File size: 3,522 Bytes
4568d3f
9b66fa5
 
4568d3f
 
 
2613e69
a535608
2613e69
 
 
 
 
4d3795a
9b66fa5
 
 
 
 
 
4568d3f
 
2613e69
 
 
9b66fa5
2613e69
a535608
 
2613e69
 
9b66fa5
2613e69
9b66fa5
 
2613e69
9b66fa5
 
2613e69
9b66fa5
 
2613e69
9b66fa5
4568d3f
 
 
 
 
 
 
a535608
2613e69
 
 
 
 
 
4568d3f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2613e69
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4568d3f
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
---
language:
- en
license: apache-2.0
tags:
- generated_from_trainer
datasets:
- surrey-nlp/PLOD-unfiltered
metrics:
- precision
- recall
- f1
- accuracy
widget:
- text: Light dissolved inorganic carbon (DIC) resulting from the oxidation of hydrocarbons.
- text: RAFs are plotted for a selection of neurons in the dorsal zone (DZ) of auditory
    cortex in Figure 1.
- text: Images were acquired using a GE 3.0T MRI scanner with an upgrade for echo-planar
    imaging (EPI).
base_model: albert-large-v2
model-index:
- name: albert-large-v2-finetuned-ner_with_callbacks
  results:
  - task:
      type: token-classification
      name: Token Classification
    dataset:
      name: surrey-nlp/PLOD-unfiltered
      type: token-classification
      args: PLODunfiltered
    metrics:
    - type: precision
      value: 0.9655166719570215
      name: Precision
    - type: recall
      value: 0.9608483288141474
      name: Recall
    - type: f1
      value: 0.9631768437660728
      name: F1
    - type: accuracy
      value: 0.9589410429715819
      name: Accuracy
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# albert-large-v2-finetuned-ner_with_callbacks

This model is a fine-tuned version of [albert-large-v2](https://huggingface.co/albert-large-v2) on the [PLOD-unfiltered](https://huggingface.co/datasets/surrey-nlp/PLOD-unfiltered) dataset.
It achieves the following results on the evaluation set:
- Loss: 0.1235
- Precision: 0.9655
- Recall: 0.9608
- F1: 0.9632
- Accuracy: 0.9589

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 8
- eval_batch_size: 4
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 6

### Training results

| Training Loss | Epoch | Step  | Validation Loss | Precision | Recall | F1     | Accuracy |
|:-------------:|:-----:|:-----:|:---------------:|:---------:|:------:|:------:|:--------:|
| 0.1377        | 0.49  | 7000  | 0.1294          | 0.9563    | 0.9422 | 0.9492 | 0.9436   |
| 0.1244        | 0.98  | 14000 | 0.1165          | 0.9589    | 0.9504 | 0.9546 | 0.9499   |
| 0.107         | 1.48  | 21000 | 0.1140          | 0.9603    | 0.9509 | 0.9556 | 0.9511   |
| 0.1088        | 1.97  | 28000 | 0.1086          | 0.9613    | 0.9551 | 0.9582 | 0.9536   |
| 0.0918        | 2.46  | 35000 | 0.1059          | 0.9617    | 0.9582 | 0.9600 | 0.9556   |
| 0.0847        | 2.95  | 42000 | 0.1067          | 0.9620    | 0.9586 | 0.9603 | 0.9559   |
| 0.0734        | 3.44  | 49000 | 0.1188          | 0.9646    | 0.9588 | 0.9617 | 0.9574   |
| 0.0725        | 3.93  | 56000 | 0.1065          | 0.9660    | 0.9599 | 0.9630 | 0.9588   |
| 0.0547        | 4.43  | 63000 | 0.1273          | 0.9662    | 0.9602 | 0.9632 | 0.9590   |
| 0.0542        | 4.92  | 70000 | 0.1235          | 0.9655    | 0.9608 | 0.9632 | 0.9589   |
| 0.0374        | 5.41  | 77000 | 0.1401          | 0.9647    | 0.9613 | 0.9630 | 0.9586   |
| 0.0417        | 5.9   | 84000 | 0.1380          | 0.9641    | 0.9622 | 0.9632 | 0.9588   |


### Framework versions

- Transformers 4.18.0
- Pytorch 1.10.1+cu111
- Datasets 2.1.0
- Tokenizers 0.12.1