__class__.__name__ == "Linear", "split_dims is only supported for Linear" |
|
|
|
self.lora_down = torch.nn.ModuleList( |
|
[torch.nn.Linear(in_dim, self.lora_dim, bias=False) for _ in range(len(split_dims))] |
|
) |
|
self.lora_up = torch.nn.ModuleList([torch.nn.Linear(self.lora_dim, split_dim, bias=False) for split_dim in split_dims]) |
|
for lora_down in self.lora_down: |
|
torch.nn.init.kaiming_uniform_(lora_down.weight, a=math.sqrt(5)) |
|
for lora_up in self.lora_up: |
|
torch.nn.init.zeros_(lora_up.weight) |
|
|
|
if type(alpha) == torch.Tensor: |
|
alpha = alpha.detach().float().numpy() |
|
alpha = self.lora_dim if alpha is None or alpha == 0 else alpha |
|
self.scale = alpha / self.lora_dim |
|
self.register_buffer("alpha", torch.tensor(alpha)) |
|
|
|
|
|
self.multiplier = multiplier |
|
self.org_module = org_module |
|
self.dropout = dropout |
|
self.rank_dropout = rank_dropout |
|
self.module_dropout = module_dropout |
|
|
|
def apply_to(self): |
|
self.org_forward = self.org_module.forward |
|
self.org_module.forward = self.forward |
|
del self.org_module |
|
|
|
def forward(self, x): |
|
org_forwarded = self.org_forward(x) |
|
|
|
|
|
if self.module_dropout is not None and self.training: |
|
if torch.rand(1) < self.module_dropout: |
|
return org_forwarded |
|
|
|
if self.split_dims is None: |
|
lx = self.lora_down(x) |
|
|
|
|
|
if self.dropout is not None and self.training: |
|
lx = torch.nn.functional.dropout(lx, p=self.dropout) |
|
|
|
|
|
if self.rank_dropout is not None and self.training: |
|
mask = torch.rand((lx.size(0), self.lora_dim), device=lx.device) > self.rank_dropout |
|
if len(lx.size()) == 3: |
|
mask = mask.unsqueeze(1) |
|
elif len(lx.size()) == 4: |
|
mask = mask.unsqueeze(-1).unsqueeze(-1) |
|
lx = lx * mask |
|
|
|
|
|
scale = self.scale * (1.0 / (1.0 - self.rank_dropout)) |
|
else: |
|
scale = self.scale |
|
|
|
lx = self.lora_up(lx) |
|
|
|
return org_forwarded + lx * self.multiplier * scale |
|
else: |
|
lxs = [lora_down(x) for lora_down in self.lora_down] |
|
|
|
|
|
if self.dropout is not None and self.training: |
|
lxs = [torch.nn.functional.dropout(lx, p=self.dropout) for lx in lxs] |
|
|
|
|
|
if self.rank_dropout is not None and self.training: |
|
masks = [torch.rand((lx.size(0), self.lora_dim), device=lx.device) > self.rank_dropout for lx in lxs] |
|
for i in range(len(lxs)): |
|
if len(lx.size()) == 3: |
|
masks[i] = masks[i].unsqueeze(1) |
|
elif len(lx.size()) == 4: |
|
masks[i] = masks[i].unsqueeze(-1).unsqueeze(-1) |
|
lxs[i] = lxs[i] * masks[i] |
|
|
|
|
|
scale = self.scale * (1.0 / (1.0 - self.rank_dropout)) |
|
else: |
|
scale = self.scale |
|
|
|
lxs = [lora_up(lx) for lora_up, lx in zip(self.lora_up, lxs)] |
|
|
|
return org_forwarded + torch.cat(lxs, dim=-1) * self.multiplier * scale |
|
|
|
|
|
class LoRAInfModule(LoRAModule): |
|
def __init__( |
|
self, |
|
lora_name, |
|
org_module: torch.nn.Module, |
|
multiplier=1.0, |
|
lora_dim=4, |
|
alpha=1, |
|
**kwargs, |
|
): |
|
|
|
super().__init__(lora_name, org_module, multiplier, lora_dim, alpha) |
|
|
|
self.org_module_ref = [org_module] |
|
self.enabled = True |
|
self.network: LoRANetwork = None |
|
|
|
def set_network(self, network): |
|
self.network = network |
|
|
|
|
|
def merge_to(self, sd, dtype, device): |
|
|
|
org_sd = self.org_module.state_dict() |
|
weight = org_sd["weight"] |
|
org_dtype = weight.dtype |
|
org_device = weight.device |
|
weight = weight.to(device, dtype=torch.float) |
|
|
|
if dtype is None: |
|
dtype = org_dtype |
|
if device is None: |
|
device = org_device |
|
|
|
if self.split_dims is None: |
|
|
|
down_weight = sd["lora_down.weight"].to(device, dtype=torch.float) |
|
up_weight = sd["lora_up.weight"].to(device, dtype=torch.float) |
|
|
|
|
|
if len(weight.size()) == 2: |
|
|
|
weight = weight + self.multiplier * (up_weight @ down_weight) * self.scale |
|
elif down_weight.size()[2:4] == (1, 1): |
|
|
|
weight = ( |
|
weight |
|
+ self.multiplier |
|
* (up_weight.squeeze(3).squeeze(2) @ down_weight.squeeze(3).squeeze(2)).unsqueeze(2).unsqueeze(3) |
|
* self.scale |
|
) |
|
else: |
|
|
|
conved = torch.nn.functional.conv2d(down_weight.permute(1, 0, 2, 3), up_weight).permute(1, 0, 2, 3) |
|
|
|
weight = weight + self.multiplier * conved * self.scale |
|
|
|
|
|
org_sd["weight"] = weight.to(org_device, dtype=dtype) |
|
self.org_module.load_state_dict(org_sd) |
|
else: |
|
|
|
total_dims = sum(self.split_dims) |
|
for i in range(len(self.split_dims)): |
|
|
|
down_weight = sd[f"lora_down.{i}.weight"].to(torch.float).to(device) |
|
up_weight = sd[f"lora_up.{i}.weight"].to(torch.float).to(device) |
|
|
|
|
|
padded_up_weight = torch.zeros((total_dims, up_weight.size(0)), device=device, dtype=torch.float) |
|
padded_up_weight[sum(self.split_dims[:i]) : sum(self.split_dims[: i + 1])] = up_weight |
|
|
|
|
|
weight = weight + self.multiplier * (up_weight @ down_weight) * self.scale |
|
|
|
|
|
org_sd["weight"] = weight.to(dtype) |
|
self.org_module.load_state_dict(org_sd) |
|
|
|
|
|
def get_weight(self, multiplier=None): |
|
if multiplier is None: |
|
multiplier = self.multiplier |
|
|
|
|
|
up_weight = self.lora_up.weight.to(torch.float) |
|
down_weight = self.lora_down.weight.to(torch.float) |
|
|
|
|
|
if len(down_weight.size()) == 2: |
|
|
|
weight = self.multiplier * (up_weight @ down_weight) * self.scale |
|
elif down_weight.size()[2:4] == (1, 1): |
|
|
|
weight = ( |
|
self.multiplier |
|
* (up_weight.squeeze(3).squeeze(2) @ down_weight.squeeze(3).squeeze(2)).unsqueeze(2).unsqueeze(3) |
|
* self.scale |
|
) |
|
else: |
|
|
|
conved = torch.nn.functional.conv2d(down_weight.permute(1, 0, 2, 3), up_weight).permute(1, 0, 2, 3) |
|
weight = self.multiplier * conved * self.scale |
|
|
|
return weight |
|
|
|
def default_forward(self, x): |
|
|
|
if self.split_dims is None: |
|
lx = self.lora_down(x) |
|
lx = self.lora_up(lx) |
|
return self.org_forward(x) + lx * self.multiplier * self.scale |
|
else: |
|
lxs = [lora_down(x) for lora_down in self.lora_down] |
|
lxs = [lora_up(lx) for lora_up, lx in zip(self.lora_up, lxs)] |
|
return self.org_forward(x) + torch.cat(lxs, dim=-1) * self.multiplier * self.scale |
|
|
|
def forward(self, x): |
|
if not self.enabled: |
|
return self.org_forward(x) |
|
return self.default_forward(x) |
|
|
|
|
|
def create_network_hunyuan_video( |
|
multiplier: float, |
|
network_dim: Optional[int], |
|
network_alpha: Optional[float], |
|
vae: nn.Module, |
|
text_encoders: List[nn.Module], |
|
unet: nn.Module, |
|
neuron_dropout: Optional[float] = None, |
|
**kwargs, |
|
): |
|
return create_network( |
|
HUNYUAN_TARGET_REPLACE_MODULES, |
|
"lora_unet", |
|
multiplier, |
|
network_dim, |
|
network_alpha, |
|
vae, |
|
text_encoders, |
|
unet, |
|
neuron_dropout=neuron_dropout, |
|
**kwargs, |
|
) |
|
|
|
|
|
def create_network( |
|
target_replace_modules: List[str], |
|
prefix: str, |
|
multiplier: float, |
|
network_dim: Optional[int], |
|
network_alpha: Optional[float], |
|
vae: nn.Module, |
|
text_encoders: List[nn.Module], |
|
unet: nn.Module, |
|
neuron_dropout: Optional[float] = None, |
|
**kwargs, |
|
): |
|
if network_dim is None: |
|
network_dim = 4 |
|
if network_alpha is None: |
|
network_alpha = 1.0 |
|
|
|
|
|
conv_dim = kwargs.get("conv_dim", None) |
|
conv_alpha = kwargs.get("conv_alpha", None) |
|
if conv_dim is not None: |
|
conv_dim = int(conv_dim) |
|
if conv_alpha is None: |
|
conv_alpha = 1.0 |
|
else: |
|
conv_alpha = float(conv_alpha) |
|
|
|
|
|
|
|
|
|
rank_dropout = kwargs.get("rank_dropout", None) |
|
if rank_dropout is not None: |
|
rank_dropout = float(rank_dropout) |
|
module_dropout = kwargs.get("module_dropout", None) |
|
if module_dropout is not None: |
|
module_dropout = float(module_dropout) |
|
|
|
|
|
verbose = kwargs.get("verbose", False) |
|
if verbose is not None: |
|
verbose = True if verbose == "True" else False |
|
|
|
|
|
network = LoRANetwork( |
|
target_replace_modules, |
|
prefix, |
|
text_encoders, |
|
unet, |
|
multiplier=multiplier, |
|
lora_dim=network_dim, |
|
alpha=network_alpha, |
|
dropout=neuron_dropout, |
|
rank_dropout=rank_dropout, |
|
module_dropout=module_dropout, |
|
conv_lora_dim=conv_dim, |
|
conv_alpha=conv_alpha, |
|
verbose=verbose, |
|
) |
|
|
|
loraplus_lr_ratio = kwargs.get("loraplus_lr_ratio", None) |
|
|
|
|
|
loraplus_lr_ratio = float(loraplus_lr_ratio) if loraplus_lr_ratio is not None else None |
|
|
|
|
|
if loraplus_lr_ratio is not None: |
|
network.set_loraplus_lr_ratio(loraplus_lr_ratio) |
|
|
|
return network |
|
|
|
|
|
class LoRANetwork(torch.nn.Module): |
|
|
|
|
|
def __init__( |
|
self, |
|
target_replace_modules: List[str], |
|
prefix: str, |
|
text_encoders: Union[List[CLIPTextModel], CLIPTextModel], |
|
unet: nn.Module, |
|
multiplier: float = 1.0, |
|
lora_dim: int = 4, |
|
alpha: float = 1, |
|
dropout: Optional[float] = None, |
|
rank_dropout: Optional[float] = None, |
|
module_dropout: Optional[float] = None, |
|
conv_lora_dim: Optional[int] = None, |
|
conv_alpha: Optional[float] = None, |
|
module_class: Type[object] = LoRAModule, |
|
modules_dim: Optional[Dict[str, int]] = None, |
|
modules_alpha: Optional[Dict[str, int]] = None, |
|
verbose: Optional[bool] = False, |
|
) -> None: |
|
super().__init__() |
|
self.multiplier = multiplier |
|
|
|
self.lora_dim = lora_dim |
|
self.alpha = alpha |
|
self.conv_lora_dim = conv_lora_dim |
|
self.conv_alpha = conv_alpha |
|
self.dropout = dropout |
|
self.rank_dropout = rank_dropout |
|
self.module_dropout = module_dropout |
|
self.target_replace_modules = target_replace_modules |
|
self.prefix = prefix |
|
|
|
self.loraplus_lr_ratio = None |
|
|
|
|
|
|
|
if modules_dim is not None: |
|
logger.info(f"create LoRA network from weights") |
|
else: |
|
logger.info(f"create LoRA network. base dim (rank): {lora_dim}, alpha: {alpha}") |
|
logger.info( |
|
f"neuron dropout: p={self.dropout}, rank dropout: p={self.rank_dropout}, module dropout: p={self.module_dropout}" |
|
) |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
def create_modules( |
|
is_unet: bool, |
|
pfx: str, |
|
root_module: torch.nn.Module, |
|
target_replace_mods: List[str], |
|
filter: Optional[str] = None, |
|
default_dim: Optional[int] = None, |
|
) -> List[LoRAModule]: |
|
loras = [] |
|
skipped = [] |
|
for name, module in root_module.named_modules(): |
|
if target_replace_mods is None or module.__class__.__name__ in target_replace_mods: |
|
if target_replace_mods is None: |
|
module = root_module |
|
|
|
for child_name, child_module in module.named_modules(): |
|
is_linear = child_module.__class__.__name__ == "Linear" |
|
is_conv2d = child_module.__class__.__name__ == "Conv2d" |
|
is_conv2d_1x1 = is_conv2d and child_module.kernel_size == (1, 1) |
|
|
|
if is_linear or is_conv2d: |
|
original_name = (name + "." if name else "") + child_name |
|
lora_name = f"{pfx}.{original_name}".replace(".", "_") |
|
|
|
if filter is not None and not filter in lora_name: |
|
continue |
|
|
|
dim = None |
|
alpha = None |
|
|
|
if modules_dim is not None: |
|
|
|
if lora_name in modules_dim: |
|
dim = modules_dim[lora_name] |
|
alpha = modules_alpha[lora_name] |
|
else: |
|
|
|
if is_linear or is_conv2d_1x1: |
|
dim = default_dim if default_dim is not None else self.lora_dim |
|
alpha = self.alpha |
|
elif self.conv_lora_dim is not None: |
|
dim = self.conv_lora_dim |
|
alpha = self.conv_alpha |
|
|
|
if dim is None or dim == 0: |
|
|
|
if is_linear or is_conv2d_1x1 or (self.conv_lora_dim is not None): |
|
skipped.append(lora_name) |
|
continue |
|
|
|
lora = module_class( |
|
lora_name, |
|
child_module, |
|
self.multiplier, |
|
dim, |
|
alpha, |
|
dropout=dropout, |
|
rank_dropout=rank_dropout, |
|
module_dropout=module_dropout, |
|
) |
|
loras.append(lora) |
|
|
|
if target_replace_mods is None: |
|
break |
|
return loras, skipped |
|
|
|
|
|
|
|
|
|
self.text_encoder_loras: List[Union[LoRAModule, LoRAInfModule]] = [] |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
self.unet_loras: List[Union[LoRAModule, LoRAInfModule]] |
|
self.unet_loras, skipped_un = create_modules(True, prefix, unet, target_replace_modules) |
|
|
|
logger.info(f"create LoRA for U-Net/DiT: {len(self.unet_loras)} modules.") |
|
if verbose: |
|
for lora in self.unet_loras: |
|
logger.info(f"\t{lora.lora_name:50} {lora.lora_dim}, {lora.alpha}") |
|
|
|
skipped = skipped_un |
|
if verbose and len(skipped) > 0: |
|
logger.warning( |
|
f"because dim (rank) is 0, {len(skipped)} LoRA modules are skipped / dim (rank)ใ0ใฎ็บใๆฌกใฎ{len(skipped)}ๅใฎLoRAใขใธใฅใผใซใฏในใญใใใใใพใ:" |
|
) |
|
for name in skipped: |
|
logger.info(f"\t{name}") |
|
|
|
|
|
names = set() |
|
for lora in self.text_encoder_loras + self.unet_loras: |
|
assert lora.lora_name not in names, f"duplicated lora name: {lora.lora_name}" |
|
names.add(lora.lora_name) |
|
|
|
def prepare_network(self, args): |
|
""" |
|
called after the network is created |
|
""" |
|
pass |
|
|
|
def set_multiplier(self, multiplier): |
|
self.multiplier = multiplier |
|
for lora in self.text_encoder_loras + self.unet_loras: |
|
lora.multiplier = self.multiplier |
|
|
|
def set_enabled(self, is_enabled): |
|
for lora in self.text_encoder_loras + self.unet_loras: |
|
lora.enabled = is_enabled |
|
|
|
def load_weights(self, file): |
|
if os.path.splitext(file)[1] == ".safetensors": |
|
from safetensors.torch import load_file |
|
|
|
weights_sd = load_file(file) |
|
else: |
|
weights_sd = torch.load(file, map_location="cpu") |
|
|
|
info = self.load_state_dict(weights_sd, False) |
|
return info |
|
|
|
def apply_to( |
|
self, |
|
text_encoders: Optional[nn.Module], |
|
unet: Optional[nn.Module], |
|
apply_text_encoder: bool = True, |
|
apply_unet: bool = True, |
|
): |
|
if apply_text_encoder: |
|
logger.info(f"enable LoRA for text encoder: {len(self.text_encoder_loras)} modules") |
|
else: |
|
self.text_encoder_loras = [] |
|
|
|
if apply_unet: |
|
logger.info(f"enable LoRA for U-Net: {len(self.unet_loras)} modules") |
|
else: |
|
self.unet_loras = [] |
|
|
|
for lora in self.text_encoder_loras + self.unet_loras: |
|
lora.apply_to() |
|
self.add_module(lora.lora_name, lora) |
|
|
|
|
|
def is_mergeable(self): |
|
return True |
|
|
|
|
|
def merge_to(self, text_encoders, unet, weights_sd, dtype=None, device=None): |
|
for lora in self.text_encoder_loras + self.unet_loras: |
|
sd_for_lora = {} |
|
for key in weights_sd.keys(): |
|
if key.startswith(lora.lora_name): |
|
sd_for_lora[key[len(lora.lora_name) + 1 :]] = weights_sd[key] |
|
if len(sd_for_lora) == 0: |
|
logger.info(f"no weight for {lora.lora_name}") |
|
continue |
|
lora.merge_to(sd_for_lora, dtype, device) |
|
|
|
logger.info(f"weights are merged") |
|
|
|
def set_loraplus_lr_ratio(self, loraplus_lr_ratio): |
|
self.loraplus_lr_ratio = loraplus_lr_ratio |
|
|
|
logger.info(f"LoRA+ UNet LR Ratio: {self.loraplus_lr_ratio}") |
|
|
|
|
|
def prepare_optimizer_params(self, unet_lr: float = 1e-4, **kwargs): |
|
self.requires_grad_(True) |
|
|
|
all_params = [] |
|
lr_descriptions = [] |
|
|
|
def assemble_params(loras, lr, loraplus_ratio): |
|
param_groups = {"lora": {}, "plus": {}} |
|
for lora in loras: |
|
for name, param in lora.named_parameters(): |
|
if loraplus_ratio is not None and "lora_up" in name: |
|
param_groups["plus"][f"{lora.lora_name}.{name}"] = param |
|
else: |
|
param_groups["lora"][f"{lora.lora_name}.{name}"] = param |
|
|
|
params = [] |
|
descriptions = [] |
|
for key in param_groups.keys(): |
|
param_data = {"params": param_groups[key].values()} |
|
|
|
if len(param_data["params"]) == 0: |
|
continue |
|
|
|
if lr is not None: |
|
if key == "plus": |
|
param_data["lr"] = lr * loraplus_ratio |
|
else: |
|
param_data["lr"] = lr |
|
|
|
if param_data.get("lr", None) == 0 or param_data.get("lr", None) is None: |
|
logger.info("NO LR skipping!") |
|
continue |
|
|
|
params.append(param_data) |
|
descriptions.append("plus" if key == "plus" else "") |
|
|
|
return params, descriptions |
|
|
|
if self.unet_loras: |
|
params, descriptions = assemble_params(self.unet_loras, unet_lr, self.loraplus_lr_ratio) |
|
all_params.extend(params) |
|
lr_descriptions.extend(["unet" + (" " + d if d else "") for d in descriptions]) |
|
|
|
return all_params, lr_descriptions |
|
|
|
def enable_gradient_checkpointing(self): |
|
|
|
pass |
|
|
|
def prepare_grad_etc(self, unet): |
|
self.requires_grad_(True) |
|
|
|
def on_epoch_start(self, unet): |
|
self.train() |
|
|
|
def on_step_start(self): |
|
pass |
|
|
|
def get_trainable_params(self): |
|
return self.parameters() |
|
|
|
def save_weights(self, file, dtype, metadata): |
|
if metadata is not None and len(metadata) == 0: |
|
metadata = None |
|
|
|
state_dict = self.state_dict() |
|
|
|
if dtype is not None: |
|
for key in list(state_dict.keys()): |
|
v = state_dict[key] |
|
v = v.detach().clone().to("cpu").to(dtype) |
|
state_dict[key] = v |
|
|
|
if os.path.splitext(file)[1] == ".safetensors": |
|
from safetensors.torch import save_file |
|
from utils import model_utils |
|
|
|
|
|
if metadata is None: |
|
metadata = {} |
|
model_hash, legacy_hash = model_utils.precalculate_safetensors_hashes(state_dict, metadata) |
|
metadata["sshs_model_hash"] = model_hash |
|
metadata["sshs_legacy_hash"] = legacy_hash |
|
|
|
save_file(state_dict, file, metadata) |
|
else: |
|
torch.save(state_dict, file) |
|
|
|
def backup_weights(self): |
|
|
|
loras: List[LoRAInfModule] = self.text_encoder_loras + self.unet_loras |
|
for lora in loras: |
|
org_module = lora.org_module_ref[0] |
|
if not hasattr(org_module, "_lora_org_weight"): |
|
sd = org_module.state_dict() |
|
org_module._lora_org_weight = sd["weight"].detach().clone() |
|
org_module._lora_restored = True |
|
|
|
def restore_weights(self): |
|
|
|
loras: List[LoRAInfModule] = self.text_encoder_loras + self.unet_loras |
|
for lora in loras: |
|
org_module = lora.org_module_ref[0] |
|
if not org_module._lora_restored: |
|
sd = org_module.state_dict() |
|
sd["weight"] = org_module._lora_org_weight |
|
org_module.load_state_dict(sd) |
|
org_module._lora_restored = True |
|
|
|
def pre_calculation(self): |
|
|
|
loras: List[LoRAInfModule] = self.text_encoder_loras + self.unet_loras |
|
for lora in loras: |
|
org_module = lora.org_module_ref[0] |
|
sd = org_module.state_dict() |
|
|
|
org_weight = sd["weight"] |
|
lora_weight = lora.get_weight().to(org_weight.device, dtype=org_weight.dtype) |
|
sd["weight"] = org_weight + lora_weight |
|
assert sd["weight"].shape == org_weight.shape |
|
org_module.load_state_dict(sd) |
|
|
|
org_module._lora_restored = False |
|
lora.enabled = False |
|
|
|
def apply_max_norm_regularization(self, max_norm_value, device): |
|
downkeys = [] |
|
upkeys = [] |
|
alphakeys = [] |
|
norms = [] |
|
keys_scaled = 0 |
|
|
|
state_dict = self.state_dict() |
|
for key in state_dict.keys(): |
|
if "lora_down" in key and "weight" in key: |
|
downkeys.append(key) |
|
upkeys.append(key.replace("lora_down", "lora_up")) |
|
alphakeys.append(key.replace("lora_down.weight", "alpha")) |
|
|
|
for i in range(len(downkeys)): |
|
down = state_dict[downkeys[i]].to(device) |
|
up = state_dict[upkeys[i]].to(device) |
|
alpha = state_dict[alphakeys[i]].to(device) |
|
dim = down.shape[0] |
|
scale = alpha / dim |
|
|
|
if up.shape[2:] == (1, 1) and down.shape[2:] == (1, 1): |
|
updown = (up.squeeze(2).squeeze(2) @ down.squeeze(2).squeeze(2)).unsqueeze(2).unsqueeze(3) |
|
elif up.shape[2:] == (3, 3) or down.shape[2:] == (3, 3): |
|
updown = torch.nn.functional.conv2d(down.permute(1, 0, 2, 3), up).permute(1, 0, 2, 3) |
|
else: |
|
updown = up @ down |
|
|
|
updown *= scale |
|
|
|
norm = updown.norm().clamp(min=max_norm_value / 2) |
|
desired = torch.clamp(norm, max=max_norm_value) |
|
ratio = desired.cpu() / norm.cpu() |
|
sqrt_ratio = ratio**0.5 |
|
if ratio != 1: |
|
keys_scaled += 1 |
|
state_dict[upkeys[i]] *= sqrt_ratio |
|
state_dict[downkeys[i]] *= sqrt_ratio |
|
scalednorm = updown.norm() * ratio |
|
norms.append(scalednorm.item()) |
|
|
|
return keys_scaled, sum(norms) / len(norms), max(norms) |
|
|
|
|
|
def create_network_from_weights_hunyuan_video( |
|
multiplier: float, |
|
weights_sd: Dict[str, torch.Tensor], |
|
text_encoders: Optional[List[nn.Module]] = None, |
|
unet: Optional[nn.Module] = None, |
|
for_inference: bool = False, |
|
**kwargs, |
|
) -> LoRANetwork: |
|
return create_network_from_weights( |
|
HUNYUAN_TARGET_REPLACE_MODULES, multiplier, weights_sd, text_encoders, unet, for_inference, **kwargs |
|
) |
|
|
|
|
|
|
|
def create_network_from_weights( |
|
target_replace_modules: List[str], |
|
multiplier: float, |
|
weights_sd: Dict[str, torch.Tensor], |
|
text_encoders: Optional[List[nn.Module]] = None, |
|
unet: Optional[nn.Module] = None, |
|
for_inference: bool = False, |
|
**kwargs, |
|
) -> LoRANetwork: |
|
|
|
modules_dim = {} |
|
modules_alpha = {} |
|
for key, value in weights_sd.items(): |
|
if "." not in key: |
|
continue |
|
|
|
lora_name = key.split(".")[0] |
|
if "alpha" in key: |
|
modules_alpha[lora_name] = value |
|
elif "lora_down" in key: |
|
dim = value.shape[0] |
|
modules_dim[lora_name] = dim |
|
|
|
|
|
module_class = LoRAInfModule if for_inference else LoRAModule |
|
|
|
network = LoRANetwork( |
|
target_replace_modules, |
|
"lora_unet", |
|
text_encoders, |
|
unet, |
|
multiplier=multiplier, |
|
modules_dim=modules_dim, |
|
modules_alpha=modules_alpha, |
|
module_class=module_class, |
|
) |
|
return network |
|
|