supreethrao commited on
Commit
4e93afb
·
1 Parent(s): 61d6153

Model save

Browse files
README.md ADDED
@@ -0,0 +1,238 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ library_name: span-marker
3
+ tags:
4
+ - span-marker
5
+ - token-classification
6
+ - ner
7
+ - named-entity-recognition
8
+ - generated_from_span_marker_trainer
9
+ datasets:
10
+ - SpeedOfMagic/ontonotes_english
11
+ metrics:
12
+ - precision
13
+ - recall
14
+ - f1
15
+ widget:
16
+ - text: Late Friday night, the Senate voted 87 - 7 to approve an estimated $13.5 billion
17
+ measure that had been stripped of hundreds of provisions that would have widened,
18
+ rather than narrowed, the federal budget deficit.
19
+ - text: Among classes for which details were available, yields ranged from 8.78%,
20
+ or 75 basis points over two - year Treasury securities, to 10.05%, or 200 basis
21
+ points over 10 - year Treasurys.
22
+ - text: According to statistics, in the past five years, Tianjin Bonded Area has attracted
23
+ a total of over 3000 enterprises from 73 countries and regions all over the world
24
+ and 25 domestic provinces, cities and municipalities to invest, reaching a total
25
+ agreed investment value of more than 3 billion US dollars and a total agreed foreign
26
+ investment reaching more than 2 billion US dollars.
27
+ - text: But Dirk Van Dongen, president of the National Association of Wholesaler -
28
+ Distributors, said that last month's rise "isn't as bad an omen" as the 0.9% figure
29
+ suggests.
30
+ - text: Robert White, Canadian Auto Workers union president, used the impending Scarborough
31
+ shutdown to criticize the U.S. - Canada free trade agreement and its champion,
32
+ Prime Minister Brian Mulroney.
33
+ pipeline_tag: token-classification
34
+ model-index:
35
+ - name: SpanMarker
36
+ results:
37
+ - task:
38
+ type: token-classification
39
+ name: Named Entity Recognition
40
+ dataset:
41
+ name: Unknown
42
+ type: SpeedOfMagic/ontonotes_english
43
+ split: test
44
+ metrics:
45
+ - type: f1
46
+ value: 0.9077127659574469
47
+ name: F1
48
+ - type: precision
49
+ value: 0.9045852107076597
50
+ name: Precision
51
+ - type: recall
52
+ value: 0.9108620229516947
53
+ name: Recall
54
+ ---
55
+
56
+ # SpanMarker
57
+
58
+ This is a [SpanMarker](https://github.com/tomaarsen/SpanMarkerNER) model trained on the [SpeedOfMagic/ontonotes_english](https://huggingface.co/datasets/SpeedOfMagic/ontonotes_english) dataset that can be used for Named Entity Recognition.
59
+
60
+ ## Model Details
61
+
62
+ ### Model Description
63
+ - **Model Type:** SpanMarker
64
+ <!-- - **Encoder:** [Unknown](https://huggingface.co/unknown) -->
65
+ - **Maximum Sequence Length:** 256 tokens
66
+ - **Maximum Entity Length:** 8 words
67
+ - **Training Dataset:** [SpeedOfMagic/ontonotes_english](https://huggingface.co/datasets/SpeedOfMagic/ontonotes_english)
68
+ <!-- - **Language:** Unknown -->
69
+ <!-- - **License:** Unknown -->
70
+
71
+ ### Model Sources
72
+
73
+ - **Repository:** [SpanMarker on GitHub](https://github.com/tomaarsen/SpanMarkerNER)
74
+ - **Thesis:** [SpanMarker For Named Entity Recognition](https://raw.githubusercontent.com/tomaarsen/SpanMarkerNER/main/thesis.pdf)
75
+
76
+ ### Model Labels
77
+ | Label | Examples |
78
+ |:------------|:-------------------------------------------------------------------------------------------------------|
79
+ | CARDINAL | "tens of thousands", "One point three million", "two" |
80
+ | DATE | "Sunday", "a year", "two thousand one" |
81
+ | EVENT | "World War Two", "Katrina", "Hurricane Katrina" |
82
+ | FAC | "Route 80", "the White House", "Dylan 's Candy Bars" |
83
+ | GPE | "America", "Atlanta", "Miami" |
84
+ | LANGUAGE | "English", "Russian", "Arabic" |
85
+ | LAW | "Roe", "the Patriot Act", "FISA" |
86
+ | LOC | "Asia", "the Gulf Coast", "the West Bank" |
87
+ | MONEY | "twenty - seven million dollars", "one hundred billion dollars", "less than fourteen thousand dollars" |
88
+ | NORP | "American", "Muslim", "Americans" |
89
+ | ORDINAL | "third", "First", "first" |
90
+ | ORG | "Wal - Mart", "Wal - Mart 's", "a Wal - Mart" |
91
+ | PERCENT | "seventeen percent", "sixty - seven percent", "a hundred percent" |
92
+ | PERSON | "Kira Phillips", "Rick Sanchez", "Bob Shapiro" |
93
+ | PRODUCT | "Columbia", "Discovery Shuttle", "Discovery" |
94
+ | QUANTITY | "forty - five miles", "six thousand feet", "a hundred and seventy pounds" |
95
+ | TIME | "tonight", "evening", "Tonight" |
96
+ | WORK_OF_ART | "A Tale of Two Cities", "Newsnight", "Headline News" |
97
+
98
+ ## Evaluation
99
+
100
+ ### Metrics
101
+ | Label | Precision | Recall | F1 |
102
+ |:------------|:----------|:-------|:-------|
103
+ | **all** | 0.9046 | 0.9109 | 0.9077 |
104
+ | CARDINAL | 0.8579 | 0.8524 | 0.8552 |
105
+ | DATE | 0.8634 | 0.8893 | 0.8762 |
106
+ | EVENT | 0.6719 | 0.6935 | 0.6825 |
107
+ | FAC | 0.7211 | 0.7852 | 0.7518 |
108
+ | GPE | 0.9725 | 0.9647 | 0.9686 |
109
+ | LANGUAGE | 0.9286 | 0.5909 | 0.7222 |
110
+ | LAW | 0.7941 | 0.7297 | 0.7606 |
111
+ | LOC | 0.7632 | 0.8101 | 0.7859 |
112
+ | MONEY | 0.8914 | 0.8885 | 0.8900 |
113
+ | NORP | 0.9311 | 0.9643 | 0.9474 |
114
+ | ORDINAL | 0.8227 | 0.9282 | 0.8723 |
115
+ | ORG | 0.9217 | 0.9073 | 0.9145 |
116
+ | PERCENT | 0.9145 | 0.9198 | 0.9171 |
117
+ | PERSON | 0.9638 | 0.9643 | 0.9640 |
118
+ | PRODUCT | 0.6778 | 0.8026 | 0.7349 |
119
+ | QUANTITY | 0.7850 | 0.8 | 0.7925 |
120
+ | TIME | 0.6794 | 0.6730 | 0.6762 |
121
+ | WORK_OF_ART | 0.6562 | 0.6442 | 0.6502 |
122
+
123
+ ## Uses
124
+
125
+ ### Direct Use for Inference
126
+
127
+ ```python
128
+ from span_marker import SpanMarkerModel
129
+
130
+ # Download from the 🤗 Hub
131
+ model = SpanMarkerModel.from_pretrained("supreethrao/instructNER_ontonotes5_xl")
132
+ # Run inference
133
+ entities = model.predict("Robert White, Canadian Auto Workers union president, used the impending Scarborough shutdown to criticize the U.S. - Canada free trade agreement and its champion, Prime Minister Brian Mulroney.")
134
+ ```
135
+
136
+ ### Downstream Use
137
+ You can finetune this model on your own dataset.
138
+
139
+ <details><summary>Click to expand</summary>
140
+
141
+ ```python
142
+ from span_marker import SpanMarkerModel, Trainer
143
+
144
+ # Download from the 🤗 Hub
145
+ model = SpanMarkerModel.from_pretrained("supreethrao/instructNER_ontonotes5_xl")
146
+
147
+ # Specify a Dataset with "tokens" and "ner_tag" columns
148
+ dataset = load_dataset("conll2003") # For example CoNLL2003
149
+
150
+ # Initialize a Trainer using the pretrained model & dataset
151
+ trainer = Trainer(
152
+ model=model,
153
+ train_dataset=dataset["train"],
154
+ eval_dataset=dataset["validation"],
155
+ )
156
+ trainer.train()
157
+ trainer.save_model("supreethrao/instructNER_ontonotes5_xl-finetuned")
158
+ ```
159
+ </details>
160
+
161
+ <!--
162
+ ### Out-of-Scope Use
163
+
164
+ *List how the model may foreseeably be misused and address what users ought not to do with the model.*
165
+ -->
166
+
167
+ <!--
168
+ ## Bias, Risks and Limitations
169
+
170
+ *What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.*
171
+ -->
172
+
173
+ <!--
174
+ ### Recommendations
175
+
176
+ *What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.*
177
+ -->
178
+
179
+ ## Training Details
180
+
181
+ ### Training Set Metrics
182
+ | Training set | Min | Median | Max |
183
+ |:----------------------|:----|:--------|:----|
184
+ | Sentence length | 1 | 18.1647 | 210 |
185
+ | Entities per sentence | 0 | 1.3655 | 32 |
186
+
187
+ ### Training Hyperparameters
188
+ - learning_rate: 5e-05
189
+ - train_batch_size: 16
190
+ - eval_batch_size: 16
191
+ - seed: 42
192
+ - distributed_type: multi-GPU
193
+ - num_devices: 2
194
+ - total_train_batch_size: 32
195
+ - total_eval_batch_size: 32
196
+ - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
197
+ - lr_scheduler_type: linear
198
+ - lr_scheduler_warmup_ratio: 0.1
199
+ - num_epochs: 3
200
+ - mixed_precision_training: Native AMP
201
+
202
+ ### Framework Versions
203
+ - Python: 3.10.13
204
+ - SpanMarker: 1.5.0
205
+ - Transformers: 4.35.2
206
+ - PyTorch: 2.1.1
207
+ - Datasets: 2.15.0
208
+ - Tokenizers: 0.15.0
209
+
210
+ ## Citation
211
+
212
+ ### BibTeX
213
+ ```
214
+ @software{Aarsen_SpanMarker,
215
+ author = {Aarsen, Tom},
216
+ license = {Apache-2.0},
217
+ title = {{SpanMarker for Named Entity Recognition}},
218
+ url = {https://github.com/tomaarsen/SpanMarkerNER}
219
+ }
220
+ ```
221
+
222
+ <!--
223
+ ## Glossary
224
+
225
+ *Clearly define terms in order to be accessible across audiences.*
226
+ -->
227
+
228
+ <!--
229
+ ## Model Card Authors
230
+
231
+ *Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.*
232
+ -->
233
+
234
+ <!--
235
+ ## Model Card Contact
236
+
237
+ *Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.*
238
+ -->
all_results.json ADDED
@@ -0,0 +1,119 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "epoch": 3.0,
3
+ "test_CARDINAL": {
4
+ "f1": 0.8551502145922747,
5
+ "number": 935,
6
+ "precision": 0.8579117330462863,
7
+ "recall": 0.8524064171122995
8
+ },
9
+ "test_DATE": {
10
+ "f1": 0.8761552680221812,
11
+ "number": 1599,
12
+ "precision": 0.8633879781420765,
13
+ "recall": 0.8893058161350844
14
+ },
15
+ "test_EVENT": {
16
+ "f1": 0.6825396825396826,
17
+ "number": 62,
18
+ "precision": 0.671875,
19
+ "recall": 0.6935483870967742
20
+ },
21
+ "test_FAC": {
22
+ "f1": 0.7517730496453903,
23
+ "number": 135,
24
+ "precision": 0.7210884353741497,
25
+ "recall": 0.7851851851851852
26
+ },
27
+ "test_GPE": {
28
+ "f1": 0.9686098654708519,
29
+ "number": 2239,
30
+ "precision": 0.9725348941918055,
31
+ "recall": 0.964716391246092
32
+ },
33
+ "test_LANGUAGE": {
34
+ "f1": 0.7222222222222223,
35
+ "number": 22,
36
+ "precision": 0.9285714285714286,
37
+ "recall": 0.5909090909090909
38
+ },
39
+ "test_LAW": {
40
+ "f1": 0.7605633802816901,
41
+ "number": 37,
42
+ "precision": 0.7941176470588235,
43
+ "recall": 0.7297297297297297
44
+ },
45
+ "test_LOC": {
46
+ "f1": 0.7859078590785907,
47
+ "number": 179,
48
+ "precision": 0.7631578947368421,
49
+ "recall": 0.8100558659217877
50
+ },
51
+ "test_MONEY": {
52
+ "f1": 0.8899521531100479,
53
+ "number": 314,
54
+ "precision": 0.8913738019169329,
55
+ "recall": 0.8885350318471338
56
+ },
57
+ "test_NORP": {
58
+ "f1": 0.947429906542056,
59
+ "number": 841,
60
+ "precision": 0.931113662456946,
61
+ "recall": 0.9643281807372176
62
+ },
63
+ "test_ORDINAL": {
64
+ "f1": 0.8722891566265061,
65
+ "number": 195,
66
+ "precision": 0.8227272727272728,
67
+ "recall": 0.9282051282051282
68
+ },
69
+ "test_ORG": {
70
+ "f1": 0.9144625773776026,
71
+ "number": 1791,
72
+ "precision": 0.921724333522405,
73
+ "recall": 0.9073143495254048
74
+ },
75
+ "test_PERCENT": {
76
+ "f1": 0.9171428571428571,
77
+ "number": 349,
78
+ "precision": 0.9145299145299145,
79
+ "recall": 0.9197707736389685
80
+ },
81
+ "test_PERSON": {
82
+ "f1": 0.9640432486799095,
83
+ "number": 1988,
84
+ "precision": 0.9638009049773756,
85
+ "recall": 0.9642857142857143
86
+ },
87
+ "test_PRODUCT": {
88
+ "f1": 0.7349397590361447,
89
+ "number": 76,
90
+ "precision": 0.6777777777777778,
91
+ "recall": 0.8026315789473685
92
+ },
93
+ "test_QUANTITY": {
94
+ "f1": 0.7924528301886793,
95
+ "number": 105,
96
+ "precision": 0.7850467289719626,
97
+ "recall": 0.8
98
+ },
99
+ "test_TIME": {
100
+ "f1": 0.6761904761904762,
101
+ "number": 211,
102
+ "precision": 0.6794258373205742,
103
+ "recall": 0.6729857819905213
104
+ },
105
+ "test_WORK_OF_ART": {
106
+ "f1": 0.65015479876161,
107
+ "number": 163,
108
+ "precision": 0.65625,
109
+ "recall": 0.6441717791411042
110
+ },
111
+ "test_loss": 0.00661951769143343,
112
+ "test_overall_accuracy": 0.982111989942905,
113
+ "test_overall_f1": 0.9077127659574469,
114
+ "test_overall_precision": 0.9045852107076597,
115
+ "test_overall_recall": 0.9108620229516947,
116
+ "test_runtime": 34.2561,
117
+ "test_samples_per_second": 277.382,
118
+ "test_steps_per_second": 8.67
119
+ }
final_checkpoint/README.md ADDED
@@ -0,0 +1,238 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ library_name: span-marker
3
+ tags:
4
+ - span-marker
5
+ - token-classification
6
+ - ner
7
+ - named-entity-recognition
8
+ - generated_from_span_marker_trainer
9
+ datasets:
10
+ - SpeedOfMagic/ontonotes_english
11
+ metrics:
12
+ - precision
13
+ - recall
14
+ - f1
15
+ widget:
16
+ - text: Late Friday night, the Senate voted 87 - 7 to approve an estimated $13.5 billion
17
+ measure that had been stripped of hundreds of provisions that would have widened,
18
+ rather than narrowed, the federal budget deficit.
19
+ - text: Among classes for which details were available, yields ranged from 8.78%,
20
+ or 75 basis points over two - year Treasury securities, to 10.05%, or 200 basis
21
+ points over 10 - year Treasurys.
22
+ - text: According to statistics, in the past five years, Tianjin Bonded Area has attracted
23
+ a total of over 3000 enterprises from 73 countries and regions all over the world
24
+ and 25 domestic provinces, cities and municipalities to invest, reaching a total
25
+ agreed investment value of more than 3 billion US dollars and a total agreed foreign
26
+ investment reaching more than 2 billion US dollars.
27
+ - text: But Dirk Van Dongen, president of the National Association of Wholesaler -
28
+ Distributors, said that last month's rise "isn't as bad an omen" as the 0.9% figure
29
+ suggests.
30
+ - text: Robert White, Canadian Auto Workers union president, used the impending Scarborough
31
+ shutdown to criticize the U.S. - Canada free trade agreement and its champion,
32
+ Prime Minister Brian Mulroney.
33
+ pipeline_tag: token-classification
34
+ model-index:
35
+ - name: SpanMarker
36
+ results:
37
+ - task:
38
+ type: token-classification
39
+ name: Named Entity Recognition
40
+ dataset:
41
+ name: Unknown
42
+ type: SpeedOfMagic/ontonotes_english
43
+ split: test
44
+ metrics:
45
+ - type: f1
46
+ value: 0.9077127659574469
47
+ name: F1
48
+ - type: precision
49
+ value: 0.9045852107076597
50
+ name: Precision
51
+ - type: recall
52
+ value: 0.9108620229516947
53
+ name: Recall
54
+ ---
55
+
56
+ # SpanMarker
57
+
58
+ This is a [SpanMarker](https://github.com/tomaarsen/SpanMarkerNER) model trained on the [SpeedOfMagic/ontonotes_english](https://huggingface.co/datasets/SpeedOfMagic/ontonotes_english) dataset that can be used for Named Entity Recognition.
59
+
60
+ ## Model Details
61
+
62
+ ### Model Description
63
+ - **Model Type:** SpanMarker
64
+ <!-- - **Encoder:** [Unknown](https://huggingface.co/unknown) -->
65
+ - **Maximum Sequence Length:** 256 tokens
66
+ - **Maximum Entity Length:** 8 words
67
+ - **Training Dataset:** [SpeedOfMagic/ontonotes_english](https://huggingface.co/datasets/SpeedOfMagic/ontonotes_english)
68
+ <!-- - **Language:** Unknown -->
69
+ <!-- - **License:** Unknown -->
70
+
71
+ ### Model Sources
72
+
73
+ - **Repository:** [SpanMarker on GitHub](https://github.com/tomaarsen/SpanMarkerNER)
74
+ - **Thesis:** [SpanMarker For Named Entity Recognition](https://raw.githubusercontent.com/tomaarsen/SpanMarkerNER/main/thesis.pdf)
75
+
76
+ ### Model Labels
77
+ | Label | Examples |
78
+ |:------------|:-------------------------------------------------------------------------------------------------------|
79
+ | CARDINAL | "tens of thousands", "One point three million", "two" |
80
+ | DATE | "Sunday", "a year", "two thousand one" |
81
+ | EVENT | "World War Two", "Katrina", "Hurricane Katrina" |
82
+ | FAC | "Route 80", "the White House", "Dylan 's Candy Bars" |
83
+ | GPE | "America", "Atlanta", "Miami" |
84
+ | LANGUAGE | "English", "Russian", "Arabic" |
85
+ | LAW | "Roe", "the Patriot Act", "FISA" |
86
+ | LOC | "Asia", "the Gulf Coast", "the West Bank" |
87
+ | MONEY | "twenty - seven million dollars", "one hundred billion dollars", "less than fourteen thousand dollars" |
88
+ | NORP | "American", "Muslim", "Americans" |
89
+ | ORDINAL | "third", "First", "first" |
90
+ | ORG | "Wal - Mart", "Wal - Mart 's", "a Wal - Mart" |
91
+ | PERCENT | "seventeen percent", "sixty - seven percent", "a hundred percent" |
92
+ | PERSON | "Kira Phillips", "Rick Sanchez", "Bob Shapiro" |
93
+ | PRODUCT | "Columbia", "Discovery Shuttle", "Discovery" |
94
+ | QUANTITY | "forty - five miles", "six thousand feet", "a hundred and seventy pounds" |
95
+ | TIME | "tonight", "evening", "Tonight" |
96
+ | WORK_OF_ART | "A Tale of Two Cities", "Newsnight", "Headline News" |
97
+
98
+ ## Evaluation
99
+
100
+ ### Metrics
101
+ | Label | Precision | Recall | F1 |
102
+ |:------------|:----------|:-------|:-------|
103
+ | **all** | 0.9046 | 0.9109 | 0.9077 |
104
+ | CARDINAL | 0.8579 | 0.8524 | 0.8552 |
105
+ | DATE | 0.8634 | 0.8893 | 0.8762 |
106
+ | EVENT | 0.6719 | 0.6935 | 0.6825 |
107
+ | FAC | 0.7211 | 0.7852 | 0.7518 |
108
+ | GPE | 0.9725 | 0.9647 | 0.9686 |
109
+ | LANGUAGE | 0.9286 | 0.5909 | 0.7222 |
110
+ | LAW | 0.7941 | 0.7297 | 0.7606 |
111
+ | LOC | 0.7632 | 0.8101 | 0.7859 |
112
+ | MONEY | 0.8914 | 0.8885 | 0.8900 |
113
+ | NORP | 0.9311 | 0.9643 | 0.9474 |
114
+ | ORDINAL | 0.8227 | 0.9282 | 0.8723 |
115
+ | ORG | 0.9217 | 0.9073 | 0.9145 |
116
+ | PERCENT | 0.9145 | 0.9198 | 0.9171 |
117
+ | PERSON | 0.9638 | 0.9643 | 0.9640 |
118
+ | PRODUCT | 0.6778 | 0.8026 | 0.7349 |
119
+ | QUANTITY | 0.7850 | 0.8 | 0.7925 |
120
+ | TIME | 0.6794 | 0.6730 | 0.6762 |
121
+ | WORK_OF_ART | 0.6562 | 0.6442 | 0.6502 |
122
+
123
+ ## Uses
124
+
125
+ ### Direct Use for Inference
126
+
127
+ ```python
128
+ from span_marker import SpanMarkerModel
129
+
130
+ # Download from the 🤗 Hub
131
+ model = SpanMarkerModel.from_pretrained("supreethrao/instructNER_ontonotes5_xl")
132
+ # Run inference
133
+ entities = model.predict("Robert White, Canadian Auto Workers union president, used the impending Scarborough shutdown to criticize the U.S. - Canada free trade agreement and its champion, Prime Minister Brian Mulroney.")
134
+ ```
135
+
136
+ ### Downstream Use
137
+ You can finetune this model on your own dataset.
138
+
139
+ <details><summary>Click to expand</summary>
140
+
141
+ ```python
142
+ from span_marker import SpanMarkerModel, Trainer
143
+
144
+ # Download from the 🤗 Hub
145
+ model = SpanMarkerModel.from_pretrained("supreethrao/instructNER_ontonotes5_xl")
146
+
147
+ # Specify a Dataset with "tokens" and "ner_tag" columns
148
+ dataset = load_dataset("conll2003") # For example CoNLL2003
149
+
150
+ # Initialize a Trainer using the pretrained model & dataset
151
+ trainer = Trainer(
152
+ model=model,
153
+ train_dataset=dataset["train"],
154
+ eval_dataset=dataset["validation"],
155
+ )
156
+ trainer.train()
157
+ trainer.save_model("supreethrao/instructNER_ontonotes5_xl-finetuned")
158
+ ```
159
+ </details>
160
+
161
+ <!--
162
+ ### Out-of-Scope Use
163
+
164
+ *List how the model may foreseeably be misused and address what users ought not to do with the model.*
165
+ -->
166
+
167
+ <!--
168
+ ## Bias, Risks and Limitations
169
+
170
+ *What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.*
171
+ -->
172
+
173
+ <!--
174
+ ### Recommendations
175
+
176
+ *What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.*
177
+ -->
178
+
179
+ ## Training Details
180
+
181
+ ### Training Set Metrics
182
+ | Training set | Min | Median | Max |
183
+ |:----------------------|:----|:--------|:----|
184
+ | Sentence length | 1 | 18.1647 | 210 |
185
+ | Entities per sentence | 0 | 1.3655 | 32 |
186
+
187
+ ### Training Hyperparameters
188
+ - learning_rate: 5e-05
189
+ - train_batch_size: 16
190
+ - eval_batch_size: 16
191
+ - seed: 42
192
+ - distributed_type: multi-GPU
193
+ - num_devices: 2
194
+ - total_train_batch_size: 32
195
+ - total_eval_batch_size: 32
196
+ - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
197
+ - lr_scheduler_type: linear
198
+ - lr_scheduler_warmup_ratio: 0.1
199
+ - num_epochs: 3
200
+ - mixed_precision_training: Native AMP
201
+
202
+ ### Framework Versions
203
+ - Python: 3.10.13
204
+ - SpanMarker: 1.5.0
205
+ - Transformers: 4.35.2
206
+ - PyTorch: 2.1.1
207
+ - Datasets: 2.15.0
208
+ - Tokenizers: 0.15.0
209
+
210
+ ## Citation
211
+
212
+ ### BibTeX
213
+ ```
214
+ @software{Aarsen_SpanMarker,
215
+ author = {Aarsen, Tom},
216
+ license = {Apache-2.0},
217
+ title = {{SpanMarker for Named Entity Recognition}},
218
+ url = {https://github.com/tomaarsen/SpanMarkerNER}
219
+ }
220
+ ```
221
+
222
+ <!--
223
+ ## Glossary
224
+
225
+ *Clearly define terms in order to be accessible across audiences.*
226
+ -->
227
+
228
+ <!--
229
+ ## Model Card Authors
230
+
231
+ *Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.*
232
+ -->
233
+
234
+ <!--
235
+ ## Model Card Contact
236
+
237
+ *Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.*
238
+ -->
final_checkpoint/added_tokens.json ADDED
@@ -0,0 +1,4 @@
 
 
 
 
 
1
+ {
2
+ "<end>": 50266,
3
+ "<start>": 50265
4
+ }
final_checkpoint/config.json ADDED
@@ -0,0 +1,249 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "architectures": [
3
+ "SpanMarkerModel"
4
+ ],
5
+ "encoder": {
6
+ "_name_or_path": "numind/generic-entity_recognition_NER-v1",
7
+ "add_cross_attention": false,
8
+ "architectures": [
9
+ "RobertaModel"
10
+ ],
11
+ "attention_probs_dropout_prob": 0.1,
12
+ "bad_words_ids": null,
13
+ "begin_suppress_tokens": null,
14
+ "bos_token_id": 0,
15
+ "chunk_size_feed_forward": 0,
16
+ "classifier_dropout": null,
17
+ "cross_attention_hidden_size": null,
18
+ "decoder_start_token_id": null,
19
+ "diversity_penalty": 0.0,
20
+ "do_sample": false,
21
+ "early_stopping": false,
22
+ "encoder_no_repeat_ngram_size": 0,
23
+ "eos_token_id": 2,
24
+ "exponential_decay_length_penalty": null,
25
+ "finetuning_task": null,
26
+ "forced_bos_token_id": null,
27
+ "forced_eos_token_id": null,
28
+ "hidden_act": "gelu",
29
+ "hidden_dropout_prob": 0.1,
30
+ "hidden_size": 768,
31
+ "id2label": {
32
+ "0": "O",
33
+ "1": "B-PERSON",
34
+ "2": "I-PERSON",
35
+ "3": "B-NORP",
36
+ "4": "I-NORP",
37
+ "5": "B-FAC",
38
+ "6": "I-FAC",
39
+ "7": "B-ORG",
40
+ "8": "I-ORG",
41
+ "9": "B-GPE",
42
+ "10": "I-GPE",
43
+ "11": "B-LOC",
44
+ "12": "I-LOC",
45
+ "13": "B-PRODUCT",
46
+ "14": "I-PRODUCT",
47
+ "15": "B-DATE",
48
+ "16": "I-DATE",
49
+ "17": "B-TIME",
50
+ "18": "I-TIME",
51
+ "19": "B-PERCENT",
52
+ "20": "I-PERCENT",
53
+ "21": "B-MONEY",
54
+ "22": "I-MONEY",
55
+ "23": "B-QUANTITY",
56
+ "24": "I-QUANTITY",
57
+ "25": "B-ORDINAL",
58
+ "26": "I-ORDINAL",
59
+ "27": "B-CARDINAL",
60
+ "28": "I-CARDINAL",
61
+ "29": "B-EVENT",
62
+ "30": "I-EVENT",
63
+ "31": "B-WORK_OF_ART",
64
+ "32": "I-WORK_OF_ART",
65
+ "33": "B-LAW",
66
+ "34": "I-LAW",
67
+ "35": "B-LANGUAGE",
68
+ "36": "I-LANGUAGE"
69
+ },
70
+ "initializer_range": 0.02,
71
+ "intermediate_size": 3072,
72
+ "is_decoder": false,
73
+ "is_encoder_decoder": false,
74
+ "label2id": {
75
+ "B-CARDINAL": 27,
76
+ "B-DATE": 15,
77
+ "B-EVENT": 29,
78
+ "B-FAC": 5,
79
+ "B-GPE": 9,
80
+ "B-LANGUAGE": 35,
81
+ "B-LAW": 33,
82
+ "B-LOC": 11,
83
+ "B-MONEY": 21,
84
+ "B-NORP": 3,
85
+ "B-ORDINAL": 25,
86
+ "B-ORG": 7,
87
+ "B-PERCENT": 19,
88
+ "B-PERSON": 1,
89
+ "B-PRODUCT": 13,
90
+ "B-QUANTITY": 23,
91
+ "B-TIME": 17,
92
+ "B-WORK_OF_ART": 31,
93
+ "I-CARDINAL": 28,
94
+ "I-DATE": 16,
95
+ "I-EVENT": 30,
96
+ "I-FAC": 6,
97
+ "I-GPE": 10,
98
+ "I-LANGUAGE": 36,
99
+ "I-LAW": 34,
100
+ "I-LOC": 12,
101
+ "I-MONEY": 22,
102
+ "I-NORP": 4,
103
+ "I-ORDINAL": 26,
104
+ "I-ORG": 8,
105
+ "I-PERCENT": 20,
106
+ "I-PERSON": 2,
107
+ "I-PRODUCT": 14,
108
+ "I-QUANTITY": 24,
109
+ "I-TIME": 18,
110
+ "I-WORK_OF_ART": 32,
111
+ "O": 0
112
+ },
113
+ "layer_norm_eps": 1e-05,
114
+ "length_penalty": 1.0,
115
+ "max_length": 20,
116
+ "max_position_embeddings": 514,
117
+ "min_length": 0,
118
+ "model_type": "roberta",
119
+ "no_repeat_ngram_size": 0,
120
+ "num_attention_heads": 12,
121
+ "num_beam_groups": 1,
122
+ "num_beams": 1,
123
+ "num_hidden_layers": 12,
124
+ "num_return_sequences": 1,
125
+ "output_attentions": false,
126
+ "output_hidden_states": false,
127
+ "output_scores": false,
128
+ "pad_token_id": 1,
129
+ "position_embedding_type": "absolute",
130
+ "prefix": null,
131
+ "problem_type": null,
132
+ "pruned_heads": {},
133
+ "remove_invalid_values": false,
134
+ "repetition_penalty": 1.0,
135
+ "return_dict": true,
136
+ "return_dict_in_generate": false,
137
+ "sep_token_id": null,
138
+ "suppress_tokens": null,
139
+ "task_specific_params": null,
140
+ "temperature": 1.0,
141
+ "tf_legacy_loss": false,
142
+ "tie_encoder_decoder": false,
143
+ "tie_word_embeddings": true,
144
+ "tokenizer_class": null,
145
+ "top_k": 50,
146
+ "top_p": 1.0,
147
+ "torch_dtype": "float32",
148
+ "torchscript": false,
149
+ "transformers_version": "4.35.2",
150
+ "type_vocab_size": 1,
151
+ "typical_p": 1.0,
152
+ "use_bfloat16": false,
153
+ "use_cache": true,
154
+ "vocab_size": 50272
155
+ },
156
+ "entity_max_length": 8,
157
+ "id2label": {
158
+ "0": "O",
159
+ "1": "CARDINAL",
160
+ "2": "DATE",
161
+ "3": "EVENT",
162
+ "4": "FAC",
163
+ "5": "GPE",
164
+ "6": "LANGUAGE",
165
+ "7": "LAW",
166
+ "8": "LOC",
167
+ "9": "MONEY",
168
+ "10": "NORP",
169
+ "11": "ORDINAL",
170
+ "12": "ORG",
171
+ "13": "PERCENT",
172
+ "14": "PERSON",
173
+ "15": "PRODUCT",
174
+ "16": "QUANTITY",
175
+ "17": "TIME",
176
+ "18": "WORK_OF_ART"
177
+ },
178
+ "id2reduced_id": {
179
+ "0": 0,
180
+ "1": 14,
181
+ "2": 14,
182
+ "3": 10,
183
+ "4": 10,
184
+ "5": 4,
185
+ "6": 4,
186
+ "7": 12,
187
+ "8": 12,
188
+ "9": 5,
189
+ "10": 5,
190
+ "11": 8,
191
+ "12": 8,
192
+ "13": 15,
193
+ "14": 15,
194
+ "15": 2,
195
+ "16": 2,
196
+ "17": 17,
197
+ "18": 17,
198
+ "19": 13,
199
+ "20": 13,
200
+ "21": 9,
201
+ "22": 9,
202
+ "23": 16,
203
+ "24": 16,
204
+ "25": 11,
205
+ "26": 11,
206
+ "27": 1,
207
+ "28": 1,
208
+ "29": 3,
209
+ "30": 3,
210
+ "31": 18,
211
+ "32": 18,
212
+ "33": 7,
213
+ "34": 7,
214
+ "35": 6,
215
+ "36": 6
216
+ },
217
+ "label2id": {
218
+ "CARDINAL": 1,
219
+ "DATE": 2,
220
+ "EVENT": 3,
221
+ "FAC": 4,
222
+ "GPE": 5,
223
+ "LANGUAGE": 6,
224
+ "LAW": 7,
225
+ "LOC": 8,
226
+ "MONEY": 9,
227
+ "NORP": 10,
228
+ "O": 0,
229
+ "ORDINAL": 11,
230
+ "ORG": 12,
231
+ "PERCENT": 13,
232
+ "PERSON": 14,
233
+ "PRODUCT": 15,
234
+ "QUANTITY": 16,
235
+ "TIME": 17,
236
+ "WORK_OF_ART": 18
237
+ },
238
+ "marker_max_length": 128,
239
+ "max_next_context": null,
240
+ "max_prev_context": null,
241
+ "model_max_length": 256,
242
+ "model_max_length_default": 512,
243
+ "model_type": "span-marker",
244
+ "span_marker_version": "1.5.0",
245
+ "torch_dtype": "float32",
246
+ "trained_with_document_context": false,
247
+ "transformers_version": "4.35.2",
248
+ "vocab_size": 50272
249
+ }
final_checkpoint/merges.txt ADDED
The diff for this file is too large to render. See raw diff
 
final_checkpoint/model.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:6cf48de419eda23e5c660db17ba05d8293253a1f0166ea76891b930ead3db300
3
+ size 498744980
final_checkpoint/special_tokens_map.json ADDED
@@ -0,0 +1,51 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "bos_token": {
3
+ "content": "<s>",
4
+ "lstrip": false,
5
+ "normalized": true,
6
+ "rstrip": false,
7
+ "single_word": false
8
+ },
9
+ "cls_token": {
10
+ "content": "<s>",
11
+ "lstrip": false,
12
+ "normalized": true,
13
+ "rstrip": false,
14
+ "single_word": false
15
+ },
16
+ "eos_token": {
17
+ "content": "</s>",
18
+ "lstrip": false,
19
+ "normalized": true,
20
+ "rstrip": false,
21
+ "single_word": false
22
+ },
23
+ "mask_token": {
24
+ "content": "<mask>",
25
+ "lstrip": true,
26
+ "normalized": true,
27
+ "rstrip": false,
28
+ "single_word": false
29
+ },
30
+ "pad_token": {
31
+ "content": "<pad>",
32
+ "lstrip": false,
33
+ "normalized": true,
34
+ "rstrip": false,
35
+ "single_word": false
36
+ },
37
+ "sep_token": {
38
+ "content": "</s>",
39
+ "lstrip": false,
40
+ "normalized": true,
41
+ "rstrip": false,
42
+ "single_word": false
43
+ },
44
+ "unk_token": {
45
+ "content": "<unk>",
46
+ "lstrip": false,
47
+ "normalized": true,
48
+ "rstrip": false,
49
+ "single_word": false
50
+ }
51
+ }
final_checkpoint/tokenizer.json ADDED
The diff for this file is too large to render. See raw diff
 
final_checkpoint/tokenizer_config.json ADDED
@@ -0,0 +1,75 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "add_prefix_space": true,
3
+ "added_tokens_decoder": {
4
+ "0": {
5
+ "content": "<s>",
6
+ "lstrip": false,
7
+ "normalized": true,
8
+ "rstrip": false,
9
+ "single_word": false,
10
+ "special": true
11
+ },
12
+ "1": {
13
+ "content": "<pad>",
14
+ "lstrip": false,
15
+ "normalized": true,
16
+ "rstrip": false,
17
+ "single_word": false,
18
+ "special": true
19
+ },
20
+ "2": {
21
+ "content": "</s>",
22
+ "lstrip": false,
23
+ "normalized": true,
24
+ "rstrip": false,
25
+ "single_word": false,
26
+ "special": true
27
+ },
28
+ "3": {
29
+ "content": "<unk>",
30
+ "lstrip": false,
31
+ "normalized": true,
32
+ "rstrip": false,
33
+ "single_word": false,
34
+ "special": true
35
+ },
36
+ "50264": {
37
+ "content": "<mask>",
38
+ "lstrip": true,
39
+ "normalized": true,
40
+ "rstrip": false,
41
+ "single_word": false,
42
+ "special": true
43
+ },
44
+ "50265": {
45
+ "content": "<start>",
46
+ "lstrip": false,
47
+ "normalized": false,
48
+ "rstrip": false,
49
+ "single_word": false,
50
+ "special": true
51
+ },
52
+ "50266": {
53
+ "content": "<end>",
54
+ "lstrip": false,
55
+ "normalized": false,
56
+ "rstrip": false,
57
+ "single_word": false,
58
+ "special": true
59
+ }
60
+ },
61
+ "bos_token": "<s>",
62
+ "clean_up_tokenization_spaces": true,
63
+ "cls_token": "<s>",
64
+ "entity_max_length": 8,
65
+ "eos_token": "</s>",
66
+ "errors": "replace",
67
+ "marker_max_length": 128,
68
+ "mask_token": "<mask>",
69
+ "model_max_length": 256,
70
+ "pad_token": "<pad>",
71
+ "sep_token": "</s>",
72
+ "tokenizer_class": "RobertaTokenizer",
73
+ "trim_offsets": true,
74
+ "unk_token": "<unk>"
75
+ }
final_checkpoint/training_args.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:da7e4fe8cb64dc135350b383a78feba60942f5cc614f4232b645f9528907de78
3
+ size 4600
final_checkpoint/vocab.json ADDED
The diff for this file is too large to render. See raw diff
 
model.safetensors CHANGED
@@ -1,3 +1,3 @@
1
  version https://git-lfs.github.com/spec/v1
2
- oid sha256:8ad0a384835d8760d13052e3aca7509333815f7a623f138b6fa5fad51e1e2d69
3
  size 498744980
 
1
  version https://git-lfs.github.com/spec/v1
2
+ oid sha256:6cf48de419eda23e5c660db17ba05d8293253a1f0166ea76891b930ead3db300
3
  size 498744980
runs/Nov27_10-15-36_trinity/events.out.tfevents.1701080205.trinity.366901.0 CHANGED
@@ -1,3 +1,3 @@
1
  version https://git-lfs.github.com/spec/v1
2
- oid sha256:1c717c6eb42babb3d5d9e57a0df0c856b06450253331706ef46db20dc912f441
3
- size 27967
 
1
  version https://git-lfs.github.com/spec/v1
2
+ oid sha256:5c5c15e1ea16fcb1e2c99c36fb86b3c31a667307f7815f296c11ee47f564fae3
3
+ size 29577
runs/Nov27_10-15-36_trinity/events.out.tfevents.1701082402.trinity.366901.1 ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:1f280c0d1435551686f1bc87d539bb77f04c04e60a90dfdcb40afb2fe8996320
3
+ size 592
test_results.json ADDED
@@ -0,0 +1,119 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "epoch": 3.0,
3
+ "test_CARDINAL": {
4
+ "f1": 0.8551502145922747,
5
+ "number": 935,
6
+ "precision": 0.8579117330462863,
7
+ "recall": 0.8524064171122995
8
+ },
9
+ "test_DATE": {
10
+ "f1": 0.8761552680221812,
11
+ "number": 1599,
12
+ "precision": 0.8633879781420765,
13
+ "recall": 0.8893058161350844
14
+ },
15
+ "test_EVENT": {
16
+ "f1": 0.6825396825396826,
17
+ "number": 62,
18
+ "precision": 0.671875,
19
+ "recall": 0.6935483870967742
20
+ },
21
+ "test_FAC": {
22
+ "f1": 0.7517730496453903,
23
+ "number": 135,
24
+ "precision": 0.7210884353741497,
25
+ "recall": 0.7851851851851852
26
+ },
27
+ "test_GPE": {
28
+ "f1": 0.9686098654708519,
29
+ "number": 2239,
30
+ "precision": 0.9725348941918055,
31
+ "recall": 0.964716391246092
32
+ },
33
+ "test_LANGUAGE": {
34
+ "f1": 0.7222222222222223,
35
+ "number": 22,
36
+ "precision": 0.9285714285714286,
37
+ "recall": 0.5909090909090909
38
+ },
39
+ "test_LAW": {
40
+ "f1": 0.7605633802816901,
41
+ "number": 37,
42
+ "precision": 0.7941176470588235,
43
+ "recall": 0.7297297297297297
44
+ },
45
+ "test_LOC": {
46
+ "f1": 0.7859078590785907,
47
+ "number": 179,
48
+ "precision": 0.7631578947368421,
49
+ "recall": 0.8100558659217877
50
+ },
51
+ "test_MONEY": {
52
+ "f1": 0.8899521531100479,
53
+ "number": 314,
54
+ "precision": 0.8913738019169329,
55
+ "recall": 0.8885350318471338
56
+ },
57
+ "test_NORP": {
58
+ "f1": 0.947429906542056,
59
+ "number": 841,
60
+ "precision": 0.931113662456946,
61
+ "recall": 0.9643281807372176
62
+ },
63
+ "test_ORDINAL": {
64
+ "f1": 0.8722891566265061,
65
+ "number": 195,
66
+ "precision": 0.8227272727272728,
67
+ "recall": 0.9282051282051282
68
+ },
69
+ "test_ORG": {
70
+ "f1": 0.9144625773776026,
71
+ "number": 1791,
72
+ "precision": 0.921724333522405,
73
+ "recall": 0.9073143495254048
74
+ },
75
+ "test_PERCENT": {
76
+ "f1": 0.9171428571428571,
77
+ "number": 349,
78
+ "precision": 0.9145299145299145,
79
+ "recall": 0.9197707736389685
80
+ },
81
+ "test_PERSON": {
82
+ "f1": 0.9640432486799095,
83
+ "number": 1988,
84
+ "precision": 0.9638009049773756,
85
+ "recall": 0.9642857142857143
86
+ },
87
+ "test_PRODUCT": {
88
+ "f1": 0.7349397590361447,
89
+ "number": 76,
90
+ "precision": 0.6777777777777778,
91
+ "recall": 0.8026315789473685
92
+ },
93
+ "test_QUANTITY": {
94
+ "f1": 0.7924528301886793,
95
+ "number": 105,
96
+ "precision": 0.7850467289719626,
97
+ "recall": 0.8
98
+ },
99
+ "test_TIME": {
100
+ "f1": 0.6761904761904762,
101
+ "number": 211,
102
+ "precision": 0.6794258373205742,
103
+ "recall": 0.6729857819905213
104
+ },
105
+ "test_WORK_OF_ART": {
106
+ "f1": 0.65015479876161,
107
+ "number": 163,
108
+ "precision": 0.65625,
109
+ "recall": 0.6441717791411042
110
+ },
111
+ "test_loss": 0.00661951769143343,
112
+ "test_overall_accuracy": 0.982111989942905,
113
+ "test_overall_f1": 0.9077127659574469,
114
+ "test_overall_precision": 0.9045852107076597,
115
+ "test_overall_recall": 0.9108620229516947,
116
+ "test_runtime": 34.2561,
117
+ "test_samples_per_second": 277.382,
118
+ "test_steps_per_second": 8.67
119
+ }