Genshin_Impact_XiangLing_HunyuanVideo_lora / cache_text_encoder_outputs.py
svjack's picture
Upload folder using huggingface_hub
da486e2 verified
raw
history blame
5.57 kB
import argparse
import os
from typing import Optional, Union
import numpy as np
import torch
from tqdm import tqdm
from dataset import config_utils
from dataset.config_utils import BlueprintGenerator, ConfigSanitizer
import accelerate
from dataset.image_video_dataset import ItemInfo, save_text_encoder_output_cache
from hunyuan_model import text_encoder as text_encoder_module
from hunyuan_model.text_encoder import TextEncoder
import logging
from utils.model_utils import str_to_dtype
logger = logging.getLogger(__name__)
logging.basicConfig(level=logging.INFO)
def encode_prompt(text_encoder: TextEncoder, prompt: Union[str, list[str]]):
data_type = "video" # video only, image is not supported
text_inputs = text_encoder.text2tokens(prompt, data_type=data_type)
with torch.no_grad():
prompt_outputs = text_encoder.encode(text_inputs, data_type=data_type)
return prompt_outputs.hidden_state, prompt_outputs.attention_mask
def encode_and_save_batch(
text_encoder: TextEncoder, batch: list[ItemInfo], is_llm: bool, accelerator: Optional[accelerate.Accelerator]
):
prompts = [item.caption for item in batch]
# print(prompts)
# encode prompt
if accelerator is not None:
with accelerator.autocast():
prompt_embeds, prompt_mask = encode_prompt(text_encoder, prompts)
else:
prompt_embeds, prompt_mask = encode_prompt(text_encoder, prompts)
# # convert to fp16 if needed
# if prompt_embeds.dtype == torch.float32 and text_encoder.dtype != torch.float32:
# prompt_embeds = prompt_embeds.to(text_encoder.dtype)
# save prompt cache
for item, embed, mask in zip(batch, prompt_embeds, prompt_mask):
save_text_encoder_output_cache(item, embed, mask, is_llm)
def main(args):
device = args.device if args.device is not None else "cuda" if torch.cuda.is_available() else "cpu"
device = torch.device(device)
# Load dataset config
blueprint_generator = BlueprintGenerator(ConfigSanitizer())
logger.info(f"Load dataset config from {args.dataset_config}")
user_config = config_utils.load_user_config(args.dataset_config)
blueprint = blueprint_generator.generate(user_config, args)
train_dataset_group = config_utils.generate_dataset_group_by_blueprint(blueprint.dataset_group)
datasets = train_dataset_group.datasets
# define accelerator for fp8 inference
accelerator = None
if args.fp8_llm:
accelerator = accelerate.Accelerator(mixed_precision="fp16")
# define encode function
num_workers = args.num_workers if args.num_workers is not None else max(1, os.cpu_count() - 1)
def encode_for_text_encoder(text_encoder: TextEncoder, is_llm: bool):
for i, dataset in enumerate(datasets):
print(f"Encoding dataset [{i}]")
for batch in tqdm(dataset.retrieve_text_encoder_output_cache_batches(num_workers)):
if args.skip_existing:
filtered_batch = [item for item in batch if not os.path.exists(item.text_encoder_output_cache_path)]
if len(filtered_batch) == 0:
continue
batch = filtered_batch
bs = args.batch_size if args.batch_size is not None else len(batch)
for i in range(0, len(batch), bs):
encode_and_save_batch(text_encoder, batch[i : i + bs], is_llm, accelerator)
# Load Text Encoder 1
text_encoder_dtype = torch.float16 if args.text_encoder_dtype is None else str_to_dtype(args.text_encoder_dtype)
logger.info(f"loading text encoder 1: {args.text_encoder1}")
text_encoder_1 = text_encoder_module.load_text_encoder_1(args.text_encoder1, device, args.fp8_llm, text_encoder_dtype)
text_encoder_1.to(device=device)
# Encode with Text Encoder 1
logger.info("Encoding with Text Encoder 1")
encode_for_text_encoder(text_encoder_1, is_llm=True)
del text_encoder_1
# Load Text Encoder 2
logger.info(f"loading text encoder 2: {args.text_encoder2}")
text_encoder_2 = text_encoder_module.load_text_encoder_2(args.text_encoder2, device, text_encoder_dtype)
text_encoder_2.to(device=device)
# Encode with Text Encoder 2
logger.info("Encoding with Text Encoder 2")
encode_for_text_encoder(text_encoder_2, is_llm=False)
del text_encoder_2
def setup_parser():
parser = argparse.ArgumentParser()
parser.add_argument("--dataset_config", type=str, required=True, help="path to dataset config .toml file")
parser.add_argument("--text_encoder1", type=str, required=True, help="Text Encoder 1 directory")
parser.add_argument("--text_encoder2", type=str, required=True, help="Text Encoder 2 directory")
parser.add_argument("--device", type=str, default=None, help="device to use, default is cuda if available")
parser.add_argument("--text_encoder_dtype", type=str, default=None, help="data type for Text Encoder, default is float16")
parser.add_argument("--fp8_llm", action="store_true", help="use fp8 for Text Encoder 1 (LLM)")
parser.add_argument(
"--batch_size", type=int, default=None, help="batch size, override dataset config if dataset batch size > this"
)
parser.add_argument("--num_workers", type=int, default=None, help="number of workers for dataset. default is cpu count-1")
parser.add_argument("--skip_existing", action="store_true", help="skip existing cache files")
return parser
if __name__ == "__main__":
parser = setup_parser()
args = parser.parse_args()
main(args)