sun1638650145
commited on
Commit
·
25574e1
1
Parent(s):
752db66
AntBulletEnv-v0 A2C 1st
Browse files- README.md +36 -0
- a2c-AntBulletEnv-v0.zip +3 -0
- a2c-AntBulletEnv-v0/_stable_baselines3_version +1 -0
- a2c-AntBulletEnv-v0/data +105 -0
- a2c-AntBulletEnv-v0/policy.optimizer.pth +3 -0
- a2c-AntBulletEnv-v0/policy.pth +3 -0
- a2c-AntBulletEnv-v0/pytorch_variables.pth +3 -0
- a2c-AntBulletEnv-v0/system_info.txt +7 -0
- config.json +1 -0
- replay.mp4 +0 -0
- results.json +1 -0
README.md
ADDED
@@ -0,0 +1,36 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
library_name: stable-baselines3
|
3 |
+
tags:
|
4 |
+
- AntBulletEnv-v0
|
5 |
+
- deep-reinforcement-learning
|
6 |
+
- reinforcement-learning
|
7 |
+
- stable-baselines3
|
8 |
+
model-index:
|
9 |
+
- name: A2C
|
10 |
+
results:
|
11 |
+
- metrics:
|
12 |
+
- type: mean_reward
|
13 |
+
value: 203.43 +/- 83.77
|
14 |
+
name: mean_reward
|
15 |
+
task:
|
16 |
+
type: reinforcement-learning
|
17 |
+
name: reinforcement-learning
|
18 |
+
dataset:
|
19 |
+
name: AntBulletEnv-v0
|
20 |
+
type: AntBulletEnv-v0
|
21 |
+
---
|
22 |
+
|
23 |
+
# **A2C** Agent playing **AntBulletEnv-v0**
|
24 |
+
This is a trained model of a **A2C** agent playing **AntBulletEnv-v0**
|
25 |
+
using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
|
26 |
+
|
27 |
+
## Usage (with Stable-baselines3)
|
28 |
+
TODO: Add your code
|
29 |
+
|
30 |
+
|
31 |
+
```python
|
32 |
+
from stable_baselines3 import ...
|
33 |
+
from huggingface_sb3 import load_from_hub
|
34 |
+
|
35 |
+
...
|
36 |
+
```
|
a2c-AntBulletEnv-v0.zip
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:937739311dcc73ecc5b7d4648d18a9538edc0feee18e18185a0013d622cd7740
|
3 |
+
size 128828
|
a2c-AntBulletEnv-v0/_stable_baselines3_version
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
1.6.0
|
a2c-AntBulletEnv-v0/data
ADDED
@@ -0,0 +1,105 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"policy_class": {
|
3 |
+
":type:": "<class 'abc.ABCMeta'>",
|
4 |
+
":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
|
5 |
+
"__module__": "stable_baselines3.common.policies",
|
6 |
+
"__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param sde_net_arch: Network architecture for extracting features\n when using gSDE. If None, the latent features from the policy will be used.\n Pass an empty list to use the states as features.\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
|
7 |
+
"__init__": "<function ActorCriticPolicy.__init__ at 0x134fa8c10>",
|
8 |
+
"_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x134fa8ca0>",
|
9 |
+
"reset_noise": "<function ActorCriticPolicy.reset_noise at 0x134fa8d30>",
|
10 |
+
"_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x134fa8dc0>",
|
11 |
+
"_build": "<function ActorCriticPolicy._build at 0x134fa8e50>",
|
12 |
+
"forward": "<function ActorCriticPolicy.forward at 0x134fa8ee0>",
|
13 |
+
"_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x134fa8f70>",
|
14 |
+
"_predict": "<function ActorCriticPolicy._predict at 0x134fad040>",
|
15 |
+
"evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x134fad0d0>",
|
16 |
+
"get_distribution": "<function ActorCriticPolicy.get_distribution at 0x134fad160>",
|
17 |
+
"predict_values": "<function ActorCriticPolicy.predict_values at 0x134fad1f0>",
|
18 |
+
"__abstractmethods__": "frozenset()",
|
19 |
+
"_abc_impl": "<_abc._abc_data object at 0x134e3fa80>"
|
20 |
+
},
|
21 |
+
"verbose": 1,
|
22 |
+
"policy_kwargs": {
|
23 |
+
":type:": "<class 'dict'>",
|
24 |
+
":serialized:": "gAWVoAAAAAAAAAB9lCiMDGxvZ19zdGRfaW5pdJRLAowKb3J0aG9faW5pdJSJjA9vcHRpbWl6ZXJfY2xhc3OUjBN0b3JjaC5vcHRpbS5ybXNwcm9wlIwHUk1TcHJvcJSTlIwQb3B0aW1pemVyX2t3YXJnc5R9lCiMBWFscGhhlEc/764UeuFHrowDZXBzlEc+5Pi1iONo8YwMd2VpZ2h0X2RlY2F5lEsAdXUu",
|
25 |
+
"log_std_init": 2,
|
26 |
+
"ortho_init": false,
|
27 |
+
"optimizer_class": "<class 'torch.optim.rmsprop.RMSprop'>",
|
28 |
+
"optimizer_kwargs": {
|
29 |
+
"alpha": 0.99,
|
30 |
+
"eps": 1e-05,
|
31 |
+
"weight_decay": 0
|
32 |
+
}
|
33 |
+
},
|
34 |
+
"observation_space": {
|
35 |
+
":type:": "<class 'gym.spaces.box.Box'>",
|
36 |
+
":serialized:": "gAWVbQIAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLHIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWcAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/lGgLSxyFlIwBQ5R0lFKUjARoaWdolGgTKJZwAAAAAAAAAAAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH+UaAtLHIWUaBZ0lFKUjA1ib3VuZGVkX2JlbG93lGgTKJYcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUaAiMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLHIWUaBZ0lFKUjA1ib3VuZGVkX2Fib3ZllGgTKJYcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUaCJLHIWUaBZ0lFKUjApfbnBfcmFuZG9tlE51Yi4=",
|
37 |
+
"dtype": "float32",
|
38 |
+
"_shape": [
|
39 |
+
28
|
40 |
+
],
|
41 |
+
"low": "[-inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf\n -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf]",
|
42 |
+
"high": "[inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf\n inf inf inf inf inf inf inf inf inf inf]",
|
43 |
+
"bounded_below": "[False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False]",
|
44 |
+
"bounded_above": "[False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False]",
|
45 |
+
"_np_random": null
|
46 |
+
},
|
47 |
+
"action_space": {
|
48 |
+
":type:": "<class 'gym.spaces.box.Box'>",
|
49 |
+
":serialized:": "gAWVpQEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAIC/AACAvwAAgL8AAIC/AACAvwAAgL8AAIC/AACAv5RoC0sIhZSMAUOUdJRSlIwEaGlnaJRoEyiWIAAAAAAAAAAAAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAP5RoC0sIhZRoFnSUUpSMDWJvdW5kZWRfYmVsb3eUaBMolggAAAAAAAAAAQEBAQEBAQGUaAiMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBZ0lFKUjA1ib3VuZGVkX2Fib3ZllGgTKJYIAAAAAAAAAAEBAQEBAQEBlGgiSwiFlGgWdJRSlIwKX25wX3JhbmRvbZROdWIu",
|
50 |
+
"dtype": "float32",
|
51 |
+
"_shape": [
|
52 |
+
8
|
53 |
+
],
|
54 |
+
"low": "[-1. -1. -1. -1. -1. -1. -1. -1.]",
|
55 |
+
"high": "[1. 1. 1. 1. 1. 1. 1. 1.]",
|
56 |
+
"bounded_below": "[ True True True True True True True True]",
|
57 |
+
"bounded_above": "[ True True True True True True True True]",
|
58 |
+
"_np_random": null
|
59 |
+
},
|
60 |
+
"n_envs": 4,
|
61 |
+
"num_timesteps": 2000000,
|
62 |
+
"_total_timesteps": 2000000,
|
63 |
+
"_num_timesteps_at_start": 0,
|
64 |
+
"seed": null,
|
65 |
+
"action_noise": null,
|
66 |
+
"start_time": 1658481652.723686,
|
67 |
+
"learning_rate": 0.0096,
|
68 |
+
"tensorboard_log": "./tensorboard",
|
69 |
+
"lr_schedule": {
|
70 |
+
":type:": "<class 'function'>",
|
71 |
+
":serialized:": "gAWV8wIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMYC9Vc2Vycy9zdW5ydWlxaS9taW5pZm9yZ2UzL2VudnMvUkwvbGliL3B5dGhvbjMuOS9zaXRlLXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4BDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMYC9Vc2Vycy9zdW5ydWlxaS9taW5pZm9yZ2UzL2VudnMvUkwvbGliL3B5dGhvbjMuOS9zaXRlLXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/g6kqMFUyYYWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="
|
72 |
+
},
|
73 |
+
"_last_obs": {
|
74 |
+
":type:": "<class 'numpy.ndarray'>",
|
75 |
+
":serialized:": "gAWVNQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJbAAQAAAAAAAB6ecj9ON14/eg6DPrY3Mr7agl88xVbmPVxtaT89vpQ/CkUOPxB4Z7zKxHo/Dg0MvXWLkb+Ed8Q5NWGGP8XvmD4Sv6U/TVNmu3222L+k2Mo89k8Bv3gboDxpaTm/IQ7SvGM/0T5sEfy/dgbUPgwdmj63mLm+0/vWPxCy4L6sLIa+965LvlAtXj1ZLI29mGjmPxF0DT/sOq28u3oav1tP073GipG/bxcZuTY0Kz4tcb8/X+mlP8c4p7yLR9i/5lzIPIUZAb/3mwU9s2o4v2NeCz1jP9E+bBH8v3YG1D4MHZo+8VXWPi2S6j6EqtE+Dy8Svker2zwKqgQ+FxIEPyHYtz/EbA4/8mGPvL5kdD6l1ai8H4iRvwTR27oEIu4+jGGIPwq/pT/Zkdg6LB/Zv4uNvTxEwAG/B6EtPJu9OL/7Ugy9Yz/RPmwR/L92BtQ+DB2aPqiwRD/0fYU/YqUdPmnPy72Pkos9nHHoPW0KRz+t6qA/NlMOP2VfVrwi3jE/CoxPvD6Jkb+ewqy6lmiAP6C8MD+aqaU/UMQhu5cb2b8hfb8811EBv3kPZzxCeDm/Zw0/vWM/0T5sEfy/dgbUPgwdmj6UjAVudW1weZSMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiSwRLHIaUjAFDlHSUUpQu"
|
76 |
+
},
|
77 |
+
"_last_episode_starts": {
|
78 |
+
":type:": "<class 'numpy.ndarray'>",
|
79 |
+
":serialized:": "gAWVdwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYEAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKULg=="
|
80 |
+
},
|
81 |
+
"_last_original_obs": {
|
82 |
+
":type:": "<class 'numpy.ndarray'>",
|
83 |
+
":serialized:": "gAWVNQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJbAAQAAAAAAAAAAAABqvaI2AACAPwAAAAAAAAAAAAAAAAAAAAAAAACAf3ENvgAAAAC9SOK/AAAAAGGIaDkAAAAAQ1fnPwAAAAAgQBC8AAAAACUs6j8AAAAAYoqZvQAAAADzXP2/AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAkO4dNwAAgD8AAAAAAAAAAAAAAAAAAAAAAAAAgIwexr0AAAAAvST9vwAAAADjN+89AAAAAJyD7D8AAAAARnV+PQAAAABTWuE/AAAAAExcBL4AAAAA0JTevwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADHDE7cAAIA/AAAAAAAAAAAAAAAAAAAAAAAAAIDCdJw9AAAAAFRm778AAAAAwQBnvQAAAACO5u4/AAAAAE/6370AAAAA2w7oPwAAAAA7twQ+AAAAAIqy8L8AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACs2m61AACAPwAAAAAAAAAAAAAAAAAAAAAAAACAOm2TvAAAAADFdvC/AAAAADbMxT0AAAAA6Tj1PwAAAADVgP69AAAAAKLU4D8AAAAA157TPAAAAAA6nOi/AAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiSwRLHIaUjAFDlHSUUpQu"
|
84 |
+
},
|
85 |
+
"_episode_num": 0,
|
86 |
+
"use_sde": true,
|
87 |
+
"sde_sample_freq": -1,
|
88 |
+
"_current_progress_remaining": 0.0,
|
89 |
+
"ep_info_buffer": {
|
90 |
+
":type:": "<class 'collections.deque'>",
|
91 |
+
":serialized:": "gAWVQAwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQHTS4+jdpIuMAWyUTegDjAF0lEdAlCCYDoyKvXV9lChoBkdAc8zxYaHbh2gHTegDaAhHQJQhPklu3tt1fZQoaAZHQGh4aCDmKZVoB03oA2gIR0CUIVBO58SgdX2UKGgGR0BozYa72+PBaAdNDgJoCEdAlCRo8p1A7nV9lChoBkdAbOwZAprk82gHTegDaAhHQJQnAhpxm051fZQoaAZHQHBP3YDklu5oB03oA2gIR0CUKJEVnEl3dX2UKGgGR0Bw+NmBe5WjaAdN6ANoCEdAlCigIyCWeHV9lChoBkdAbNnKe05U+GgHTegDaAhHQJQrwdYGMXJ1fZQoaAZHQGKL2CEpRXRoB03oA2gIR0CULmPfsNUgdX2UKGgGR0B28L/sE7nxaAdN6ANoCEdAlC/f7iyY5XV9lChoBkdAb5Mqgh8pkWgHTegDaAhHQJQv7tE5Qxh1fZQoaAZHQGhEYcFQl8hoB03oA2gIR0CUMwpMpPRBdX2UKGgGR0BeYYjW07bMaAdN6ANoCEdAlDWdV3ljmXV9lChoBkdAbL/8l5WzW2gHTegDaAhHQJQ3JKsdT5x1fZQoaAZHQGThHCwbEP1oB03oA2gIR0CUNzR4QjD9dX2UKGgGR0BkswjIJZ4faAdN6ANoCEdAlDpm5DqnnHV9lChoBkdAZj6rxy4nW2gHTegDaAhHQJQ8/IeYD1Z1fZQoaAZHQGTTROLzf79oB03oA2gIR0CUPo4EwFkhdX2UKGgGR0BmcfsVtXPraAdN6ANoCEdAlD6gmqo60nV9lChoBkdAY/v19ORDC2gHTegDaAhHQJRBy5iExqR1fZQoaAZHQGL2DDTBqKxoB03oA2gIR0CURGsq8UVSdX2UKGgGR0Blvu96C17ZaAdN6ANoCEdAlEYDPjXFtXV9lChoBkdAZCeo5PuXu2gHTegDaAhHQJRGEs6JZW91fZQoaAZHQGUeBzNliBpoB03oA2gIR0CUSTrnTy8SdX2UKGgGR0Bl6nGn4wh4aAdN6ANoCEdAlEvalYU343V9lChoBkdAccWNcGC7LGgHTegDaAhHQJRNXxlQMx51fZQoaAZHQHGRrYXfqHJoB03oA2gIR0CUTW6GgzxgdX2UKGgGR0BzC5ttQ9A5aAdN6ANoCEdAlFCdhy8zynV9lChoBkdAcWsjfek562gHTegDaAhHQJRTOmHgxah1fZQoaAZHQG+JRFiKBNFoB03oA2gIR0CUVMRu0kWzdX2UKGgGR0Bz+itW+49YaAdN6ANoCEdAlFTUNKAavXV9lChoBkdAZsHpW3jMmmgHTegDaAhHQJRYAj2SMcZ1fZQoaAZHQHZ0DUy57PZoB03oA2gIR0CUWpZ+QU5/dX2UKGgGR0ByHqOo5xR3aAdN6ANoCEdAlFwli8WbgHV9lChoBkdAbC0knkT6BWgHTegDaAhHQJRcNsrNGEx1fZQoaAZHQHPgyamXPZ9oB03oA2gIR0CUX2XYUWVNdX2UKGgGR0BxpPYukDZEaAdN6ANoCEdAlGH+bqhUR3V9lChoBkdAdvOfzBhx52gHTegDaAhHQJRjlegL7XR1fZQoaAZHQHT2IL9deIFoB03oA2gIR0CUY6U7Sy+pdX2UKGgGR0Bx4iTgVGkOaAdN6ANoCEdAlGbFMRHww3V9lChoBkdAdN/RceKba2gHTakDaAhHQJRo7MSsbNt1fZQoaAZHQHQgAmzByjpoB03oA2gIR0CUau9Tgl4UdX2UKGgGR0B0frvH93r2aAdN6ANoCEdAlGr+vECNj3V9lChoBkdAa8dI91U2k2gHTegDaAhHQJRuJF1B+nZ1fZQoaAZHQHEWuu3c581oB03oA2gIR0CUcED6nBLxdX2UKGgGR0B2ofsHB1s+aAdN6ANoCEdAlHI5J5E+gXV9lChoBkdAdZ0MS9M9KWgHTegDaAhHQJRySJpFkQR1fZQoaAZHQHiUCs8xKxtoB03oA2gIR0CUdXuwosqbdX2UKGgGR0B4bIpy6tknaAdN6ANoCEdAlHeaOgg5inV9lChoBkdAd8n5EMLF42gHTegDaAhHQJR5lelbeM11fZQoaAZHQHUysYZVGTdoB03oA2gIR0CUeabrkbPydX2UKGgGR0B1Jy+M6zVuaAdN6ANoCEdAlHzRdld1MnV9lChoBkdAciQ531SOzmgHTegDaAhHQJR+8Vzp5eJ1fZQoaAZHQHUxiUkfLcNoB03oA2gIR0CUgPNsFdLQdX2UKGgGR0B0VsSteUpvaAdN6ANoCEdAlIECm/FirnV9lChoBkdAfLKMBIWgvmgHTegDaAhHQJSEEw22oeh1fZQoaAZHQHgjVUEPlMhoB03oA2gIR0CUhjw6ySmqdX2UKGgGR0B4gvOkcjqwaAdN6ANoCEdAlIg8274BWHV9lChoBkdAeQaDaoMrmWgHTegDaAhHQJSITFYMfA91fZQoaAZHQF/XkpZwGW5oB0vlaAhHQJSJ+KziS7p1fZQoaAZHQHOFj4gzP8hoB03oA2gIR0CUi3wuM+/ydX2UKGgGR0B9o/6WPcSHaAdN6ANoCEdAlI2U/wAlwHV9lChoBkdAWe2t+1Bt12gHS7NoCEdAlI7iMkyDZnV9lChoBkdAdcp1W8yvcWgHTegDaAhHQJSPjrQgLZ11fZQoaAZHQHQtcZxaPjpoB03oA2gIR0CUkU7bL2YfdX2UKGgGR0B2D0IZ62ORaAdN6ANoCEdAlJLEaZQYUHV9lChoBkdAXeNUHY6GQGgHS9toCEdAlJLnXumaY3V9lChoBkdAc/jTSsr/bWgHTegDaAhHQJSWKIoE0SB1fZQoaAZHQHkOqAjIJZ5oB03oA2gIR0CUltZ9uxbCdX2UKGgGR0B5mVTuOS4faAdN6ANoCEdAlJoH3+MqBnV9lChoBkdAdUnxWDHwPWgHTegDaAhHQJSaKeQMhHN1fZQoaAZHQHZJAQUYbbVoB03oA2gIR0CUnXdJaq0ddX2UKGgGR0Bx4fFVDKHPaAdN6ANoCEdAlJ4k6tDD0nV9lChoBkdAcKv8BuGbkWgHTegDaAhHQJShXn2ZiNN1fZQoaAZHQHq4vJq7AcloB03oA2gIR0CUoYJqZc9odX2UKGgGR0Bxq9HRTjvNaAdN6ANoCEdAlKUjFZPl+3V9lChoBkdAZ9OgezUqhGgHTegDaAhHQJSl1RYRuj11fZQoaAZHQHFVJZbILgJoB03oA2gIR0CUqRetSydGdX2UKGgGR0B1Qa9Ba9saaAdN6ANoCEdAlKk7f1pTM3V9lChoBkdAcJwRkEs8PmgHTegDaAhHQJSsk99tuUF1fZQoaAZHQHE+M50bLlpoB03oA2gIR0CUrUbTMJQddX2UKGgGR0BvOFDhLoOhaAdN6ANoCEdAlLCLqUu+RHV9lChoBkdAcQmfWcz68GgHTegDaAhHQJSwrrZ8KHB1fZQoaAZHQHFLwnc+JP9oB03oA2gIR0CUs/3rD63zdX2UKGgGR0Bw6yHuZ1FIaAdN6ANoCEdAlLSu/Ho5gnV9lChoBkdAbsfxT850bWgHTegDaAhHQJS36lgtvn91fZQoaAZHQHJV5xvNu+BoB03oA2gIR0CUuA1fVqetdX2UKGgGR0Bxx/GhmGucaAdN6ANoCEdAlLtlog3cYnV9lChoBkdAcD5FhXr+pGgHTegDaAhHQJS8FOi35N51fZQoaAZHQHF272HtWuJoB03oA2gIR0CUv1GRV6u5dX2UKGgGR0BxBEaya/h3aAdN6ANoCEdAlL91TvRZ2nV9lChoBkdAcYayauwHJWgHTegDaAhHQJTCzUDuBtl1fZQoaAZHQHHwdKh+OOtoB03oA2gIR0CUw30voNd7dX2UKGgGR0Bv6AFX7tRfaAdN6ANoCEdAmcC9e6ZpjHV9lChoBkdAcCWQ+UyHmGgHTegDaAhHQJnA+uIRAbB1fZQoaAZHQHDGF27nPmhoB03oA2gIR0CZxIfyf+S9dX2UKGgGR0BwuC9IwudxaAdN6ANoCEdAmcU6HTI/7nV9lChoBkdAcLE9oexOcmgHTegDaAhHQJnId4wAU+N1fZQoaAZHQHDBvkFOfuloB03oA2gIR0CZyJoC+10DdX2UKGgGR0BSQitV7x/eaAdLd2gIR0CZyVGuLaVVdWUu"
|
92 |
+
},
|
93 |
+
"ep_success_buffer": {
|
94 |
+
":type:": "<class 'collections.deque'>",
|
95 |
+
":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
|
96 |
+
},
|
97 |
+
"_n_updates": 62500,
|
98 |
+
"n_steps": 8,
|
99 |
+
"gamma": 0.99,
|
100 |
+
"gae_lambda": 0.9,
|
101 |
+
"ent_coef": 0.0,
|
102 |
+
"vf_coef": 0.4,
|
103 |
+
"max_grad_norm": 0.5,
|
104 |
+
"normalize_advantage": false
|
105 |
+
}
|
a2c-AntBulletEnv-v0/policy.optimizer.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:2aaee57f16d54c70bfe450b0b627fc1641239afad77198473143281c6bcfff3c
|
3 |
+
size 55998
|
a2c-AntBulletEnv-v0/policy.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:50002dbad8d6e432cc38010959c9f1f8a5a9e94567a010e0992de64faa0e4739
|
3 |
+
size 56638
|
a2c-AntBulletEnv-v0/pytorch_variables.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:d030ad8db708280fcae77d87e973102039acd23a11bdecc3db8eb6c0ac940ee1
|
3 |
+
size 431
|
a2c-AntBulletEnv-v0/system_info.txt
ADDED
@@ -0,0 +1,7 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
OS: macOS-12.4-arm64-arm-64bit Darwin Kernel Version 21.5.0: Tue Apr 26 21:08:29 PDT 2022; root:xnu-8020.121.3~4/RELEASE_ARM64_T8101
|
2 |
+
Python: 3.9.13
|
3 |
+
Stable-Baselines3: 1.6.0
|
4 |
+
PyTorch: 1.12.0
|
5 |
+
GPU Enabled: False
|
6 |
+
Numpy: 1.23.1
|
7 |
+
Gym: 0.21.0
|
config.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param sde_net_arch: Network architecture for extracting features\n when using gSDE. If None, the latent features from the policy will be used.\n Pass an empty list to use the states as features.\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x134fa8c10>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x134fa8ca0>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x134fa8d30>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x134fa8dc0>", "_build": "<function ActorCriticPolicy._build at 0x134fa8e50>", "forward": "<function ActorCriticPolicy.forward at 0x134fa8ee0>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x134fa8f70>", "_predict": "<function ActorCriticPolicy._predict at 0x134fad040>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x134fad0d0>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x134fad160>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x134fad1f0>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x134e3fa80>"}, "verbose": 1, "policy_kwargs": {":type:": "<class 'dict'>", ":serialized:": "gAWVoAAAAAAAAAB9lCiMDGxvZ19zdGRfaW5pdJRLAowKb3J0aG9faW5pdJSJjA9vcHRpbWl6ZXJfY2xhc3OUjBN0b3JjaC5vcHRpbS5ybXNwcm9wlIwHUk1TcHJvcJSTlIwQb3B0aW1pemVyX2t3YXJnc5R9lCiMBWFscGhhlEc/764UeuFHrowDZXBzlEc+5Pi1iONo8YwMd2VpZ2h0X2RlY2F5lEsAdXUu", "log_std_init": 2, "ortho_init": false, "optimizer_class": "<class 'torch.optim.rmsprop.RMSprop'>", "optimizer_kwargs": {"alpha": 0.99, "eps": 1e-05, "weight_decay": 0}}, "observation_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVbQIAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLHIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWcAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/lGgLSxyFlIwBQ5R0lFKUjARoaWdolGgTKJZwAAAAAAAAAAAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH+UaAtLHIWUaBZ0lFKUjA1ib3VuZGVkX2JlbG93lGgTKJYcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUaAiMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLHIWUaBZ0lFKUjA1ib3VuZGVkX2Fib3ZllGgTKJYcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUaCJLHIWUaBZ0lFKUjApfbnBfcmFuZG9tlE51Yi4=", "dtype": "float32", "_shape": [28], "low": "[-inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf\n -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf]", "high": "[inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf\n inf inf inf inf inf inf inf inf inf inf]", "bounded_below": "[False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False]", "bounded_above": "[False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False]", "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVpQEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAIC/AACAvwAAgL8AAIC/AACAvwAAgL8AAIC/AACAv5RoC0sIhZSMAUOUdJRSlIwEaGlnaJRoEyiWIAAAAAAAAAAAAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAP5RoC0sIhZRoFnSUUpSMDWJvdW5kZWRfYmVsb3eUaBMolggAAAAAAAAAAQEBAQEBAQGUaAiMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBZ0lFKUjA1ib3VuZGVkX2Fib3ZllGgTKJYIAAAAAAAAAAEBAQEBAQEBlGgiSwiFlGgWdJRSlIwKX25wX3JhbmRvbZROdWIu", "dtype": "float32", "_shape": [8], "low": "[-1. -1. -1. -1. -1. -1. -1. -1.]", "high": "[1. 1. 1. 1. 1. 1. 1. 1.]", "bounded_below": "[ True True True True True True True True]", "bounded_above": "[ True True True True True True True True]", "_np_random": null}, "n_envs": 4, "num_timesteps": 2000000, "_total_timesteps": 2000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1658481652.723686, "learning_rate": 0.0096, "tensorboard_log": "./tensorboard", "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWV8wIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMYC9Vc2Vycy9zdW5ydWlxaS9taW5pZm9yZ2UzL2VudnMvUkwvbGliL3B5dGhvbjMuOS9zaXRlLXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4BDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMYC9Vc2Vycy9zdW5ydWlxaS9taW5pZm9yZ2UzL2VudnMvUkwvbGliL3B5dGhvbjMuOS9zaXRlLXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/g6kqMFUyYYWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVNQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJbAAQAAAAAAAB6ecj9ON14/eg6DPrY3Mr7agl88xVbmPVxtaT89vpQ/CkUOPxB4Z7zKxHo/Dg0MvXWLkb+Ed8Q5NWGGP8XvmD4Sv6U/TVNmu3222L+k2Mo89k8Bv3gboDxpaTm/IQ7SvGM/0T5sEfy/dgbUPgwdmj63mLm+0/vWPxCy4L6sLIa+965LvlAtXj1ZLI29mGjmPxF0DT/sOq28u3oav1tP073GipG/bxcZuTY0Kz4tcb8/X+mlP8c4p7yLR9i/5lzIPIUZAb/3mwU9s2o4v2NeCz1jP9E+bBH8v3YG1D4MHZo+8VXWPi2S6j6EqtE+Dy8Svker2zwKqgQ+FxIEPyHYtz/EbA4/8mGPvL5kdD6l1ai8H4iRvwTR27oEIu4+jGGIPwq/pT/Zkdg6LB/Zv4uNvTxEwAG/B6EtPJu9OL/7Ugy9Yz/RPmwR/L92BtQ+DB2aPqiwRD/0fYU/YqUdPmnPy72Pkos9nHHoPW0KRz+t6qA/NlMOP2VfVrwi3jE/CoxPvD6Jkb+ewqy6lmiAP6C8MD+aqaU/UMQhu5cb2b8hfb8811EBv3kPZzxCeDm/Zw0/vWM/0T5sEfy/dgbUPgwdmj6UjAVudW1weZSMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiSwRLHIaUjAFDlHSUUpQu"}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYEAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKULg=="}, "_last_original_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVNQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJbAAQAAAAAAAAAAAABqvaI2AACAPwAAAAAAAAAAAAAAAAAAAAAAAACAf3ENvgAAAAC9SOK/AAAAAGGIaDkAAAAAQ1fnPwAAAAAgQBC8AAAAACUs6j8AAAAAYoqZvQAAAADzXP2/AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAkO4dNwAAgD8AAAAAAAAAAAAAAAAAAAAAAAAAgIwexr0AAAAAvST9vwAAAADjN+89AAAAAJyD7D8AAAAARnV+PQAAAABTWuE/AAAAAExcBL4AAAAA0JTevwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADHDE7cAAIA/AAAAAAAAAAAAAAAAAAAAAAAAAIDCdJw9AAAAAFRm778AAAAAwQBnvQAAAACO5u4/AAAAAE/6370AAAAA2w7oPwAAAAA7twQ+AAAAAIqy8L8AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACs2m61AACAPwAAAAAAAAAAAAAAAAAAAAAAAACAOm2TvAAAAADFdvC/AAAAADbMxT0AAAAA6Tj1PwAAAADVgP69AAAAAKLU4D8AAAAA157TPAAAAAA6nOi/AAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiSwRLHIaUjAFDlHSUUpQu"}, "_episode_num": 0, "use_sde": true, "sde_sample_freq": -1, "_current_progress_remaining": 0.0, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVQAwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQHTS4+jdpIuMAWyUTegDjAF0lEdAlCCYDoyKvXV9lChoBkdAc8zxYaHbh2gHTegDaAhHQJQhPklu3tt1fZQoaAZHQGh4aCDmKZVoB03oA2gIR0CUIVBO58SgdX2UKGgGR0BozYa72+PBaAdNDgJoCEdAlCRo8p1A7nV9lChoBkdAbOwZAprk82gHTegDaAhHQJQnAhpxm051fZQoaAZHQHBP3YDklu5oB03oA2gIR0CUKJEVnEl3dX2UKGgGR0Bw+NmBe5WjaAdN6ANoCEdAlCigIyCWeHV9lChoBkdAbNnKe05U+GgHTegDaAhHQJQrwdYGMXJ1fZQoaAZHQGKL2CEpRXRoB03oA2gIR0CULmPfsNUgdX2UKGgGR0B28L/sE7nxaAdN6ANoCEdAlC/f7iyY5XV9lChoBkdAb5Mqgh8pkWgHTegDaAhHQJQv7tE5Qxh1fZQoaAZHQGhEYcFQl8hoB03oA2gIR0CUMwpMpPRBdX2UKGgGR0BeYYjW07bMaAdN6ANoCEdAlDWdV3ljmXV9lChoBkdAbL/8l5WzW2gHTegDaAhHQJQ3JKsdT5x1fZQoaAZHQGThHCwbEP1oB03oA2gIR0CUNzR4QjD9dX2UKGgGR0BkswjIJZ4faAdN6ANoCEdAlDpm5DqnnHV9lChoBkdAZj6rxy4nW2gHTegDaAhHQJQ8/IeYD1Z1fZQoaAZHQGTTROLzf79oB03oA2gIR0CUPo4EwFkhdX2UKGgGR0BmcfsVtXPraAdN6ANoCEdAlD6gmqo60nV9lChoBkdAY/v19ORDC2gHTegDaAhHQJRBy5iExqR1fZQoaAZHQGL2DDTBqKxoB03oA2gIR0CURGsq8UVSdX2UKGgGR0Blvu96C17ZaAdN6ANoCEdAlEYDPjXFtXV9lChoBkdAZCeo5PuXu2gHTegDaAhHQJRGEs6JZW91fZQoaAZHQGUeBzNliBpoB03oA2gIR0CUSTrnTy8SdX2UKGgGR0Bl6nGn4wh4aAdN6ANoCEdAlEvalYU343V9lChoBkdAccWNcGC7LGgHTegDaAhHQJRNXxlQMx51fZQoaAZHQHGRrYXfqHJoB03oA2gIR0CUTW6GgzxgdX2UKGgGR0BzC5ttQ9A5aAdN6ANoCEdAlFCdhy8zynV9lChoBkdAcWsjfek562gHTegDaAhHQJRTOmHgxah1fZQoaAZHQG+JRFiKBNFoB03oA2gIR0CUVMRu0kWzdX2UKGgGR0Bz+itW+49YaAdN6ANoCEdAlFTUNKAavXV9lChoBkdAZsHpW3jMmmgHTegDaAhHQJRYAj2SMcZ1fZQoaAZHQHZ0DUy57PZoB03oA2gIR0CUWpZ+QU5/dX2UKGgGR0ByHqOo5xR3aAdN6ANoCEdAlFwli8WbgHV9lChoBkdAbC0knkT6BWgHTegDaAhHQJRcNsrNGEx1fZQoaAZHQHPgyamXPZ9oB03oA2gIR0CUX2XYUWVNdX2UKGgGR0BxpPYukDZEaAdN6ANoCEdAlGH+bqhUR3V9lChoBkdAdvOfzBhx52gHTegDaAhHQJRjlegL7XR1fZQoaAZHQHT2IL9deIFoB03oA2gIR0CUY6U7Sy+pdX2UKGgGR0Bx4iTgVGkOaAdN6ANoCEdAlGbFMRHww3V9lChoBkdAdN/RceKba2gHTakDaAhHQJRo7MSsbNt1fZQoaAZHQHQgAmzByjpoB03oA2gIR0CUau9Tgl4UdX2UKGgGR0B0frvH93r2aAdN6ANoCEdAlGr+vECNj3V9lChoBkdAa8dI91U2k2gHTegDaAhHQJRuJF1B+nZ1fZQoaAZHQHEWuu3c581oB03oA2gIR0CUcED6nBLxdX2UKGgGR0B2ofsHB1s+aAdN6ANoCEdAlHI5J5E+gXV9lChoBkdAdZ0MS9M9KWgHTegDaAhHQJRySJpFkQR1fZQoaAZHQHiUCs8xKxtoB03oA2gIR0CUdXuwosqbdX2UKGgGR0B4bIpy6tknaAdN6ANoCEdAlHeaOgg5inV9lChoBkdAd8n5EMLF42gHTegDaAhHQJR5lelbeM11fZQoaAZHQHUysYZVGTdoB03oA2gIR0CUeabrkbPydX2UKGgGR0B1Jy+M6zVuaAdN6ANoCEdAlHzRdld1MnV9lChoBkdAciQ531SOzmgHTegDaAhHQJR+8Vzp5eJ1fZQoaAZHQHUxiUkfLcNoB03oA2gIR0CUgPNsFdLQdX2UKGgGR0B0VsSteUpvaAdN6ANoCEdAlIECm/FirnV9lChoBkdAfLKMBIWgvmgHTegDaAhHQJSEEw22oeh1fZQoaAZHQHgjVUEPlMhoB03oA2gIR0CUhjw6ySmqdX2UKGgGR0B4gvOkcjqwaAdN6ANoCEdAlIg8274BWHV9lChoBkdAeQaDaoMrmWgHTegDaAhHQJSITFYMfA91fZQoaAZHQF/XkpZwGW5oB0vlaAhHQJSJ+KziS7p1fZQoaAZHQHOFj4gzP8hoB03oA2gIR0CUi3wuM+/ydX2UKGgGR0B9o/6WPcSHaAdN6ANoCEdAlI2U/wAlwHV9lChoBkdAWe2t+1Bt12gHS7NoCEdAlI7iMkyDZnV9lChoBkdAdcp1W8yvcWgHTegDaAhHQJSPjrQgLZ11fZQoaAZHQHQtcZxaPjpoB03oA2gIR0CUkU7bL2YfdX2UKGgGR0B2D0IZ62ORaAdN6ANoCEdAlJLEaZQYUHV9lChoBkdAXeNUHY6GQGgHS9toCEdAlJLnXumaY3V9lChoBkdAc/jTSsr/bWgHTegDaAhHQJSWKIoE0SB1fZQoaAZHQHkOqAjIJZ5oB03oA2gIR0CUltZ9uxbCdX2UKGgGR0B5mVTuOS4faAdN6ANoCEdAlJoH3+MqBnV9lChoBkdAdUnxWDHwPWgHTegDaAhHQJSaKeQMhHN1fZQoaAZHQHZJAQUYbbVoB03oA2gIR0CUnXdJaq0ddX2UKGgGR0Bx4fFVDKHPaAdN6ANoCEdAlJ4k6tDD0nV9lChoBkdAcKv8BuGbkWgHTegDaAhHQJShXn2ZiNN1fZQoaAZHQHq4vJq7AcloB03oA2gIR0CUoYJqZc9odX2UKGgGR0Bxq9HRTjvNaAdN6ANoCEdAlKUjFZPl+3V9lChoBkdAZ9OgezUqhGgHTegDaAhHQJSl1RYRuj11fZQoaAZHQHFVJZbILgJoB03oA2gIR0CUqRetSydGdX2UKGgGR0B1Qa9Ba9saaAdN6ANoCEdAlKk7f1pTM3V9lChoBkdAcJwRkEs8PmgHTegDaAhHQJSsk99tuUF1fZQoaAZHQHE+M50bLlpoB03oA2gIR0CUrUbTMJQddX2UKGgGR0BvOFDhLoOhaAdN6ANoCEdAlLCLqUu+RHV9lChoBkdAcQmfWcz68GgHTegDaAhHQJSwrrZ8KHB1fZQoaAZHQHFLwnc+JP9oB03oA2gIR0CUs/3rD63zdX2UKGgGR0Bw6yHuZ1FIaAdN6ANoCEdAlLSu/Ho5gnV9lChoBkdAbsfxT850bWgHTegDaAhHQJS36lgtvn91fZQoaAZHQHJV5xvNu+BoB03oA2gIR0CUuA1fVqetdX2UKGgGR0Bxx/GhmGucaAdN6ANoCEdAlLtlog3cYnV9lChoBkdAcD5FhXr+pGgHTegDaAhHQJS8FOi35N51fZQoaAZHQHF272HtWuJoB03oA2gIR0CUv1GRV6u5dX2UKGgGR0BxBEaya/h3aAdN6ANoCEdAlL91TvRZ2nV9lChoBkdAcYayauwHJWgHTegDaAhHQJTCzUDuBtl1fZQoaAZHQHHwdKh+OOtoB03oA2gIR0CUw30voNd7dX2UKGgGR0Bv6AFX7tRfaAdN6ANoCEdAmcC9e6ZpjHV9lChoBkdAcCWQ+UyHmGgHTegDaAhHQJnA+uIRAbB1fZQoaAZHQHDGF27nPmhoB03oA2gIR0CZxIfyf+S9dX2UKGgGR0BwuC9IwudxaAdN6ANoCEdAmcU6HTI/7nV9lChoBkdAcLE9oexOcmgHTegDaAhHQJnId4wAU+N1fZQoaAZHQHDBvkFOfuloB03oA2gIR0CZyJoC+10DdX2UKGgGR0BSQitV7x/eaAdLd2gIR0CZyVGuLaVVdWUu"}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 62500, "n_steps": 8, "gamma": 0.99, "gae_lambda": 0.9, "ent_coef": 0.0, "vf_coef": 0.4, "max_grad_norm": 0.5, "normalize_advantage": false, "system_info": {"OS": "macOS-12.4-arm64-arm-64bit Darwin Kernel Version 21.5.0: Tue Apr 26 21:08:29 PDT 2022; root:xnu-8020.121.3~4/RELEASE_ARM64_T8101", "Python": "3.9.13", "Stable-Baselines3": "1.6.0", "PyTorch": "1.12.0", "GPU Enabled": "False", "Numpy": "1.23.1", "Gym": "0.21.0"}}
|
replay.mp4
ADDED
Binary file (388 kB). View file
|
|
results.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"mean_reward": 203.4315436066623, "std_reward": 83.77137637242261, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2022-07-22T19:36:22.279391"}
|