supreethrao
commited on
Commit
·
4e93afb
1
Parent(s):
61d6153
Model save
Browse files- README.md +238 -0
- all_results.json +119 -0
- final_checkpoint/README.md +238 -0
- final_checkpoint/added_tokens.json +4 -0
- final_checkpoint/config.json +249 -0
- final_checkpoint/merges.txt +0 -0
- final_checkpoint/model.safetensors +3 -0
- final_checkpoint/special_tokens_map.json +51 -0
- final_checkpoint/tokenizer.json +0 -0
- final_checkpoint/tokenizer_config.json +75 -0
- final_checkpoint/training_args.bin +3 -0
- final_checkpoint/vocab.json +0 -0
- model.safetensors +1 -1
- runs/Nov27_10-15-36_trinity/events.out.tfevents.1701080205.trinity.366901.0 +2 -2
- runs/Nov27_10-15-36_trinity/events.out.tfevents.1701082402.trinity.366901.1 +3 -0
- test_results.json +119 -0
README.md
ADDED
@@ -0,0 +1,238 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
library_name: span-marker
|
3 |
+
tags:
|
4 |
+
- span-marker
|
5 |
+
- token-classification
|
6 |
+
- ner
|
7 |
+
- named-entity-recognition
|
8 |
+
- generated_from_span_marker_trainer
|
9 |
+
datasets:
|
10 |
+
- SpeedOfMagic/ontonotes_english
|
11 |
+
metrics:
|
12 |
+
- precision
|
13 |
+
- recall
|
14 |
+
- f1
|
15 |
+
widget:
|
16 |
+
- text: Late Friday night, the Senate voted 87 - 7 to approve an estimated $13.5 billion
|
17 |
+
measure that had been stripped of hundreds of provisions that would have widened,
|
18 |
+
rather than narrowed, the federal budget deficit.
|
19 |
+
- text: Among classes for which details were available, yields ranged from 8.78%,
|
20 |
+
or 75 basis points over two - year Treasury securities, to 10.05%, or 200 basis
|
21 |
+
points over 10 - year Treasurys.
|
22 |
+
- text: According to statistics, in the past five years, Tianjin Bonded Area has attracted
|
23 |
+
a total of over 3000 enterprises from 73 countries and regions all over the world
|
24 |
+
and 25 domestic provinces, cities and municipalities to invest, reaching a total
|
25 |
+
agreed investment value of more than 3 billion US dollars and a total agreed foreign
|
26 |
+
investment reaching more than 2 billion US dollars.
|
27 |
+
- text: But Dirk Van Dongen, president of the National Association of Wholesaler -
|
28 |
+
Distributors, said that last month's rise "isn't as bad an omen" as the 0.9% figure
|
29 |
+
suggests.
|
30 |
+
- text: Robert White, Canadian Auto Workers union president, used the impending Scarborough
|
31 |
+
shutdown to criticize the U.S. - Canada free trade agreement and its champion,
|
32 |
+
Prime Minister Brian Mulroney.
|
33 |
+
pipeline_tag: token-classification
|
34 |
+
model-index:
|
35 |
+
- name: SpanMarker
|
36 |
+
results:
|
37 |
+
- task:
|
38 |
+
type: token-classification
|
39 |
+
name: Named Entity Recognition
|
40 |
+
dataset:
|
41 |
+
name: Unknown
|
42 |
+
type: SpeedOfMagic/ontonotes_english
|
43 |
+
split: test
|
44 |
+
metrics:
|
45 |
+
- type: f1
|
46 |
+
value: 0.9077127659574469
|
47 |
+
name: F1
|
48 |
+
- type: precision
|
49 |
+
value: 0.9045852107076597
|
50 |
+
name: Precision
|
51 |
+
- type: recall
|
52 |
+
value: 0.9108620229516947
|
53 |
+
name: Recall
|
54 |
+
---
|
55 |
+
|
56 |
+
# SpanMarker
|
57 |
+
|
58 |
+
This is a [SpanMarker](https://github.com/tomaarsen/SpanMarkerNER) model trained on the [SpeedOfMagic/ontonotes_english](https://huggingface.co/datasets/SpeedOfMagic/ontonotes_english) dataset that can be used for Named Entity Recognition.
|
59 |
+
|
60 |
+
## Model Details
|
61 |
+
|
62 |
+
### Model Description
|
63 |
+
- **Model Type:** SpanMarker
|
64 |
+
<!-- - **Encoder:** [Unknown](https://huggingface.co/unknown) -->
|
65 |
+
- **Maximum Sequence Length:** 256 tokens
|
66 |
+
- **Maximum Entity Length:** 8 words
|
67 |
+
- **Training Dataset:** [SpeedOfMagic/ontonotes_english](https://huggingface.co/datasets/SpeedOfMagic/ontonotes_english)
|
68 |
+
<!-- - **Language:** Unknown -->
|
69 |
+
<!-- - **License:** Unknown -->
|
70 |
+
|
71 |
+
### Model Sources
|
72 |
+
|
73 |
+
- **Repository:** [SpanMarker on GitHub](https://github.com/tomaarsen/SpanMarkerNER)
|
74 |
+
- **Thesis:** [SpanMarker For Named Entity Recognition](https://raw.githubusercontent.com/tomaarsen/SpanMarkerNER/main/thesis.pdf)
|
75 |
+
|
76 |
+
### Model Labels
|
77 |
+
| Label | Examples |
|
78 |
+
|:------------|:-------------------------------------------------------------------------------------------------------|
|
79 |
+
| CARDINAL | "tens of thousands", "One point three million", "two" |
|
80 |
+
| DATE | "Sunday", "a year", "two thousand one" |
|
81 |
+
| EVENT | "World War Two", "Katrina", "Hurricane Katrina" |
|
82 |
+
| FAC | "Route 80", "the White House", "Dylan 's Candy Bars" |
|
83 |
+
| GPE | "America", "Atlanta", "Miami" |
|
84 |
+
| LANGUAGE | "English", "Russian", "Arabic" |
|
85 |
+
| LAW | "Roe", "the Patriot Act", "FISA" |
|
86 |
+
| LOC | "Asia", "the Gulf Coast", "the West Bank" |
|
87 |
+
| MONEY | "twenty - seven million dollars", "one hundred billion dollars", "less than fourteen thousand dollars" |
|
88 |
+
| NORP | "American", "Muslim", "Americans" |
|
89 |
+
| ORDINAL | "third", "First", "first" |
|
90 |
+
| ORG | "Wal - Mart", "Wal - Mart 's", "a Wal - Mart" |
|
91 |
+
| PERCENT | "seventeen percent", "sixty - seven percent", "a hundred percent" |
|
92 |
+
| PERSON | "Kira Phillips", "Rick Sanchez", "Bob Shapiro" |
|
93 |
+
| PRODUCT | "Columbia", "Discovery Shuttle", "Discovery" |
|
94 |
+
| QUANTITY | "forty - five miles", "six thousand feet", "a hundred and seventy pounds" |
|
95 |
+
| TIME | "tonight", "evening", "Tonight" |
|
96 |
+
| WORK_OF_ART | "A Tale of Two Cities", "Newsnight", "Headline News" |
|
97 |
+
|
98 |
+
## Evaluation
|
99 |
+
|
100 |
+
### Metrics
|
101 |
+
| Label | Precision | Recall | F1 |
|
102 |
+
|:------------|:----------|:-------|:-------|
|
103 |
+
| **all** | 0.9046 | 0.9109 | 0.9077 |
|
104 |
+
| CARDINAL | 0.8579 | 0.8524 | 0.8552 |
|
105 |
+
| DATE | 0.8634 | 0.8893 | 0.8762 |
|
106 |
+
| EVENT | 0.6719 | 0.6935 | 0.6825 |
|
107 |
+
| FAC | 0.7211 | 0.7852 | 0.7518 |
|
108 |
+
| GPE | 0.9725 | 0.9647 | 0.9686 |
|
109 |
+
| LANGUAGE | 0.9286 | 0.5909 | 0.7222 |
|
110 |
+
| LAW | 0.7941 | 0.7297 | 0.7606 |
|
111 |
+
| LOC | 0.7632 | 0.8101 | 0.7859 |
|
112 |
+
| MONEY | 0.8914 | 0.8885 | 0.8900 |
|
113 |
+
| NORP | 0.9311 | 0.9643 | 0.9474 |
|
114 |
+
| ORDINAL | 0.8227 | 0.9282 | 0.8723 |
|
115 |
+
| ORG | 0.9217 | 0.9073 | 0.9145 |
|
116 |
+
| PERCENT | 0.9145 | 0.9198 | 0.9171 |
|
117 |
+
| PERSON | 0.9638 | 0.9643 | 0.9640 |
|
118 |
+
| PRODUCT | 0.6778 | 0.8026 | 0.7349 |
|
119 |
+
| QUANTITY | 0.7850 | 0.8 | 0.7925 |
|
120 |
+
| TIME | 0.6794 | 0.6730 | 0.6762 |
|
121 |
+
| WORK_OF_ART | 0.6562 | 0.6442 | 0.6502 |
|
122 |
+
|
123 |
+
## Uses
|
124 |
+
|
125 |
+
### Direct Use for Inference
|
126 |
+
|
127 |
+
```python
|
128 |
+
from span_marker import SpanMarkerModel
|
129 |
+
|
130 |
+
# Download from the 🤗 Hub
|
131 |
+
model = SpanMarkerModel.from_pretrained("supreethrao/instructNER_ontonotes5_xl")
|
132 |
+
# Run inference
|
133 |
+
entities = model.predict("Robert White, Canadian Auto Workers union president, used the impending Scarborough shutdown to criticize the U.S. - Canada free trade agreement and its champion, Prime Minister Brian Mulroney.")
|
134 |
+
```
|
135 |
+
|
136 |
+
### Downstream Use
|
137 |
+
You can finetune this model on your own dataset.
|
138 |
+
|
139 |
+
<details><summary>Click to expand</summary>
|
140 |
+
|
141 |
+
```python
|
142 |
+
from span_marker import SpanMarkerModel, Trainer
|
143 |
+
|
144 |
+
# Download from the 🤗 Hub
|
145 |
+
model = SpanMarkerModel.from_pretrained("supreethrao/instructNER_ontonotes5_xl")
|
146 |
+
|
147 |
+
# Specify a Dataset with "tokens" and "ner_tag" columns
|
148 |
+
dataset = load_dataset("conll2003") # For example CoNLL2003
|
149 |
+
|
150 |
+
# Initialize a Trainer using the pretrained model & dataset
|
151 |
+
trainer = Trainer(
|
152 |
+
model=model,
|
153 |
+
train_dataset=dataset["train"],
|
154 |
+
eval_dataset=dataset["validation"],
|
155 |
+
)
|
156 |
+
trainer.train()
|
157 |
+
trainer.save_model("supreethrao/instructNER_ontonotes5_xl-finetuned")
|
158 |
+
```
|
159 |
+
</details>
|
160 |
+
|
161 |
+
<!--
|
162 |
+
### Out-of-Scope Use
|
163 |
+
|
164 |
+
*List how the model may foreseeably be misused and address what users ought not to do with the model.*
|
165 |
+
-->
|
166 |
+
|
167 |
+
<!--
|
168 |
+
## Bias, Risks and Limitations
|
169 |
+
|
170 |
+
*What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.*
|
171 |
+
-->
|
172 |
+
|
173 |
+
<!--
|
174 |
+
### Recommendations
|
175 |
+
|
176 |
+
*What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.*
|
177 |
+
-->
|
178 |
+
|
179 |
+
## Training Details
|
180 |
+
|
181 |
+
### Training Set Metrics
|
182 |
+
| Training set | Min | Median | Max |
|
183 |
+
|:----------------------|:----|:--------|:----|
|
184 |
+
| Sentence length | 1 | 18.1647 | 210 |
|
185 |
+
| Entities per sentence | 0 | 1.3655 | 32 |
|
186 |
+
|
187 |
+
### Training Hyperparameters
|
188 |
+
- learning_rate: 5e-05
|
189 |
+
- train_batch_size: 16
|
190 |
+
- eval_batch_size: 16
|
191 |
+
- seed: 42
|
192 |
+
- distributed_type: multi-GPU
|
193 |
+
- num_devices: 2
|
194 |
+
- total_train_batch_size: 32
|
195 |
+
- total_eval_batch_size: 32
|
196 |
+
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
|
197 |
+
- lr_scheduler_type: linear
|
198 |
+
- lr_scheduler_warmup_ratio: 0.1
|
199 |
+
- num_epochs: 3
|
200 |
+
- mixed_precision_training: Native AMP
|
201 |
+
|
202 |
+
### Framework Versions
|
203 |
+
- Python: 3.10.13
|
204 |
+
- SpanMarker: 1.5.0
|
205 |
+
- Transformers: 4.35.2
|
206 |
+
- PyTorch: 2.1.1
|
207 |
+
- Datasets: 2.15.0
|
208 |
+
- Tokenizers: 0.15.0
|
209 |
+
|
210 |
+
## Citation
|
211 |
+
|
212 |
+
### BibTeX
|
213 |
+
```
|
214 |
+
@software{Aarsen_SpanMarker,
|
215 |
+
author = {Aarsen, Tom},
|
216 |
+
license = {Apache-2.0},
|
217 |
+
title = {{SpanMarker for Named Entity Recognition}},
|
218 |
+
url = {https://github.com/tomaarsen/SpanMarkerNER}
|
219 |
+
}
|
220 |
+
```
|
221 |
+
|
222 |
+
<!--
|
223 |
+
## Glossary
|
224 |
+
|
225 |
+
*Clearly define terms in order to be accessible across audiences.*
|
226 |
+
-->
|
227 |
+
|
228 |
+
<!--
|
229 |
+
## Model Card Authors
|
230 |
+
|
231 |
+
*Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.*
|
232 |
+
-->
|
233 |
+
|
234 |
+
<!--
|
235 |
+
## Model Card Contact
|
236 |
+
|
237 |
+
*Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.*
|
238 |
+
-->
|
all_results.json
ADDED
@@ -0,0 +1,119 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"epoch": 3.0,
|
3 |
+
"test_CARDINAL": {
|
4 |
+
"f1": 0.8551502145922747,
|
5 |
+
"number": 935,
|
6 |
+
"precision": 0.8579117330462863,
|
7 |
+
"recall": 0.8524064171122995
|
8 |
+
},
|
9 |
+
"test_DATE": {
|
10 |
+
"f1": 0.8761552680221812,
|
11 |
+
"number": 1599,
|
12 |
+
"precision": 0.8633879781420765,
|
13 |
+
"recall": 0.8893058161350844
|
14 |
+
},
|
15 |
+
"test_EVENT": {
|
16 |
+
"f1": 0.6825396825396826,
|
17 |
+
"number": 62,
|
18 |
+
"precision": 0.671875,
|
19 |
+
"recall": 0.6935483870967742
|
20 |
+
},
|
21 |
+
"test_FAC": {
|
22 |
+
"f1": 0.7517730496453903,
|
23 |
+
"number": 135,
|
24 |
+
"precision": 0.7210884353741497,
|
25 |
+
"recall": 0.7851851851851852
|
26 |
+
},
|
27 |
+
"test_GPE": {
|
28 |
+
"f1": 0.9686098654708519,
|
29 |
+
"number": 2239,
|
30 |
+
"precision": 0.9725348941918055,
|
31 |
+
"recall": 0.964716391246092
|
32 |
+
},
|
33 |
+
"test_LANGUAGE": {
|
34 |
+
"f1": 0.7222222222222223,
|
35 |
+
"number": 22,
|
36 |
+
"precision": 0.9285714285714286,
|
37 |
+
"recall": 0.5909090909090909
|
38 |
+
},
|
39 |
+
"test_LAW": {
|
40 |
+
"f1": 0.7605633802816901,
|
41 |
+
"number": 37,
|
42 |
+
"precision": 0.7941176470588235,
|
43 |
+
"recall": 0.7297297297297297
|
44 |
+
},
|
45 |
+
"test_LOC": {
|
46 |
+
"f1": 0.7859078590785907,
|
47 |
+
"number": 179,
|
48 |
+
"precision": 0.7631578947368421,
|
49 |
+
"recall": 0.8100558659217877
|
50 |
+
},
|
51 |
+
"test_MONEY": {
|
52 |
+
"f1": 0.8899521531100479,
|
53 |
+
"number": 314,
|
54 |
+
"precision": 0.8913738019169329,
|
55 |
+
"recall": 0.8885350318471338
|
56 |
+
},
|
57 |
+
"test_NORP": {
|
58 |
+
"f1": 0.947429906542056,
|
59 |
+
"number": 841,
|
60 |
+
"precision": 0.931113662456946,
|
61 |
+
"recall": 0.9643281807372176
|
62 |
+
},
|
63 |
+
"test_ORDINAL": {
|
64 |
+
"f1": 0.8722891566265061,
|
65 |
+
"number": 195,
|
66 |
+
"precision": 0.8227272727272728,
|
67 |
+
"recall": 0.9282051282051282
|
68 |
+
},
|
69 |
+
"test_ORG": {
|
70 |
+
"f1": 0.9144625773776026,
|
71 |
+
"number": 1791,
|
72 |
+
"precision": 0.921724333522405,
|
73 |
+
"recall": 0.9073143495254048
|
74 |
+
},
|
75 |
+
"test_PERCENT": {
|
76 |
+
"f1": 0.9171428571428571,
|
77 |
+
"number": 349,
|
78 |
+
"precision": 0.9145299145299145,
|
79 |
+
"recall": 0.9197707736389685
|
80 |
+
},
|
81 |
+
"test_PERSON": {
|
82 |
+
"f1": 0.9640432486799095,
|
83 |
+
"number": 1988,
|
84 |
+
"precision": 0.9638009049773756,
|
85 |
+
"recall": 0.9642857142857143
|
86 |
+
},
|
87 |
+
"test_PRODUCT": {
|
88 |
+
"f1": 0.7349397590361447,
|
89 |
+
"number": 76,
|
90 |
+
"precision": 0.6777777777777778,
|
91 |
+
"recall": 0.8026315789473685
|
92 |
+
},
|
93 |
+
"test_QUANTITY": {
|
94 |
+
"f1": 0.7924528301886793,
|
95 |
+
"number": 105,
|
96 |
+
"precision": 0.7850467289719626,
|
97 |
+
"recall": 0.8
|
98 |
+
},
|
99 |
+
"test_TIME": {
|
100 |
+
"f1": 0.6761904761904762,
|
101 |
+
"number": 211,
|
102 |
+
"precision": 0.6794258373205742,
|
103 |
+
"recall": 0.6729857819905213
|
104 |
+
},
|
105 |
+
"test_WORK_OF_ART": {
|
106 |
+
"f1": 0.65015479876161,
|
107 |
+
"number": 163,
|
108 |
+
"precision": 0.65625,
|
109 |
+
"recall": 0.6441717791411042
|
110 |
+
},
|
111 |
+
"test_loss": 0.00661951769143343,
|
112 |
+
"test_overall_accuracy": 0.982111989942905,
|
113 |
+
"test_overall_f1": 0.9077127659574469,
|
114 |
+
"test_overall_precision": 0.9045852107076597,
|
115 |
+
"test_overall_recall": 0.9108620229516947,
|
116 |
+
"test_runtime": 34.2561,
|
117 |
+
"test_samples_per_second": 277.382,
|
118 |
+
"test_steps_per_second": 8.67
|
119 |
+
}
|
final_checkpoint/README.md
ADDED
@@ -0,0 +1,238 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
library_name: span-marker
|
3 |
+
tags:
|
4 |
+
- span-marker
|
5 |
+
- token-classification
|
6 |
+
- ner
|
7 |
+
- named-entity-recognition
|
8 |
+
- generated_from_span_marker_trainer
|
9 |
+
datasets:
|
10 |
+
- SpeedOfMagic/ontonotes_english
|
11 |
+
metrics:
|
12 |
+
- precision
|
13 |
+
- recall
|
14 |
+
- f1
|
15 |
+
widget:
|
16 |
+
- text: Late Friday night, the Senate voted 87 - 7 to approve an estimated $13.5 billion
|
17 |
+
measure that had been stripped of hundreds of provisions that would have widened,
|
18 |
+
rather than narrowed, the federal budget deficit.
|
19 |
+
- text: Among classes for which details were available, yields ranged from 8.78%,
|
20 |
+
or 75 basis points over two - year Treasury securities, to 10.05%, or 200 basis
|
21 |
+
points over 10 - year Treasurys.
|
22 |
+
- text: According to statistics, in the past five years, Tianjin Bonded Area has attracted
|
23 |
+
a total of over 3000 enterprises from 73 countries and regions all over the world
|
24 |
+
and 25 domestic provinces, cities and municipalities to invest, reaching a total
|
25 |
+
agreed investment value of more than 3 billion US dollars and a total agreed foreign
|
26 |
+
investment reaching more than 2 billion US dollars.
|
27 |
+
- text: But Dirk Van Dongen, president of the National Association of Wholesaler -
|
28 |
+
Distributors, said that last month's rise "isn't as bad an omen" as the 0.9% figure
|
29 |
+
suggests.
|
30 |
+
- text: Robert White, Canadian Auto Workers union president, used the impending Scarborough
|
31 |
+
shutdown to criticize the U.S. - Canada free trade agreement and its champion,
|
32 |
+
Prime Minister Brian Mulroney.
|
33 |
+
pipeline_tag: token-classification
|
34 |
+
model-index:
|
35 |
+
- name: SpanMarker
|
36 |
+
results:
|
37 |
+
- task:
|
38 |
+
type: token-classification
|
39 |
+
name: Named Entity Recognition
|
40 |
+
dataset:
|
41 |
+
name: Unknown
|
42 |
+
type: SpeedOfMagic/ontonotes_english
|
43 |
+
split: test
|
44 |
+
metrics:
|
45 |
+
- type: f1
|
46 |
+
value: 0.9077127659574469
|
47 |
+
name: F1
|
48 |
+
- type: precision
|
49 |
+
value: 0.9045852107076597
|
50 |
+
name: Precision
|
51 |
+
- type: recall
|
52 |
+
value: 0.9108620229516947
|
53 |
+
name: Recall
|
54 |
+
---
|
55 |
+
|
56 |
+
# SpanMarker
|
57 |
+
|
58 |
+
This is a [SpanMarker](https://github.com/tomaarsen/SpanMarkerNER) model trained on the [SpeedOfMagic/ontonotes_english](https://huggingface.co/datasets/SpeedOfMagic/ontonotes_english) dataset that can be used for Named Entity Recognition.
|
59 |
+
|
60 |
+
## Model Details
|
61 |
+
|
62 |
+
### Model Description
|
63 |
+
- **Model Type:** SpanMarker
|
64 |
+
<!-- - **Encoder:** [Unknown](https://huggingface.co/unknown) -->
|
65 |
+
- **Maximum Sequence Length:** 256 tokens
|
66 |
+
- **Maximum Entity Length:** 8 words
|
67 |
+
- **Training Dataset:** [SpeedOfMagic/ontonotes_english](https://huggingface.co/datasets/SpeedOfMagic/ontonotes_english)
|
68 |
+
<!-- - **Language:** Unknown -->
|
69 |
+
<!-- - **License:** Unknown -->
|
70 |
+
|
71 |
+
### Model Sources
|
72 |
+
|
73 |
+
- **Repository:** [SpanMarker on GitHub](https://github.com/tomaarsen/SpanMarkerNER)
|
74 |
+
- **Thesis:** [SpanMarker For Named Entity Recognition](https://raw.githubusercontent.com/tomaarsen/SpanMarkerNER/main/thesis.pdf)
|
75 |
+
|
76 |
+
### Model Labels
|
77 |
+
| Label | Examples |
|
78 |
+
|:------------|:-------------------------------------------------------------------------------------------------------|
|
79 |
+
| CARDINAL | "tens of thousands", "One point three million", "two" |
|
80 |
+
| DATE | "Sunday", "a year", "two thousand one" |
|
81 |
+
| EVENT | "World War Two", "Katrina", "Hurricane Katrina" |
|
82 |
+
| FAC | "Route 80", "the White House", "Dylan 's Candy Bars" |
|
83 |
+
| GPE | "America", "Atlanta", "Miami" |
|
84 |
+
| LANGUAGE | "English", "Russian", "Arabic" |
|
85 |
+
| LAW | "Roe", "the Patriot Act", "FISA" |
|
86 |
+
| LOC | "Asia", "the Gulf Coast", "the West Bank" |
|
87 |
+
| MONEY | "twenty - seven million dollars", "one hundred billion dollars", "less than fourteen thousand dollars" |
|
88 |
+
| NORP | "American", "Muslim", "Americans" |
|
89 |
+
| ORDINAL | "third", "First", "first" |
|
90 |
+
| ORG | "Wal - Mart", "Wal - Mart 's", "a Wal - Mart" |
|
91 |
+
| PERCENT | "seventeen percent", "sixty - seven percent", "a hundred percent" |
|
92 |
+
| PERSON | "Kira Phillips", "Rick Sanchez", "Bob Shapiro" |
|
93 |
+
| PRODUCT | "Columbia", "Discovery Shuttle", "Discovery" |
|
94 |
+
| QUANTITY | "forty - five miles", "six thousand feet", "a hundred and seventy pounds" |
|
95 |
+
| TIME | "tonight", "evening", "Tonight" |
|
96 |
+
| WORK_OF_ART | "A Tale of Two Cities", "Newsnight", "Headline News" |
|
97 |
+
|
98 |
+
## Evaluation
|
99 |
+
|
100 |
+
### Metrics
|
101 |
+
| Label | Precision | Recall | F1 |
|
102 |
+
|:------------|:----------|:-------|:-------|
|
103 |
+
| **all** | 0.9046 | 0.9109 | 0.9077 |
|
104 |
+
| CARDINAL | 0.8579 | 0.8524 | 0.8552 |
|
105 |
+
| DATE | 0.8634 | 0.8893 | 0.8762 |
|
106 |
+
| EVENT | 0.6719 | 0.6935 | 0.6825 |
|
107 |
+
| FAC | 0.7211 | 0.7852 | 0.7518 |
|
108 |
+
| GPE | 0.9725 | 0.9647 | 0.9686 |
|
109 |
+
| LANGUAGE | 0.9286 | 0.5909 | 0.7222 |
|
110 |
+
| LAW | 0.7941 | 0.7297 | 0.7606 |
|
111 |
+
| LOC | 0.7632 | 0.8101 | 0.7859 |
|
112 |
+
| MONEY | 0.8914 | 0.8885 | 0.8900 |
|
113 |
+
| NORP | 0.9311 | 0.9643 | 0.9474 |
|
114 |
+
| ORDINAL | 0.8227 | 0.9282 | 0.8723 |
|
115 |
+
| ORG | 0.9217 | 0.9073 | 0.9145 |
|
116 |
+
| PERCENT | 0.9145 | 0.9198 | 0.9171 |
|
117 |
+
| PERSON | 0.9638 | 0.9643 | 0.9640 |
|
118 |
+
| PRODUCT | 0.6778 | 0.8026 | 0.7349 |
|
119 |
+
| QUANTITY | 0.7850 | 0.8 | 0.7925 |
|
120 |
+
| TIME | 0.6794 | 0.6730 | 0.6762 |
|
121 |
+
| WORK_OF_ART | 0.6562 | 0.6442 | 0.6502 |
|
122 |
+
|
123 |
+
## Uses
|
124 |
+
|
125 |
+
### Direct Use for Inference
|
126 |
+
|
127 |
+
```python
|
128 |
+
from span_marker import SpanMarkerModel
|
129 |
+
|
130 |
+
# Download from the 🤗 Hub
|
131 |
+
model = SpanMarkerModel.from_pretrained("supreethrao/instructNER_ontonotes5_xl")
|
132 |
+
# Run inference
|
133 |
+
entities = model.predict("Robert White, Canadian Auto Workers union president, used the impending Scarborough shutdown to criticize the U.S. - Canada free trade agreement and its champion, Prime Minister Brian Mulroney.")
|
134 |
+
```
|
135 |
+
|
136 |
+
### Downstream Use
|
137 |
+
You can finetune this model on your own dataset.
|
138 |
+
|
139 |
+
<details><summary>Click to expand</summary>
|
140 |
+
|
141 |
+
```python
|
142 |
+
from span_marker import SpanMarkerModel, Trainer
|
143 |
+
|
144 |
+
# Download from the 🤗 Hub
|
145 |
+
model = SpanMarkerModel.from_pretrained("supreethrao/instructNER_ontonotes5_xl")
|
146 |
+
|
147 |
+
# Specify a Dataset with "tokens" and "ner_tag" columns
|
148 |
+
dataset = load_dataset("conll2003") # For example CoNLL2003
|
149 |
+
|
150 |
+
# Initialize a Trainer using the pretrained model & dataset
|
151 |
+
trainer = Trainer(
|
152 |
+
model=model,
|
153 |
+
train_dataset=dataset["train"],
|
154 |
+
eval_dataset=dataset["validation"],
|
155 |
+
)
|
156 |
+
trainer.train()
|
157 |
+
trainer.save_model("supreethrao/instructNER_ontonotes5_xl-finetuned")
|
158 |
+
```
|
159 |
+
</details>
|
160 |
+
|
161 |
+
<!--
|
162 |
+
### Out-of-Scope Use
|
163 |
+
|
164 |
+
*List how the model may foreseeably be misused and address what users ought not to do with the model.*
|
165 |
+
-->
|
166 |
+
|
167 |
+
<!--
|
168 |
+
## Bias, Risks and Limitations
|
169 |
+
|
170 |
+
*What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.*
|
171 |
+
-->
|
172 |
+
|
173 |
+
<!--
|
174 |
+
### Recommendations
|
175 |
+
|
176 |
+
*What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.*
|
177 |
+
-->
|
178 |
+
|
179 |
+
## Training Details
|
180 |
+
|
181 |
+
### Training Set Metrics
|
182 |
+
| Training set | Min | Median | Max |
|
183 |
+
|:----------------------|:----|:--------|:----|
|
184 |
+
| Sentence length | 1 | 18.1647 | 210 |
|
185 |
+
| Entities per sentence | 0 | 1.3655 | 32 |
|
186 |
+
|
187 |
+
### Training Hyperparameters
|
188 |
+
- learning_rate: 5e-05
|
189 |
+
- train_batch_size: 16
|
190 |
+
- eval_batch_size: 16
|
191 |
+
- seed: 42
|
192 |
+
- distributed_type: multi-GPU
|
193 |
+
- num_devices: 2
|
194 |
+
- total_train_batch_size: 32
|
195 |
+
- total_eval_batch_size: 32
|
196 |
+
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
|
197 |
+
- lr_scheduler_type: linear
|
198 |
+
- lr_scheduler_warmup_ratio: 0.1
|
199 |
+
- num_epochs: 3
|
200 |
+
- mixed_precision_training: Native AMP
|
201 |
+
|
202 |
+
### Framework Versions
|
203 |
+
- Python: 3.10.13
|
204 |
+
- SpanMarker: 1.5.0
|
205 |
+
- Transformers: 4.35.2
|
206 |
+
- PyTorch: 2.1.1
|
207 |
+
- Datasets: 2.15.0
|
208 |
+
- Tokenizers: 0.15.0
|
209 |
+
|
210 |
+
## Citation
|
211 |
+
|
212 |
+
### BibTeX
|
213 |
+
```
|
214 |
+
@software{Aarsen_SpanMarker,
|
215 |
+
author = {Aarsen, Tom},
|
216 |
+
license = {Apache-2.0},
|
217 |
+
title = {{SpanMarker for Named Entity Recognition}},
|
218 |
+
url = {https://github.com/tomaarsen/SpanMarkerNER}
|
219 |
+
}
|
220 |
+
```
|
221 |
+
|
222 |
+
<!--
|
223 |
+
## Glossary
|
224 |
+
|
225 |
+
*Clearly define terms in order to be accessible across audiences.*
|
226 |
+
-->
|
227 |
+
|
228 |
+
<!--
|
229 |
+
## Model Card Authors
|
230 |
+
|
231 |
+
*Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.*
|
232 |
+
-->
|
233 |
+
|
234 |
+
<!--
|
235 |
+
## Model Card Contact
|
236 |
+
|
237 |
+
*Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.*
|
238 |
+
-->
|
final_checkpoint/added_tokens.json
ADDED
@@ -0,0 +1,4 @@
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"<end>": 50266,
|
3 |
+
"<start>": 50265
|
4 |
+
}
|
final_checkpoint/config.json
ADDED
@@ -0,0 +1,249 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"architectures": [
|
3 |
+
"SpanMarkerModel"
|
4 |
+
],
|
5 |
+
"encoder": {
|
6 |
+
"_name_or_path": "numind/generic-entity_recognition_NER-v1",
|
7 |
+
"add_cross_attention": false,
|
8 |
+
"architectures": [
|
9 |
+
"RobertaModel"
|
10 |
+
],
|
11 |
+
"attention_probs_dropout_prob": 0.1,
|
12 |
+
"bad_words_ids": null,
|
13 |
+
"begin_suppress_tokens": null,
|
14 |
+
"bos_token_id": 0,
|
15 |
+
"chunk_size_feed_forward": 0,
|
16 |
+
"classifier_dropout": null,
|
17 |
+
"cross_attention_hidden_size": null,
|
18 |
+
"decoder_start_token_id": null,
|
19 |
+
"diversity_penalty": 0.0,
|
20 |
+
"do_sample": false,
|
21 |
+
"early_stopping": false,
|
22 |
+
"encoder_no_repeat_ngram_size": 0,
|
23 |
+
"eos_token_id": 2,
|
24 |
+
"exponential_decay_length_penalty": null,
|
25 |
+
"finetuning_task": null,
|
26 |
+
"forced_bos_token_id": null,
|
27 |
+
"forced_eos_token_id": null,
|
28 |
+
"hidden_act": "gelu",
|
29 |
+
"hidden_dropout_prob": 0.1,
|
30 |
+
"hidden_size": 768,
|
31 |
+
"id2label": {
|
32 |
+
"0": "O",
|
33 |
+
"1": "B-PERSON",
|
34 |
+
"2": "I-PERSON",
|
35 |
+
"3": "B-NORP",
|
36 |
+
"4": "I-NORP",
|
37 |
+
"5": "B-FAC",
|
38 |
+
"6": "I-FAC",
|
39 |
+
"7": "B-ORG",
|
40 |
+
"8": "I-ORG",
|
41 |
+
"9": "B-GPE",
|
42 |
+
"10": "I-GPE",
|
43 |
+
"11": "B-LOC",
|
44 |
+
"12": "I-LOC",
|
45 |
+
"13": "B-PRODUCT",
|
46 |
+
"14": "I-PRODUCT",
|
47 |
+
"15": "B-DATE",
|
48 |
+
"16": "I-DATE",
|
49 |
+
"17": "B-TIME",
|
50 |
+
"18": "I-TIME",
|
51 |
+
"19": "B-PERCENT",
|
52 |
+
"20": "I-PERCENT",
|
53 |
+
"21": "B-MONEY",
|
54 |
+
"22": "I-MONEY",
|
55 |
+
"23": "B-QUANTITY",
|
56 |
+
"24": "I-QUANTITY",
|
57 |
+
"25": "B-ORDINAL",
|
58 |
+
"26": "I-ORDINAL",
|
59 |
+
"27": "B-CARDINAL",
|
60 |
+
"28": "I-CARDINAL",
|
61 |
+
"29": "B-EVENT",
|
62 |
+
"30": "I-EVENT",
|
63 |
+
"31": "B-WORK_OF_ART",
|
64 |
+
"32": "I-WORK_OF_ART",
|
65 |
+
"33": "B-LAW",
|
66 |
+
"34": "I-LAW",
|
67 |
+
"35": "B-LANGUAGE",
|
68 |
+
"36": "I-LANGUAGE"
|
69 |
+
},
|
70 |
+
"initializer_range": 0.02,
|
71 |
+
"intermediate_size": 3072,
|
72 |
+
"is_decoder": false,
|
73 |
+
"is_encoder_decoder": false,
|
74 |
+
"label2id": {
|
75 |
+
"B-CARDINAL": 27,
|
76 |
+
"B-DATE": 15,
|
77 |
+
"B-EVENT": 29,
|
78 |
+
"B-FAC": 5,
|
79 |
+
"B-GPE": 9,
|
80 |
+
"B-LANGUAGE": 35,
|
81 |
+
"B-LAW": 33,
|
82 |
+
"B-LOC": 11,
|
83 |
+
"B-MONEY": 21,
|
84 |
+
"B-NORP": 3,
|
85 |
+
"B-ORDINAL": 25,
|
86 |
+
"B-ORG": 7,
|
87 |
+
"B-PERCENT": 19,
|
88 |
+
"B-PERSON": 1,
|
89 |
+
"B-PRODUCT": 13,
|
90 |
+
"B-QUANTITY": 23,
|
91 |
+
"B-TIME": 17,
|
92 |
+
"B-WORK_OF_ART": 31,
|
93 |
+
"I-CARDINAL": 28,
|
94 |
+
"I-DATE": 16,
|
95 |
+
"I-EVENT": 30,
|
96 |
+
"I-FAC": 6,
|
97 |
+
"I-GPE": 10,
|
98 |
+
"I-LANGUAGE": 36,
|
99 |
+
"I-LAW": 34,
|
100 |
+
"I-LOC": 12,
|
101 |
+
"I-MONEY": 22,
|
102 |
+
"I-NORP": 4,
|
103 |
+
"I-ORDINAL": 26,
|
104 |
+
"I-ORG": 8,
|
105 |
+
"I-PERCENT": 20,
|
106 |
+
"I-PERSON": 2,
|
107 |
+
"I-PRODUCT": 14,
|
108 |
+
"I-QUANTITY": 24,
|
109 |
+
"I-TIME": 18,
|
110 |
+
"I-WORK_OF_ART": 32,
|
111 |
+
"O": 0
|
112 |
+
},
|
113 |
+
"layer_norm_eps": 1e-05,
|
114 |
+
"length_penalty": 1.0,
|
115 |
+
"max_length": 20,
|
116 |
+
"max_position_embeddings": 514,
|
117 |
+
"min_length": 0,
|
118 |
+
"model_type": "roberta",
|
119 |
+
"no_repeat_ngram_size": 0,
|
120 |
+
"num_attention_heads": 12,
|
121 |
+
"num_beam_groups": 1,
|
122 |
+
"num_beams": 1,
|
123 |
+
"num_hidden_layers": 12,
|
124 |
+
"num_return_sequences": 1,
|
125 |
+
"output_attentions": false,
|
126 |
+
"output_hidden_states": false,
|
127 |
+
"output_scores": false,
|
128 |
+
"pad_token_id": 1,
|
129 |
+
"position_embedding_type": "absolute",
|
130 |
+
"prefix": null,
|
131 |
+
"problem_type": null,
|
132 |
+
"pruned_heads": {},
|
133 |
+
"remove_invalid_values": false,
|
134 |
+
"repetition_penalty": 1.0,
|
135 |
+
"return_dict": true,
|
136 |
+
"return_dict_in_generate": false,
|
137 |
+
"sep_token_id": null,
|
138 |
+
"suppress_tokens": null,
|
139 |
+
"task_specific_params": null,
|
140 |
+
"temperature": 1.0,
|
141 |
+
"tf_legacy_loss": false,
|
142 |
+
"tie_encoder_decoder": false,
|
143 |
+
"tie_word_embeddings": true,
|
144 |
+
"tokenizer_class": null,
|
145 |
+
"top_k": 50,
|
146 |
+
"top_p": 1.0,
|
147 |
+
"torch_dtype": "float32",
|
148 |
+
"torchscript": false,
|
149 |
+
"transformers_version": "4.35.2",
|
150 |
+
"type_vocab_size": 1,
|
151 |
+
"typical_p": 1.0,
|
152 |
+
"use_bfloat16": false,
|
153 |
+
"use_cache": true,
|
154 |
+
"vocab_size": 50272
|
155 |
+
},
|
156 |
+
"entity_max_length": 8,
|
157 |
+
"id2label": {
|
158 |
+
"0": "O",
|
159 |
+
"1": "CARDINAL",
|
160 |
+
"2": "DATE",
|
161 |
+
"3": "EVENT",
|
162 |
+
"4": "FAC",
|
163 |
+
"5": "GPE",
|
164 |
+
"6": "LANGUAGE",
|
165 |
+
"7": "LAW",
|
166 |
+
"8": "LOC",
|
167 |
+
"9": "MONEY",
|
168 |
+
"10": "NORP",
|
169 |
+
"11": "ORDINAL",
|
170 |
+
"12": "ORG",
|
171 |
+
"13": "PERCENT",
|
172 |
+
"14": "PERSON",
|
173 |
+
"15": "PRODUCT",
|
174 |
+
"16": "QUANTITY",
|
175 |
+
"17": "TIME",
|
176 |
+
"18": "WORK_OF_ART"
|
177 |
+
},
|
178 |
+
"id2reduced_id": {
|
179 |
+
"0": 0,
|
180 |
+
"1": 14,
|
181 |
+
"2": 14,
|
182 |
+
"3": 10,
|
183 |
+
"4": 10,
|
184 |
+
"5": 4,
|
185 |
+
"6": 4,
|
186 |
+
"7": 12,
|
187 |
+
"8": 12,
|
188 |
+
"9": 5,
|
189 |
+
"10": 5,
|
190 |
+
"11": 8,
|
191 |
+
"12": 8,
|
192 |
+
"13": 15,
|
193 |
+
"14": 15,
|
194 |
+
"15": 2,
|
195 |
+
"16": 2,
|
196 |
+
"17": 17,
|
197 |
+
"18": 17,
|
198 |
+
"19": 13,
|
199 |
+
"20": 13,
|
200 |
+
"21": 9,
|
201 |
+
"22": 9,
|
202 |
+
"23": 16,
|
203 |
+
"24": 16,
|
204 |
+
"25": 11,
|
205 |
+
"26": 11,
|
206 |
+
"27": 1,
|
207 |
+
"28": 1,
|
208 |
+
"29": 3,
|
209 |
+
"30": 3,
|
210 |
+
"31": 18,
|
211 |
+
"32": 18,
|
212 |
+
"33": 7,
|
213 |
+
"34": 7,
|
214 |
+
"35": 6,
|
215 |
+
"36": 6
|
216 |
+
},
|
217 |
+
"label2id": {
|
218 |
+
"CARDINAL": 1,
|
219 |
+
"DATE": 2,
|
220 |
+
"EVENT": 3,
|
221 |
+
"FAC": 4,
|
222 |
+
"GPE": 5,
|
223 |
+
"LANGUAGE": 6,
|
224 |
+
"LAW": 7,
|
225 |
+
"LOC": 8,
|
226 |
+
"MONEY": 9,
|
227 |
+
"NORP": 10,
|
228 |
+
"O": 0,
|
229 |
+
"ORDINAL": 11,
|
230 |
+
"ORG": 12,
|
231 |
+
"PERCENT": 13,
|
232 |
+
"PERSON": 14,
|
233 |
+
"PRODUCT": 15,
|
234 |
+
"QUANTITY": 16,
|
235 |
+
"TIME": 17,
|
236 |
+
"WORK_OF_ART": 18
|
237 |
+
},
|
238 |
+
"marker_max_length": 128,
|
239 |
+
"max_next_context": null,
|
240 |
+
"max_prev_context": null,
|
241 |
+
"model_max_length": 256,
|
242 |
+
"model_max_length_default": 512,
|
243 |
+
"model_type": "span-marker",
|
244 |
+
"span_marker_version": "1.5.0",
|
245 |
+
"torch_dtype": "float32",
|
246 |
+
"trained_with_document_context": false,
|
247 |
+
"transformers_version": "4.35.2",
|
248 |
+
"vocab_size": 50272
|
249 |
+
}
|
final_checkpoint/merges.txt
ADDED
The diff for this file is too large to render.
See raw diff
|
|
final_checkpoint/model.safetensors
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:6cf48de419eda23e5c660db17ba05d8293253a1f0166ea76891b930ead3db300
|
3 |
+
size 498744980
|
final_checkpoint/special_tokens_map.json
ADDED
@@ -0,0 +1,51 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"bos_token": {
|
3 |
+
"content": "<s>",
|
4 |
+
"lstrip": false,
|
5 |
+
"normalized": true,
|
6 |
+
"rstrip": false,
|
7 |
+
"single_word": false
|
8 |
+
},
|
9 |
+
"cls_token": {
|
10 |
+
"content": "<s>",
|
11 |
+
"lstrip": false,
|
12 |
+
"normalized": true,
|
13 |
+
"rstrip": false,
|
14 |
+
"single_word": false
|
15 |
+
},
|
16 |
+
"eos_token": {
|
17 |
+
"content": "</s>",
|
18 |
+
"lstrip": false,
|
19 |
+
"normalized": true,
|
20 |
+
"rstrip": false,
|
21 |
+
"single_word": false
|
22 |
+
},
|
23 |
+
"mask_token": {
|
24 |
+
"content": "<mask>",
|
25 |
+
"lstrip": true,
|
26 |
+
"normalized": true,
|
27 |
+
"rstrip": false,
|
28 |
+
"single_word": false
|
29 |
+
},
|
30 |
+
"pad_token": {
|
31 |
+
"content": "<pad>",
|
32 |
+
"lstrip": false,
|
33 |
+
"normalized": true,
|
34 |
+
"rstrip": false,
|
35 |
+
"single_word": false
|
36 |
+
},
|
37 |
+
"sep_token": {
|
38 |
+
"content": "</s>",
|
39 |
+
"lstrip": false,
|
40 |
+
"normalized": true,
|
41 |
+
"rstrip": false,
|
42 |
+
"single_word": false
|
43 |
+
},
|
44 |
+
"unk_token": {
|
45 |
+
"content": "<unk>",
|
46 |
+
"lstrip": false,
|
47 |
+
"normalized": true,
|
48 |
+
"rstrip": false,
|
49 |
+
"single_word": false
|
50 |
+
}
|
51 |
+
}
|
final_checkpoint/tokenizer.json
ADDED
The diff for this file is too large to render.
See raw diff
|
|
final_checkpoint/tokenizer_config.json
ADDED
@@ -0,0 +1,75 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"add_prefix_space": true,
|
3 |
+
"added_tokens_decoder": {
|
4 |
+
"0": {
|
5 |
+
"content": "<s>",
|
6 |
+
"lstrip": false,
|
7 |
+
"normalized": true,
|
8 |
+
"rstrip": false,
|
9 |
+
"single_word": false,
|
10 |
+
"special": true
|
11 |
+
},
|
12 |
+
"1": {
|
13 |
+
"content": "<pad>",
|
14 |
+
"lstrip": false,
|
15 |
+
"normalized": true,
|
16 |
+
"rstrip": false,
|
17 |
+
"single_word": false,
|
18 |
+
"special": true
|
19 |
+
},
|
20 |
+
"2": {
|
21 |
+
"content": "</s>",
|
22 |
+
"lstrip": false,
|
23 |
+
"normalized": true,
|
24 |
+
"rstrip": false,
|
25 |
+
"single_word": false,
|
26 |
+
"special": true
|
27 |
+
},
|
28 |
+
"3": {
|
29 |
+
"content": "<unk>",
|
30 |
+
"lstrip": false,
|
31 |
+
"normalized": true,
|
32 |
+
"rstrip": false,
|
33 |
+
"single_word": false,
|
34 |
+
"special": true
|
35 |
+
},
|
36 |
+
"50264": {
|
37 |
+
"content": "<mask>",
|
38 |
+
"lstrip": true,
|
39 |
+
"normalized": true,
|
40 |
+
"rstrip": false,
|
41 |
+
"single_word": false,
|
42 |
+
"special": true
|
43 |
+
},
|
44 |
+
"50265": {
|
45 |
+
"content": "<start>",
|
46 |
+
"lstrip": false,
|
47 |
+
"normalized": false,
|
48 |
+
"rstrip": false,
|
49 |
+
"single_word": false,
|
50 |
+
"special": true
|
51 |
+
},
|
52 |
+
"50266": {
|
53 |
+
"content": "<end>",
|
54 |
+
"lstrip": false,
|
55 |
+
"normalized": false,
|
56 |
+
"rstrip": false,
|
57 |
+
"single_word": false,
|
58 |
+
"special": true
|
59 |
+
}
|
60 |
+
},
|
61 |
+
"bos_token": "<s>",
|
62 |
+
"clean_up_tokenization_spaces": true,
|
63 |
+
"cls_token": "<s>",
|
64 |
+
"entity_max_length": 8,
|
65 |
+
"eos_token": "</s>",
|
66 |
+
"errors": "replace",
|
67 |
+
"marker_max_length": 128,
|
68 |
+
"mask_token": "<mask>",
|
69 |
+
"model_max_length": 256,
|
70 |
+
"pad_token": "<pad>",
|
71 |
+
"sep_token": "</s>",
|
72 |
+
"tokenizer_class": "RobertaTokenizer",
|
73 |
+
"trim_offsets": true,
|
74 |
+
"unk_token": "<unk>"
|
75 |
+
}
|
final_checkpoint/training_args.bin
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:da7e4fe8cb64dc135350b383a78feba60942f5cc614f4232b645f9528907de78
|
3 |
+
size 4600
|
final_checkpoint/vocab.json
ADDED
The diff for this file is too large to render.
See raw diff
|
|
model.safetensors
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
size 498744980
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:6cf48de419eda23e5c660db17ba05d8293253a1f0166ea76891b930ead3db300
|
3 |
size 498744980
|
runs/Nov27_10-15-36_trinity/events.out.tfevents.1701080205.trinity.366901.0
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
-
size
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:5c5c15e1ea16fcb1e2c99c36fb86b3c31a667307f7815f296c11ee47f564fae3
|
3 |
+
size 29577
|
runs/Nov27_10-15-36_trinity/events.out.tfevents.1701082402.trinity.366901.1
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:1f280c0d1435551686f1bc87d539bb77f04c04e60a90dfdcb40afb2fe8996320
|
3 |
+
size 592
|
test_results.json
ADDED
@@ -0,0 +1,119 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"epoch": 3.0,
|
3 |
+
"test_CARDINAL": {
|
4 |
+
"f1": 0.8551502145922747,
|
5 |
+
"number": 935,
|
6 |
+
"precision": 0.8579117330462863,
|
7 |
+
"recall": 0.8524064171122995
|
8 |
+
},
|
9 |
+
"test_DATE": {
|
10 |
+
"f1": 0.8761552680221812,
|
11 |
+
"number": 1599,
|
12 |
+
"precision": 0.8633879781420765,
|
13 |
+
"recall": 0.8893058161350844
|
14 |
+
},
|
15 |
+
"test_EVENT": {
|
16 |
+
"f1": 0.6825396825396826,
|
17 |
+
"number": 62,
|
18 |
+
"precision": 0.671875,
|
19 |
+
"recall": 0.6935483870967742
|
20 |
+
},
|
21 |
+
"test_FAC": {
|
22 |
+
"f1": 0.7517730496453903,
|
23 |
+
"number": 135,
|
24 |
+
"precision": 0.7210884353741497,
|
25 |
+
"recall": 0.7851851851851852
|
26 |
+
},
|
27 |
+
"test_GPE": {
|
28 |
+
"f1": 0.9686098654708519,
|
29 |
+
"number": 2239,
|
30 |
+
"precision": 0.9725348941918055,
|
31 |
+
"recall": 0.964716391246092
|
32 |
+
},
|
33 |
+
"test_LANGUAGE": {
|
34 |
+
"f1": 0.7222222222222223,
|
35 |
+
"number": 22,
|
36 |
+
"precision": 0.9285714285714286,
|
37 |
+
"recall": 0.5909090909090909
|
38 |
+
},
|
39 |
+
"test_LAW": {
|
40 |
+
"f1": 0.7605633802816901,
|
41 |
+
"number": 37,
|
42 |
+
"precision": 0.7941176470588235,
|
43 |
+
"recall": 0.7297297297297297
|
44 |
+
},
|
45 |
+
"test_LOC": {
|
46 |
+
"f1": 0.7859078590785907,
|
47 |
+
"number": 179,
|
48 |
+
"precision": 0.7631578947368421,
|
49 |
+
"recall": 0.8100558659217877
|
50 |
+
},
|
51 |
+
"test_MONEY": {
|
52 |
+
"f1": 0.8899521531100479,
|
53 |
+
"number": 314,
|
54 |
+
"precision": 0.8913738019169329,
|
55 |
+
"recall": 0.8885350318471338
|
56 |
+
},
|
57 |
+
"test_NORP": {
|
58 |
+
"f1": 0.947429906542056,
|
59 |
+
"number": 841,
|
60 |
+
"precision": 0.931113662456946,
|
61 |
+
"recall": 0.9643281807372176
|
62 |
+
},
|
63 |
+
"test_ORDINAL": {
|
64 |
+
"f1": 0.8722891566265061,
|
65 |
+
"number": 195,
|
66 |
+
"precision": 0.8227272727272728,
|
67 |
+
"recall": 0.9282051282051282
|
68 |
+
},
|
69 |
+
"test_ORG": {
|
70 |
+
"f1": 0.9144625773776026,
|
71 |
+
"number": 1791,
|
72 |
+
"precision": 0.921724333522405,
|
73 |
+
"recall": 0.9073143495254048
|
74 |
+
},
|
75 |
+
"test_PERCENT": {
|
76 |
+
"f1": 0.9171428571428571,
|
77 |
+
"number": 349,
|
78 |
+
"precision": 0.9145299145299145,
|
79 |
+
"recall": 0.9197707736389685
|
80 |
+
},
|
81 |
+
"test_PERSON": {
|
82 |
+
"f1": 0.9640432486799095,
|
83 |
+
"number": 1988,
|
84 |
+
"precision": 0.9638009049773756,
|
85 |
+
"recall": 0.9642857142857143
|
86 |
+
},
|
87 |
+
"test_PRODUCT": {
|
88 |
+
"f1": 0.7349397590361447,
|
89 |
+
"number": 76,
|
90 |
+
"precision": 0.6777777777777778,
|
91 |
+
"recall": 0.8026315789473685
|
92 |
+
},
|
93 |
+
"test_QUANTITY": {
|
94 |
+
"f1": 0.7924528301886793,
|
95 |
+
"number": 105,
|
96 |
+
"precision": 0.7850467289719626,
|
97 |
+
"recall": 0.8
|
98 |
+
},
|
99 |
+
"test_TIME": {
|
100 |
+
"f1": 0.6761904761904762,
|
101 |
+
"number": 211,
|
102 |
+
"precision": 0.6794258373205742,
|
103 |
+
"recall": 0.6729857819905213
|
104 |
+
},
|
105 |
+
"test_WORK_OF_ART": {
|
106 |
+
"f1": 0.65015479876161,
|
107 |
+
"number": 163,
|
108 |
+
"precision": 0.65625,
|
109 |
+
"recall": 0.6441717791411042
|
110 |
+
},
|
111 |
+
"test_loss": 0.00661951769143343,
|
112 |
+
"test_overall_accuracy": 0.982111989942905,
|
113 |
+
"test_overall_f1": 0.9077127659574469,
|
114 |
+
"test_overall_precision": 0.9045852107076597,
|
115 |
+
"test_overall_recall": 0.9108620229516947,
|
116 |
+
"test_runtime": 34.2561,
|
117 |
+
"test_samples_per_second": 277.382,
|
118 |
+
"test_steps_per_second": 8.67
|
119 |
+
}
|