File size: 15,530 Bytes
ce8359f 202ca65 c338390 202ca65 5f5a660 202ca65 5f5a660 202ca65 c338390 ce8359f 9b51da9 f7d9153 ce8359f 586fbd1 9b51da9 586fbd1 9b51da9 586fbd1 9b51da9 586fbd1 9b51da9 586fbd1 9b51da9 586fbd1 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 |
# svjack/GenshinImpact_XL_Base
This model is derived from [CivitAI](https://civitai.com/models/386505).
## Acknowledgments
Special thanks to [mobeimunan](https://civitai.com/user/mobeimunan) for their contributions to the development of this model.
<!--
<div style="display: flex; justify-content: space-between; align-items: stretch; height: 100vh;">
<div style="flex: 1; margin-right: 10px; display: flex; flex-direction: column; align-items: center; justify-content: center;">
<div style="margin-bottom: 10px;">
<img src="https://cdn-uploads.huggingface.co/production/uploads/634dffc49b777beec3bc6448/3IkZz7uXW9kc-lTnKdQN8.png" width="768" height="768">
</div>
</div>
<div style="flex: 1; margin-right: 10px; display: flex; flex-direction: column; align-items: center; justify-content: center;">
<div style="margin-bottom: 10px;">
<img src="https://cdn-uploads.huggingface.co/production/uploads/634dffc49b777beec3bc6448/ckrKqytF5MhanjIc_Vn1q.png" width="768" height="384">
</div>
<div style="margin-bottom: 10px;">
<video controls autoplay width="768" height="384" src="https://cdn-uploads.huggingface.co/production/uploads/634dffc49b777beec3bc6448/AgdsshSX-Dt5ObeAkjmby.mp4"></video>
</div>
</div>
</div>
-->
<div>
<div style="display: flex; flex-direction: column; align-items: center;">
<div style="margin-bottom: 10px;">
<video controls autoplay src="https://cdn-uploads.huggingface.co/production/uploads/634dffc49b777beec3bc6448/bsgBrDOOXYN-oBH95q5uK.mp4"></video>
</div>
</div>
</div>
## Supported Characters
The model currently supports the following 73 characters from Genshin Impact:
```python
name_dict = {
'旅行者女': 'lumine',
'旅行者男': 'aether',
'派蒙': 'PAIMON',
'迪奥娜': 'DIONA',
'菲米尼': 'FREMINET',
'甘雨': 'GANYU',
'凯亚': 'KAEYA',
'莱依拉': 'LAYLA',
'罗莎莉亚': 'ROSARIA',
'七七': 'QIQI',
'申鹤': 'SHENHE',
'神里绫华': 'KAMISATO AYAKA',
'优菈': 'EULA',
'重云': 'CHONGYUN',
'夏洛蒂': 'charlotte',
'莱欧斯利': 'WRIOTHESLEY',
'艾尔海森': 'ALHAITHAM',
'柯莱': 'COLLEI',
'纳西妲': 'NAHIDA',
'绮良良': 'KIRARA',
'提纳里': 'TIGHNARI',
'瑶瑶': 'YAOYAO',
'珐露珊': 'FARUZAN',
'枫原万叶': 'KAEDEHARA KAZUHA',
'琳妮特': 'LYNETTE',
'流浪者 散兵': 'scaramouche',
'鹿野院平藏': 'SHIKANOIN HEIZOU',
'琴': 'JEAN',
'砂糖': 'SUCROSE',
'温迪': 'VENTI',
'魈': 'XIAO',
'早柚': 'SAYU',
'安柏': 'AMBER',
'班尼特': 'BENNETT',
'迪卢克': 'DILUC',
'迪西娅': 'DEHYA',
'胡桃': 'HU TAO',
'可莉': 'KLEE',
'林尼': 'LYNEY',
'托马': 'THOMA',
'香菱': 'XIANG LING',
'宵宫': 'YOIMIYA',
'辛焱': 'XINYAN',
'烟绯': 'YANFEI',
'八重神子': 'YAE MIKO',
'北斗': 'BEIDOU',
'菲谢尔': 'FISCHL',
'九条裟罗': 'KUJO SARA',
'久岐忍': 'KUKI SHINOBU',
'刻晴': 'KEQING',
'雷电将军': 'RAIDEN SHOGUN',
'雷泽': 'RAZOR',
'丽莎': 'LISA',
'赛诺': 'CYNO',
'芙宁娜': 'FURINA',
'芭芭拉': 'BARBARA',
'公子 达达利亚': 'TARTAGLIA',
'坎蒂丝': 'CANDACE',
'莫娜': 'MONA',
'妮露': 'NILOU',
'珊瑚宫心海': 'SANGONOMIYA KOKOMI',
'神里绫人': 'KAMISATO AYATO',
'行秋': 'XINGQIU',
'夜兰': 'YELAN',
'那维莱特': 'NEUVILLETTE',
'娜维娅': 'NAVIA',
'阿贝多': 'ALBEDO',
'荒泷一斗': 'ARATAKI ITTO',
'凝光': 'NING GUANG',
'诺艾尔': 'NOELLE',
'五郎': 'GOROU',
'云堇': 'YUN JIN',
'钟离': 'ZHONGLI'
}
```
## Installation
To use this model, you need to install the following dependencies:
```bash
sudo apt-get update && sudo apt-get install git-lfs ffmpeg cbm
pip install -U diffusers transformers sentencepiece peft controlnet-aux moviepy
```
## Example Usage
### Generating an Image of Zhongli
Here's an example of how to generate an image of Zhongli using this model:
```python
from diffusers import StableDiffusionXLPipeline
import torch
pipeline = StableDiffusionXLPipeline.from_pretrained(
"svjack/GenshinImpact_XL_Base",
torch_dtype=torch.float16
).to("cuda")
prompt = "solo,ZHONGLI\(genshin impact\),1boy,portrait,upper_body,highres,"
negative_prompt = "nsfw,lowres,(bad),text,error,fewer,extra,missing,worst quality,jpeg artifacts,low quality,watermark,unfinished,displeasing,oldest,early,chromatic aberration,signature,extra digits,artistic error,username,scan,[abstract],"
image = pipeline(
prompt=prompt,
negative_prompt=negative_prompt,
generator=torch.manual_seed(0),
).images[0]
image
image.save("zhongli_1024x1024.png")
```
<div style="display: flex; flex-direction: column; align-items: center;">
<div style="margin-bottom: 10px;">
<img src="https://cdn-uploads.huggingface.co/production/uploads/634dffc49b777beec3bc6448/3IkZz7uXW9kc-lTnKdQN8.png" width="768" height="768">
<p style="text-align: center;">钟离</p>
</div>
</div>
### Using Canny ControlNet to Restore 2D Images from 3D Toy Photos
Here's an example of how to use Canny ControlNet to restore 2D images from 3D toy photos:
#### Genshin Impact 3D Toys
<div style="display: flex; flex-direction: column; align-items: center;">
<div style="margin-bottom: 10px;">
<img src="https://cdn-uploads.huggingface.co/production/uploads/634dffc49b777beec3bc6448/YNG9vRqZGvUSxb_UUrLE5.jpeg" width="512" height="768">
<p style="text-align: center;">钟离</p>
</div>
<div style="margin-bottom: 10px;">
<img src="https://cdn-uploads.huggingface.co/production/uploads/634dffc49b777beec3bc6448/1JfhfFi9qogHwB4M2S54m.jpeg" width="512" height="768">
<p style="text-align: center;">派蒙</p>
</div>
</div>
```python
from diffusers import AutoPipelineForText2Image, ControlNetModel
from diffusers.utils import load_image
import torch
from PIL import Image
from controlnet_aux import CannyDetector
controlnet = ControlNetModel.from_pretrained(
"diffusers/controlnet-canny-sdxl-1.0", torch_dtype=torch.float16
)
pipeline = AutoPipelineForText2Image.from_pretrained(
"svjack/GenshinImpact_XL_Base",
controlnet=controlnet,
torch_dtype=torch.float16
).to("cuda")
#pipeline.enable_model_cpu_offload()
canny = CannyDetector()
canny(Image.open("zhongli-cb.jpg")).save("zhongli-cb-canny.jpg")
canny_image = load_image(
"zhongli-cb-canny.jpg"
)
controlnet_conditioning_scale = 0.5
generator = torch.Generator(device="cpu").manual_seed(1)
images = pipeline(
prompt="solo,ZHONGLI\(genshin impact\),1boy,portrait,highres",
controlnet_conditioning_scale=controlnet_conditioning_scale,
image=canny_image,
num_inference_steps=50,
guidance_scale=7.0,
generator=generator,
).images
images[0]
images[0].save("zhongli_trans.png")
canny = CannyDetector()
canny(Image.open("paimon-cb-crop.jpg")).save("paimon-cb-canny.jpg")
canny_image = load_image(
"paimon-cb-canny.jpg"
)
controlnet_conditioning_scale = 0.7
generator = torch.Generator(device="cpu").manual_seed(3)
images = pipeline(
prompt="solo,PAIMON\(genshin impact\),1girl,portrait,highres, bright, shiny, high detail, anime",
controlnet_conditioning_scale=controlnet_conditioning_scale,
image=canny_image,
num_inference_steps=50,
guidance_scale=8.0,
generator=generator,
).images
images[0]
images[0].save("paimon_trans.png")
```
### Creating a Grid Image
You can also create a grid image from a list of PIL Image objects:
```python
from PIL import Image
def create_grid_image(image_list, rows, cols, cell_width, cell_height):
"""
Create a grid image from a list of PIL Image objects.
:param image_list: A list of PIL Image objects
:param rows: Number of rows in the grid
:param cols: Number of columns in the grid
:param cell_width: Width of each cell in the grid
:param cell_height: Height of each cell in the grid
:return: The resulting grid image
"""
total_width = cols * cell_width
total_height = rows * cell_height
grid_image = Image.new('RGB', (total_width, total_height))
for i, img in enumerate(image_list):
row = i // cols
col = i % cols
img = img.resize((cell_width, cell_height))
x_offset = col * cell_width
y_offset = row * cell_height
grid_image.paste(img, (x_offset, y_offset))
return grid_image
create_grid_image([Image.open("zhongli-cb.jpg") ,Image.open("zhongli-cb-canny.jpg"), Image.open("zhongli_trans.png")], 1, 3, 512, 768)
create_grid_image([Image.open("paimon-cb-crop.jpg") ,Image.open("paimon-cb-canny.jpg"), Image.open("paimon_trans.png")], 1, 3, 512, 768)
```
This will create a grid image showing the original, Canny edge detection, and transformed images side by side.
<div>
<b><h3 style="text-align: center;">Below image list in : (Genshin Impact Toy/ Canny Image / Gemshin Impact Restore 2D Image)</h3></b>
<div style="display: flex; flex-direction: column; align-items: center;">
<div style="margin-bottom: 10px;">
<img src="https://cdn-uploads.huggingface.co/production/uploads/634dffc49b777beec3bc6448/ckrKqytF5MhanjIc_Vn1q.png" width="1536" height="768">
<p style="text-align: center;">钟离</p>
</div>
<div style="margin-bottom: 10px;">
<img src="https://cdn-uploads.huggingface.co/production/uploads/634dffc49b777beec3bc6448/vfffGerUQV9W1MHxc_rN_.png" width="1536" height="768">
<p style="text-align: center;">派蒙</p>
</div>
</div>
</div>
### Generating an Animation of Zhongli
Here's an example of how to generate an animation of Zhongli using the `AnimateDiffSDXLPipeline`:
```python
import torch
from diffusers.models import MotionAdapter
from diffusers import AnimateDiffSDXLPipeline, DDIMScheduler
from diffusers.utils import export_to_gif
adapter = MotionAdapter.from_pretrained(
"a-r-r-o-w/animatediff-motion-adapter-sdxl-beta", torch_dtype=torch.float16
)
model_id = "svjack/GenshinImpact_XL_Base"
scheduler = DDIMScheduler.from_pretrained(
model_id,
subfolder="scheduler",
clip_sample=False,
timestep_spacing="linspace",
beta_schedule="linear",
steps_offset=1,
)
pipe = AnimateDiffSDXLPipeline.from_pretrained(
model_id,
motion_adapter=adapter,
scheduler=scheduler,
torch_dtype=torch.float16,
).to("cuda")
# enable memory savings
pipe.enable_vae_slicing()
pipe.enable_vae_tiling()
output = pipe(
prompt="solo,ZHONGLI\(genshin impact\),1boy,portrait,upper_body,highres, keep eyes forward.",
negative_prompt="low quality, worst quality",
num_inference_steps=20,
guidance_scale=8,
width=1024,
height=1024,
num_frames=16,
generator=torch.manual_seed(4),
)
frames = output.frames[0]
export_to_gif(frames, "zhongli_animation.gif")
from diffusers.utils import export_to_video
export_to_video(frames, "zhongli_animation.mp4")
from IPython import display
display.Video("zhongli_animation.mp4", width=512, height=512)
```
Use `AutoPipelineForImage2Image` to enhance output:
```python
from moviepy.editor import VideoFileClip
from PIL import Image
clip = VideoFileClip("zhongli_animation.mp4")
frames = list(map(Image.fromarray ,clip.iter_frames()))
from diffusers import AutoPipelineForText2Image, AutoPipelineForImage2Image
from diffusers.utils import load_image, make_image_grid
import torch
pipeline_text2image = AutoPipelineForText2Image.from_pretrained(
"svjack/GenshinImpact_XL_Base",
torch_dtype=torch.float16
)
# use from_pipe to avoid consuming additional memory when loading a checkpoint
pipeline = AutoPipelineForImage2Image.from_pipe(pipeline_text2image).to("cuda")
from tqdm import tqdm
req = []
for init_image in tqdm(frames):
prompt = "solo,ZHONGLI\(genshin impact\),1boy,portrait,upper_body,highres, keep eyes forward."
image = pipeline(prompt, image=init_image, strength=0.8, guidance_scale=10.5).images[0]
req.append(image)
from diffusers.utils import export_to_video
export_to_video(req, "zhongli_animation_im2im.mp4")
from IPython import display
display.Video("zhongli_animation_im2im.mp4", width=512, height=512)
```
##### Enhancing Animation with RIFE
To enhance the animation using RIFE (Real-Time Intermediate Flow Estimation):
```bash
git clone https://github.com/svjack/Practical-RIFE && cd Practical-RIFE && pip install -r requirements.txt
python inference_video.py --multi=128 --video=zhongli_animation_im2im.mp4
```
```python
from moviepy.editor import VideoFileClip
clip = VideoFileClip("zhongli_animation_im2im_128X_1280fps.mp4")
def speed_change_video(video_clip, speed_factor, output_path):
if speed_factor == 1:
# 如果变速因子为1,直接复制原视频
video_clip.write_videofile(output_path, codec="libx264")
else:
# 否则,按变速因子调整视频速度
new_duration = video_clip.duration / speed_factor
sped_up_clip = video_clip.speedx(speed_factor)
sped_up_clip.write_videofile(output_path, codec="libx264")
speed_change_video(clip, 0.05, "zhongli_animation_im2im_128X_1280fps_wrt.mp4")
VideoFileClip("zhongli_animation_im2im_128X_1280fps_wrt.mp4").set_duration(10).write_videofile("zhongli_animation_im2im_128X_1280fps_wrt_10s.mp4", codec="libx264")
from IPython import display
display.Video("zhongli_animation_im2im_128X_1280fps_wrt_10s.mp4", width=512, height=512)
```
##### Merging Videos Horizontally
You can merge two videos horizontally using the following function:
```python
from moviepy.editor import VideoFileClip, CompositeVideoClip
def merge_videos_horizontally(video_path1, video_path2, output_video_path):
clip1 = VideoFileClip(video_path1)
clip2 = VideoFileClip(video_path2)
max_duration = max(clip1.duration, clip2.duration)
if clip1.duration < max_duration:
clip1 = clip1.loop(duration=max_duration)
if clip2.duration < max_duration:
clip2 = clip2.loop(duration=max_duration)
total_width = clip1.w + clip2.w
total_height = max(clip1.h, clip2.h)
final_clip = CompositeVideoClip([
clip1.set_position(("left", "center")),
clip2.set_position(("right", "center"))
], size=(total_width, total_height))
final_clip.write_videofile(output_video_path, codec='libx264')
print(f"Merged video saved to {output_video_path}")
# Example usage
video_path1 = "zhongli_animation.mp4" # 第一个视频文件路径
video_path2 = "zhongli_animation_im2im_128X_1280fps_wrt_10s.mp4" # 第二个视频文件路径
output_video_path = "zhongli_inter_video_im2im_compare.mp4" # 输出视频的路径
merge_videos_horizontally(video_path1, video_path2, output_video_path)
```
<div>
<b><h3 style="text-align: center;">Left is zhongli_animation.mp4 (By AnimateDiffSDXLPipeline), Right is zhongli_animation_im2im_128X_1280fps_wrt_10s.mp4 (By AutoPipelineForImage2Image + Practical-RIFE)</h3></b>
<div style="display: flex; flex-direction: column; align-items: center;">
<div style="margin-bottom: 10px;">
<video controls autoplay src="https://cdn-uploads.huggingface.co/production/uploads/634dffc49b777beec3bc6448/gBaodBk8z3aI69LiT36w2.mp4"></video>
<p style="text-align: center;">钟离</p>
</div>
</div>
</div>
|