|
--- |
|
tags: |
|
- generated_from_trainer |
|
datasets: |
|
- audiofolder |
|
metrics: |
|
- accuracy |
|
model-index: |
|
- name: wav2vec2-base-random-stop-classification-1 |
|
results: [] |
|
--- |
|
|
|
<!-- This model card has been generated automatically according to the information the Trainer had access to. You |
|
should probably proofread and complete it, then remove this comment. --> |
|
|
|
# wav2vec2-base-random-stop-classification-1 |
|
|
|
This model is a fine-tuned version of [](https://huggingface.co/) on the audiofolder dataset. |
|
It achieves the following results on the evaluation set: |
|
- Loss: 0.4066 |
|
- Accuracy: 0.8651 |
|
|
|
## Model description |
|
|
|
More information needed |
|
|
|
## Intended uses & limitations |
|
|
|
More information needed |
|
|
|
## Training and evaluation data |
|
|
|
More information needed |
|
|
|
## Training procedure |
|
|
|
### Training hyperparameters |
|
|
|
The following hyperparameters were used during training: |
|
- learning_rate: 3e-05 |
|
- train_batch_size: 64 |
|
- eval_batch_size: 64 |
|
- seed: 42 |
|
- gradient_accumulation_steps: 4 |
|
- total_train_batch_size: 256 |
|
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 |
|
- lr_scheduler_type: linear |
|
- lr_scheduler_warmup_ratio: 0.1 |
|
- num_epochs: 25 |
|
|
|
### Training results |
|
|
|
| Training Loss | Epoch | Step | Validation Loss | Accuracy | |
|
|:-------------:|:-----:|:----:|:---------------:|:--------:| |
|
| 0.6949 | 0.99 | 18 | 0.6706 | 0.5906 | |
|
| 0.6753 | 1.97 | 36 | 0.6470 | 0.6383 | |
|
| 0.6231 | 2.96 | 54 | 0.5590 | 0.7302 | |
|
| 0.544 | 4.0 | 73 | 0.4623 | 0.7977 | |
|
| 0.4806 | 4.99 | 91 | 0.4061 | 0.8317 | |
|
| 0.4543 | 5.97 | 109 | 0.5891 | 0.7643 | |
|
| 0.4947 | 6.96 | 127 | 0.3944 | 0.8386 | |
|
| 0.4431 | 8.0 | 146 | 0.4528 | 0.8093 | |
|
| 0.4147 | 8.99 | 164 | 0.4560 | 0.8222 | |
|
| 0.4094 | 9.97 | 182 | 0.4193 | 0.8447 | |
|
| 0.3906 | 10.96 | 200 | 0.3846 | 0.8549 | |
|
| 0.3835 | 12.0 | 219 | 0.3845 | 0.8569 | |
|
| 0.3632 | 12.99 | 237 | 0.3660 | 0.8644 | |
|
| 0.3622 | 13.97 | 255 | 0.4107 | 0.8617 | |
|
| 0.3472 | 14.96 | 273 | 0.3733 | 0.8685 | |
|
| 0.3419 | 16.0 | 292 | 0.4496 | 0.8467 | |
|
| 0.3074 | 16.99 | 310 | 0.3987 | 0.8638 | |
|
| 0.3278 | 17.97 | 328 | 0.3740 | 0.8665 | |
|
| 0.2841 | 18.96 | 346 | 0.3999 | 0.8651 | |
|
| 0.2837 | 20.0 | 365 | 0.3954 | 0.8604 | |
|
| 0.2928 | 20.99 | 383 | 0.3871 | 0.8644 | |
|
| 0.3002 | 21.97 | 401 | 0.4978 | 0.8386 | |
|
| 0.2783 | 22.96 | 419 | 0.4079 | 0.8692 | |
|
| 0.2703 | 24.0 | 438 | 0.3977 | 0.8713 | |
|
| 0.2816 | 24.66 | 450 | 0.4066 | 0.8651 | |
|
|
|
|
|
### Framework versions |
|
|
|
- Transformers 4.27.4 |
|
- Pytorch 1.13.0 |
|
- Datasets 2.7.1 |
|
- Tokenizers 0.13.2 |
|
|