End of training
Browse files
README.md
CHANGED
@@ -18,21 +18,21 @@ should probably proofread and complete it, then remove this comment. -->
|
|
18 |
|
19 |
This model is a fine-tuned version of [nvidia/mit-b0](https://huggingface.co/nvidia/mit-b0) on the EduardoPacheco/FoodSeg103 dataset.
|
20 |
It achieves the following results on the evaluation set:
|
21 |
-
- Loss: 2.
|
22 |
-
- Mean Iou: 0.
|
23 |
-
- Mean Accuracy: 0.
|
24 |
-
- Overall Accuracy: 0.
|
25 |
- Accuracy Background: nan
|
26 |
- Accuracy Candy: nan
|
27 |
- Accuracy Egg tart: nan
|
28 |
-
- Accuracy French fries: 0.
|
29 |
-
- Accuracy Chocolate:
|
30 |
- Accuracy Biscuit: 0.0
|
31 |
- Accuracy Popcorn: nan
|
32 |
- Accuracy Pudding: nan
|
33 |
- Accuracy Ice cream: 0.0
|
34 |
- Accuracy Cheese butter: 0.0
|
35 |
-
- Accuracy Cake:
|
36 |
- Accuracy Wine: nan
|
37 |
- Accuracy Milkshake: nan
|
38 |
- Accuracy Coffee: nan
|
@@ -51,86 +51,86 @@ It achieves the following results on the evaluation set:
|
|
51 |
- Accuracy Date: nan
|
52 |
- Accuracy Apricot: nan
|
53 |
- Accuracy Avocado: 0.0
|
54 |
-
- Accuracy Banana:
|
55 |
-
- Accuracy Strawberry:
|
56 |
- Accuracy Cherry: nan
|
57 |
-
- Accuracy Blueberry:
|
58 |
- Accuracy Raspberry: nan
|
59 |
- Accuracy Mango: nan
|
60 |
- Accuracy Olives: nan
|
61 |
- Accuracy Peach: nan
|
62 |
-
- Accuracy Lemon: 0.
|
63 |
- Accuracy Pear: nan
|
64 |
- Accuracy Fig: nan
|
65 |
-
- Accuracy Pineapple:
|
66 |
-
- Accuracy Grape:
|
67 |
-
- Accuracy Kiwi:
|
68 |
- Accuracy Melon: nan
|
69 |
-
- Accuracy Orange: 0.
|
70 |
- Accuracy Watermelon: nan
|
71 |
-
- Accuracy Steak:
|
72 |
-
- Accuracy Pork: 0.
|
73 |
-
- Accuracy Chicken duck: 0.
|
74 |
-
- Accuracy Sausage:
|
75 |
-
- Accuracy Fried meat:
|
76 |
- Accuracy Lamb: nan
|
77 |
-
- Accuracy Sauce: 0.
|
78 |
- Accuracy Crab: nan
|
79 |
- Accuracy Fish: 0.0
|
80 |
- Accuracy Shellfish: nan
|
81 |
- Accuracy Shrimp: nan
|
82 |
-
- Accuracy Soup:
|
83 |
-
- Accuracy Bread: 0.
|
84 |
-
- Accuracy Corn:
|
85 |
- Accuracy Hamburg: nan
|
86 |
- Accuracy Pizza: nan
|
87 |
- Accuracy hanamaki baozi: nan
|
88 |
- Accuracy Wonton dumplings: nan
|
89 |
- Accuracy Pasta: nan
|
90 |
- Accuracy Noodles: nan
|
91 |
-
- Accuracy Rice: 0.
|
92 |
-
- Accuracy Pie: 0.
|
93 |
- Accuracy Tofu: nan
|
94 |
- Accuracy Eggplant: nan
|
95 |
-
- Accuracy Potato: 0.
|
96 |
- Accuracy Garlic: nan
|
97 |
- Accuracy Cauliflower: 0.0
|
98 |
-
- Accuracy Tomato: 0.
|
99 |
- Accuracy Kelp: nan
|
100 |
- Accuracy Seaweed: nan
|
101 |
-
- Accuracy Spring onion:
|
102 |
- Accuracy Rape: nan
|
103 |
- Accuracy Ginger: nan
|
104 |
- Accuracy Okra: nan
|
105 |
- Accuracy Lettuce: 0.0
|
106 |
-
- Accuracy Pumpkin:
|
107 |
- Accuracy Cucumber: 0.0
|
108 |
- Accuracy White radish: nan
|
109 |
-
- Accuracy Carrot: 0.
|
110 |
-
- Accuracy Asparagus:
|
111 |
- Accuracy Bamboo shoots: nan
|
112 |
-
- Accuracy Broccoli: 0.
|
113 |
- Accuracy Celery stick: 0.0
|
114 |
-
- Accuracy Cilantro mint: 0.
|
115 |
- Accuracy Snow peas: nan
|
116 |
- Accuracy cabbage: nan
|
117 |
- Accuracy Bean sprouts: nan
|
118 |
- Accuracy Onion: 0.0
|
119 |
-
- Accuracy Pepper:
|
120 |
-
- Accuracy Green beans:
|
121 |
-
- Accuracy French beans:
|
122 |
- Accuracy King oyster mushroom: nan
|
123 |
- Accuracy Shiitake: nan
|
124 |
- Accuracy Enoki mushroom: nan
|
125 |
- Accuracy Oyster mushroom: nan
|
126 |
-
- Accuracy White button mushroom:
|
127 |
- Accuracy Salad: nan
|
128 |
-
- Accuracy Other ingredients:
|
129 |
- Iou Background: 0.0
|
130 |
- Iou Candy: nan
|
131 |
- Iou Egg tart: nan
|
132 |
-
- Iou French fries: 0.
|
133 |
-
- Iou Chocolate:
|
134 |
- Iou Biscuit: 0.0
|
135 |
- Iou Popcorn: nan
|
136 |
- Iou Pudding: nan
|
@@ -140,7 +140,7 @@ It achieves the following results on the evaluation set:
|
|
140 |
- Iou Wine: nan
|
141 |
- Iou Milkshake: nan
|
142 |
- Iou Coffee: nan
|
143 |
-
- Iou Juice:
|
144 |
- Iou Milk: nan
|
145 |
- Iou Tea: nan
|
146 |
- Iou Almond: nan
|
@@ -155,81 +155,81 @@ It achieves the following results on the evaluation set:
|
|
155 |
- Iou Date: nan
|
156 |
- Iou Apricot: nan
|
157 |
- Iou Avocado: 0.0
|
158 |
-
- Iou Banana:
|
159 |
-
- Iou Strawberry: 0.
|
160 |
- Iou Cherry: nan
|
161 |
-
- Iou Blueberry:
|
162 |
- Iou Raspberry: nan
|
163 |
- Iou Mango: nan
|
164 |
- Iou Olives: nan
|
165 |
- Iou Peach: nan
|
166 |
-
- Iou Lemon: 0.
|
167 |
- Iou Pear: nan
|
168 |
- Iou Fig: nan
|
169 |
-
- Iou Pineapple:
|
170 |
-
- Iou Grape:
|
171 |
-
- Iou Kiwi:
|
172 |
- Iou Melon: nan
|
173 |
-
- Iou Orange: 0.
|
174 |
- Iou Watermelon: nan
|
175 |
-
- Iou Steak: 0.
|
176 |
-
- Iou Pork: 0.
|
177 |
-
- Iou Chicken duck: 0.
|
178 |
-
- Iou Sausage:
|
179 |
-
- Iou Fried meat:
|
180 |
- Iou Lamb: nan
|
181 |
-
- Iou Sauce: 0.
|
182 |
- Iou Crab: nan
|
183 |
- Iou Fish: 0.0
|
184 |
- Iou Shellfish: nan
|
185 |
- Iou Shrimp: nan
|
186 |
-
- Iou Soup:
|
187 |
-
- Iou Bread: 0.
|
188 |
-
- Iou Corn: 0.
|
189 |
- Iou Hamburg: nan
|
190 |
- Iou Pizza: nan
|
191 |
- Iou hanamaki baozi: nan
|
192 |
- Iou Wonton dumplings: nan
|
193 |
- Iou Pasta: nan
|
194 |
- Iou Noodles: nan
|
195 |
-
- Iou Rice: 0.
|
196 |
-
- Iou Pie: 0.
|
197 |
- Iou Tofu: nan
|
198 |
- Iou Eggplant: nan
|
199 |
-
- Iou Potato: 0.
|
200 |
- Iou Garlic: nan
|
201 |
- Iou Cauliflower: 0.0
|
202 |
-
- Iou Tomato: 0.
|
203 |
- Iou Kelp: nan
|
204 |
- Iou Seaweed: nan
|
205 |
-
- Iou Spring onion:
|
206 |
- Iou Rape: nan
|
207 |
- Iou Ginger: nan
|
208 |
- Iou Okra: nan
|
209 |
- Iou Lettuce: 0.0
|
210 |
-
- Iou Pumpkin:
|
211 |
- Iou Cucumber: 0.0
|
212 |
- Iou White radish: nan
|
213 |
-
- Iou Carrot: 0.
|
214 |
- Iou Asparagus: 0.0
|
215 |
- Iou Bamboo shoots: nan
|
216 |
-
- Iou Broccoli: 0.
|
217 |
- Iou Celery stick: 0.0
|
218 |
-
- Iou Cilantro mint: 0.
|
219 |
- Iou Snow peas: nan
|
220 |
- Iou cabbage: nan
|
221 |
- Iou Bean sprouts: nan
|
222 |
- Iou Onion: 0.0
|
223 |
- Iou Pepper: 0.0
|
224 |
-
- Iou Green beans:
|
225 |
- Iou French beans: 0.0
|
226 |
- Iou King oyster mushroom: nan
|
227 |
- Iou Shiitake: nan
|
228 |
- Iou Enoki mushroom: nan
|
229 |
- Iou Oyster mushroom: nan
|
230 |
-
- Iou White button mushroom:
|
231 |
- Iou Salad: nan
|
232 |
-
- Iou Other ingredients:
|
233 |
|
234 |
## Model description
|
235 |
|
@@ -248,7 +248,7 @@ More information needed
|
|
248 |
### Training hyperparameters
|
249 |
|
250 |
The following hyperparameters were used during training:
|
251 |
-
- learning_rate:
|
252 |
- train_batch_size: 8
|
253 |
- eval_batch_size: 8
|
254 |
- seed: 42
|
@@ -260,11 +260,11 @@ The following hyperparameters were used during training:
|
|
260 |
|
261 |
| Training Loss | Epoch | Step | Validation Loss | Mean Iou | Mean Accuracy | Overall Accuracy | Accuracy Background | Accuracy Candy | Accuracy Egg tart | Accuracy French fries | Accuracy Chocolate | Accuracy Biscuit | Accuracy Popcorn | Accuracy Pudding | Accuracy Ice cream | Accuracy Cheese butter | Accuracy Cake | Accuracy Wine | Accuracy Milkshake | Accuracy Coffee | Accuracy Juice | Accuracy Milk | Accuracy Tea | Accuracy Almond | Accuracy Red beans | Accuracy Cashew | Accuracy Dried cranberries | Accuracy Soy | Accuracy Walnut | Accuracy Peanut | Accuracy Egg | Accuracy Apple | Accuracy Date | Accuracy Apricot | Accuracy Avocado | Accuracy Banana | Accuracy Strawberry | Accuracy Cherry | Accuracy Blueberry | Accuracy Raspberry | Accuracy Mango | Accuracy Olives | Accuracy Peach | Accuracy Lemon | Accuracy Pear | Accuracy Fig | Accuracy Pineapple | Accuracy Grape | Accuracy Kiwi | Accuracy Melon | Accuracy Orange | Accuracy Watermelon | Accuracy Steak | Accuracy Pork | Accuracy Chicken duck | Accuracy Sausage | Accuracy Fried meat | Accuracy Lamb | Accuracy Sauce | Accuracy Crab | Accuracy Fish | Accuracy Shellfish | Accuracy Shrimp | Accuracy Soup | Accuracy Bread | Accuracy Corn | Accuracy Hamburg | Accuracy Pizza | Accuracy hanamaki baozi | Accuracy Wonton dumplings | Accuracy Pasta | Accuracy Noodles | Accuracy Rice | Accuracy Pie | Accuracy Tofu | Accuracy Eggplant | Accuracy Potato | Accuracy Garlic | Accuracy Cauliflower | Accuracy Tomato | Accuracy Kelp | Accuracy Seaweed | Accuracy Spring onion | Accuracy Rape | Accuracy Ginger | Accuracy Okra | Accuracy Lettuce | Accuracy Pumpkin | Accuracy Cucumber | Accuracy White radish | Accuracy Carrot | Accuracy Asparagus | Accuracy Bamboo shoots | Accuracy Broccoli | Accuracy Celery stick | Accuracy Cilantro mint | Accuracy Snow peas | Accuracy cabbage | Accuracy Bean sprouts | Accuracy Onion | Accuracy Pepper | Accuracy Green beans | Accuracy French beans | Accuracy King oyster mushroom | Accuracy Shiitake | Accuracy Enoki mushroom | Accuracy Oyster mushroom | Accuracy White button mushroom | Accuracy Salad | Accuracy Other ingredients | Iou Background | Iou Candy | Iou Egg tart | Iou French fries | Iou Chocolate | Iou Biscuit | Iou Popcorn | Iou Pudding | Iou Ice cream | Iou Cheese butter | Iou Cake | Iou Wine | Iou Milkshake | Iou Coffee | Iou Juice | Iou Milk | Iou Tea | Iou Almond | Iou Red beans | Iou Cashew | Iou Dried cranberries | Iou Soy | Iou Walnut | Iou Peanut | Iou Egg | Iou Apple | Iou Date | Iou Apricot | Iou Avocado | Iou Banana | Iou Strawberry | Iou Cherry | Iou Blueberry | Iou Raspberry | Iou Mango | Iou Olives | Iou Peach | Iou Lemon | Iou Pear | Iou Fig | Iou Pineapple | Iou Grape | Iou Kiwi | Iou Melon | Iou Orange | Iou Watermelon | Iou Steak | Iou Pork | Iou Chicken duck | Iou Sausage | Iou Fried meat | Iou Lamb | Iou Sauce | Iou Crab | Iou Fish | Iou Shellfish | Iou Shrimp | Iou Soup | Iou Bread | Iou Corn | Iou Hamburg | Iou Pizza | Iou hanamaki baozi | Iou Wonton dumplings | Iou Pasta | Iou Noodles | Iou Rice | Iou Pie | Iou Tofu | Iou Eggplant | Iou Potato | Iou Garlic | Iou Cauliflower | Iou Tomato | Iou Kelp | Iou Seaweed | Iou Spring onion | Iou Rape | Iou Ginger | Iou Okra | Iou Lettuce | Iou Pumpkin | Iou Cucumber | Iou White radish | Iou Carrot | Iou Asparagus | Iou Bamboo shoots | Iou Broccoli | Iou Celery stick | Iou Cilantro mint | Iou Snow peas | Iou cabbage | Iou Bean sprouts | Iou Onion | Iou Pepper | Iou Green beans | Iou French beans | Iou King oyster mushroom | Iou Shiitake | Iou Enoki mushroom | Iou Oyster mushroom | Iou White button mushroom | Iou Salad | Iou Other ingredients |
|
262 |
|:-------------:|:-----:|:----:|:---------------:|:--------:|:-------------:|:----------------:|:-------------------:|:--------------:|:-----------------:|:---------------------:|:------------------:|:----------------:|:----------------:|:----------------:|:------------------:|:----------------------:|:-------------:|:-------------:|:------------------:|:---------------:|:--------------:|:-------------:|:------------:|:---------------:|:------------------:|:---------------:|:--------------------------:|:------------:|:---------------:|:---------------:|:------------:|:--------------:|:-------------:|:----------------:|:----------------:|:---------------:|:-------------------:|:---------------:|:------------------:|:------------------:|:--------------:|:---------------:|:--------------:|:--------------:|:-------------:|:------------:|:------------------:|:--------------:|:-------------:|:--------------:|:---------------:|:-------------------:|:--------------:|:-------------:|:---------------------:|:----------------:|:-------------------:|:-------------:|:--------------:|:-------------:|:-------------:|:------------------:|:---------------:|:-------------:|:--------------:|:-------------:|:----------------:|:--------------:|:------------------------:|:-------------------------:|:--------------:|:----------------:|:-------------:|:------------:|:-------------:|:-----------------:|:---------------:|:---------------:|:--------------------:|:---------------:|:-------------:|:----------------:|:---------------------:|:-------------:|:---------------:|:-------------:|:----------------:|:----------------:|:-----------------:|:---------------------:|:---------------:|:------------------:|:----------------------:|:-----------------:|:---------------------:|:----------------------:|:------------------:|:-----------------:|:---------------------:|:--------------:|:---------------:|:--------------------:|:---------------------:|:-----------------------------:|:-----------------:|:-----------------------:|:------------------------:|:------------------------------:|:--------------:|:--------------------------:|:--------------:|:---------:|:------------:|:----------------:|:-------------:|:-----------:|:-----------:|:-----------:|:-------------:|:-----------------:|:--------:|:--------:|:-------------:|:----------:|:---------:|:--------:|:-------:|:----------:|:-------------:|:----------:|:---------------------:|:-------:|:----------:|:----------:|:-------:|:---------:|:--------:|:-----------:|:-----------:|:----------:|:--------------:|:----------:|:-------------:|:-------------:|:---------:|:----------:|:---------:|:---------:|:--------:|:-------:|:-------------:|:---------:|:--------:|:---------:|:----------:|:--------------:|:---------:|:--------:|:----------------:|:-----------:|:--------------:|:--------:|:---------:|:--------:|:--------:|:-------------:|:----------:|:--------:|:---------:|:--------:|:-----------:|:---------:|:-------------------:|:--------------------:|:---------:|:-----------:|:--------:|:-------:|:--------:|:------------:|:----------:|:----------:|:---------------:|:----------:|:--------:|:-----------:|:----------------:|:--------:|:----------:|:--------:|:-----------:|:-----------:|:------------:|:----------------:|:----------:|:-------------:|:-----------------:|:------------:|:----------------:|:-----------------:|:-------------:|:------------:|:----------------:|:---------:|:----------:|:---------------:|:----------------:|:------------------------:|:------------:|:------------------:|:-------------------:|:-------------------------:|:---------:|:---------------------:|
|
263 |
-
|
|
264 |
-
|
|
265 |
-
|
|
266 |
-
| 1.
|
267 |
-
| 1.
|
268 |
|
269 |
|
270 |
### Framework versions
|
|
|
18 |
|
19 |
This model is a fine-tuned version of [nvidia/mit-b0](https://huggingface.co/nvidia/mit-b0) on the EduardoPacheco/FoodSeg103 dataset.
|
20 |
It achieves the following results on the evaluation set:
|
21 |
+
- Loss: 2.0228
|
22 |
+
- Mean Iou: 0.0621
|
23 |
+
- Mean Accuracy: 0.1402
|
24 |
+
- Overall Accuracy: 0.2390
|
25 |
- Accuracy Background: nan
|
26 |
- Accuracy Candy: nan
|
27 |
- Accuracy Egg tart: nan
|
28 |
+
- Accuracy French fries: 0.0048
|
29 |
+
- Accuracy Chocolate: nan
|
30 |
- Accuracy Biscuit: 0.0
|
31 |
- Accuracy Popcorn: nan
|
32 |
- Accuracy Pudding: nan
|
33 |
- Accuracy Ice cream: 0.0
|
34 |
- Accuracy Cheese butter: 0.0
|
35 |
+
- Accuracy Cake: nan
|
36 |
- Accuracy Wine: nan
|
37 |
- Accuracy Milkshake: nan
|
38 |
- Accuracy Coffee: nan
|
|
|
51 |
- Accuracy Date: nan
|
52 |
- Accuracy Apricot: nan
|
53 |
- Accuracy Avocado: 0.0
|
54 |
+
- Accuracy Banana: nan
|
55 |
+
- Accuracy Strawberry: nan
|
56 |
- Accuracy Cherry: nan
|
57 |
+
- Accuracy Blueberry: 0.0
|
58 |
- Accuracy Raspberry: nan
|
59 |
- Accuracy Mango: nan
|
60 |
- Accuracy Olives: nan
|
61 |
- Accuracy Peach: nan
|
62 |
+
- Accuracy Lemon: 0.3528
|
63 |
- Accuracy Pear: nan
|
64 |
- Accuracy Fig: nan
|
65 |
+
- Accuracy Pineapple: nan
|
66 |
+
- Accuracy Grape: 0.0
|
67 |
+
- Accuracy Kiwi: 0.0
|
68 |
- Accuracy Melon: nan
|
69 |
+
- Accuracy Orange: 0.0326
|
70 |
- Accuracy Watermelon: nan
|
71 |
+
- Accuracy Steak: nan
|
72 |
+
- Accuracy Pork: 0.1314
|
73 |
+
- Accuracy Chicken duck: 0.2786
|
74 |
+
- Accuracy Sausage: 0.0
|
75 |
+
- Accuracy Fried meat: nan
|
76 |
- Accuracy Lamb: nan
|
77 |
+
- Accuracy Sauce: 0.0907
|
78 |
- Accuracy Crab: nan
|
79 |
- Accuracy Fish: 0.0
|
80 |
- Accuracy Shellfish: nan
|
81 |
- Accuracy Shrimp: nan
|
82 |
+
- Accuracy Soup: nan
|
83 |
+
- Accuracy Bread: 0.5107
|
84 |
+
- Accuracy Corn: nan
|
85 |
- Accuracy Hamburg: nan
|
86 |
- Accuracy Pizza: nan
|
87 |
- Accuracy hanamaki baozi: nan
|
88 |
- Accuracy Wonton dumplings: nan
|
89 |
- Accuracy Pasta: nan
|
90 |
- Accuracy Noodles: nan
|
91 |
+
- Accuracy Rice: 0.8496
|
92 |
+
- Accuracy Pie: 0.0
|
93 |
- Accuracy Tofu: nan
|
94 |
- Accuracy Eggplant: nan
|
95 |
+
- Accuracy Potato: 0.4847
|
96 |
- Accuracy Garlic: nan
|
97 |
- Accuracy Cauliflower: 0.0
|
98 |
+
- Accuracy Tomato: 0.3533
|
99 |
- Accuracy Kelp: nan
|
100 |
- Accuracy Seaweed: nan
|
101 |
+
- Accuracy Spring onion: 0.0
|
102 |
- Accuracy Rape: nan
|
103 |
- Accuracy Ginger: nan
|
104 |
- Accuracy Okra: nan
|
105 |
- Accuracy Lettuce: 0.0
|
106 |
+
- Accuracy Pumpkin: 0.0
|
107 |
- Accuracy Cucumber: 0.0
|
108 |
- Accuracy White radish: nan
|
109 |
+
- Accuracy Carrot: 0.7820
|
110 |
+
- Accuracy Asparagus: nan
|
111 |
- Accuracy Bamboo shoots: nan
|
112 |
+
- Accuracy Broccoli: 0.8968
|
113 |
- Accuracy Celery stick: 0.0
|
114 |
+
- Accuracy Cilantro mint: 0.0
|
115 |
- Accuracy Snow peas: nan
|
116 |
- Accuracy cabbage: nan
|
117 |
- Accuracy Bean sprouts: nan
|
118 |
- Accuracy Onion: 0.0
|
119 |
+
- Accuracy Pepper: 0.0
|
120 |
+
- Accuracy Green beans: 0.0
|
121 |
+
- Accuracy French beans: nan
|
122 |
- Accuracy King oyster mushroom: nan
|
123 |
- Accuracy Shiitake: nan
|
124 |
- Accuracy Enoki mushroom: nan
|
125 |
- Accuracy Oyster mushroom: nan
|
126 |
+
- Accuracy White button mushroom: nan
|
127 |
- Accuracy Salad: nan
|
128 |
+
- Accuracy Other ingredients: 0.0
|
129 |
- Iou Background: 0.0
|
130 |
- Iou Candy: nan
|
131 |
- Iou Egg tart: nan
|
132 |
+
- Iou French fries: 0.0043
|
133 |
+
- Iou Chocolate: nan
|
134 |
- Iou Biscuit: 0.0
|
135 |
- Iou Popcorn: nan
|
136 |
- Iou Pudding: nan
|
|
|
140 |
- Iou Wine: nan
|
141 |
- Iou Milkshake: nan
|
142 |
- Iou Coffee: nan
|
143 |
+
- Iou Juice: nan
|
144 |
- Iou Milk: nan
|
145 |
- Iou Tea: nan
|
146 |
- Iou Almond: nan
|
|
|
155 |
- Iou Date: nan
|
156 |
- Iou Apricot: nan
|
157 |
- Iou Avocado: 0.0
|
158 |
+
- Iou Banana: nan
|
159 |
+
- Iou Strawberry: 0.0
|
160 |
- Iou Cherry: nan
|
161 |
+
- Iou Blueberry: 0.0
|
162 |
- Iou Raspberry: nan
|
163 |
- Iou Mango: nan
|
164 |
- Iou Olives: nan
|
165 |
- Iou Peach: nan
|
166 |
+
- Iou Lemon: 0.1992
|
167 |
- Iou Pear: nan
|
168 |
- Iou Fig: nan
|
169 |
+
- Iou Pineapple: nan
|
170 |
+
- Iou Grape: 0.0
|
171 |
+
- Iou Kiwi: 0.0
|
172 |
- Iou Melon: nan
|
173 |
+
- Iou Orange: 0.0326
|
174 |
- Iou Watermelon: nan
|
175 |
+
- Iou Steak: 0.0
|
176 |
+
- Iou Pork: 0.1148
|
177 |
+
- Iou Chicken duck: 0.0950
|
178 |
+
- Iou Sausage: 0.0
|
179 |
+
- Iou Fried meat: nan
|
180 |
- Iou Lamb: nan
|
181 |
+
- Iou Sauce: 0.0298
|
182 |
- Iou Crab: nan
|
183 |
- Iou Fish: 0.0
|
184 |
- Iou Shellfish: nan
|
185 |
- Iou Shrimp: nan
|
186 |
+
- Iou Soup: nan
|
187 |
+
- Iou Bread: 0.2608
|
188 |
+
- Iou Corn: 0.0
|
189 |
- Iou Hamburg: nan
|
190 |
- Iou Pizza: nan
|
191 |
- Iou hanamaki baozi: nan
|
192 |
- Iou Wonton dumplings: nan
|
193 |
- Iou Pasta: nan
|
194 |
- Iou Noodles: nan
|
195 |
+
- Iou Rice: 0.5581
|
196 |
+
- Iou Pie: 0.0
|
197 |
- Iou Tofu: nan
|
198 |
- Iou Eggplant: nan
|
199 |
+
- Iou Potato: 0.2434
|
200 |
- Iou Garlic: nan
|
201 |
- Iou Cauliflower: 0.0
|
202 |
+
- Iou Tomato: 0.2617
|
203 |
- Iou Kelp: nan
|
204 |
- Iou Seaweed: nan
|
205 |
+
- Iou Spring onion: 0.0
|
206 |
- Iou Rape: nan
|
207 |
- Iou Ginger: nan
|
208 |
- Iou Okra: nan
|
209 |
- Iou Lettuce: 0.0
|
210 |
+
- Iou Pumpkin: 0.0
|
211 |
- Iou Cucumber: 0.0
|
212 |
- Iou White radish: nan
|
213 |
+
- Iou Carrot: 0.5110
|
214 |
- Iou Asparagus: 0.0
|
215 |
- Iou Bamboo shoots: nan
|
216 |
+
- Iou Broccoli: 0.2335
|
217 |
- Iou Celery stick: 0.0
|
218 |
+
- Iou Cilantro mint: 0.0
|
219 |
- Iou Snow peas: nan
|
220 |
- Iou cabbage: nan
|
221 |
- Iou Bean sprouts: nan
|
222 |
- Iou Onion: 0.0
|
223 |
- Iou Pepper: 0.0
|
224 |
+
- Iou Green beans: 0.0
|
225 |
- Iou French beans: 0.0
|
226 |
- Iou King oyster mushroom: nan
|
227 |
- Iou Shiitake: nan
|
228 |
- Iou Enoki mushroom: nan
|
229 |
- Iou Oyster mushroom: nan
|
230 |
+
- Iou White button mushroom: nan
|
231 |
- Iou Salad: nan
|
232 |
+
- Iou Other ingredients: 0.0
|
233 |
|
234 |
## Model description
|
235 |
|
|
|
248 |
### Training hyperparameters
|
249 |
|
250 |
The following hyperparameters were used during training:
|
251 |
+
- learning_rate: 0.0001
|
252 |
- train_batch_size: 8
|
253 |
- eval_batch_size: 8
|
254 |
- seed: 42
|
|
|
260 |
|
261 |
| Training Loss | Epoch | Step | Validation Loss | Mean Iou | Mean Accuracy | Overall Accuracy | Accuracy Background | Accuracy Candy | Accuracy Egg tart | Accuracy French fries | Accuracy Chocolate | Accuracy Biscuit | Accuracy Popcorn | Accuracy Pudding | Accuracy Ice cream | Accuracy Cheese butter | Accuracy Cake | Accuracy Wine | Accuracy Milkshake | Accuracy Coffee | Accuracy Juice | Accuracy Milk | Accuracy Tea | Accuracy Almond | Accuracy Red beans | Accuracy Cashew | Accuracy Dried cranberries | Accuracy Soy | Accuracy Walnut | Accuracy Peanut | Accuracy Egg | Accuracy Apple | Accuracy Date | Accuracy Apricot | Accuracy Avocado | Accuracy Banana | Accuracy Strawberry | Accuracy Cherry | Accuracy Blueberry | Accuracy Raspberry | Accuracy Mango | Accuracy Olives | Accuracy Peach | Accuracy Lemon | Accuracy Pear | Accuracy Fig | Accuracy Pineapple | Accuracy Grape | Accuracy Kiwi | Accuracy Melon | Accuracy Orange | Accuracy Watermelon | Accuracy Steak | Accuracy Pork | Accuracy Chicken duck | Accuracy Sausage | Accuracy Fried meat | Accuracy Lamb | Accuracy Sauce | Accuracy Crab | Accuracy Fish | Accuracy Shellfish | Accuracy Shrimp | Accuracy Soup | Accuracy Bread | Accuracy Corn | Accuracy Hamburg | Accuracy Pizza | Accuracy hanamaki baozi | Accuracy Wonton dumplings | Accuracy Pasta | Accuracy Noodles | Accuracy Rice | Accuracy Pie | Accuracy Tofu | Accuracy Eggplant | Accuracy Potato | Accuracy Garlic | Accuracy Cauliflower | Accuracy Tomato | Accuracy Kelp | Accuracy Seaweed | Accuracy Spring onion | Accuracy Rape | Accuracy Ginger | Accuracy Okra | Accuracy Lettuce | Accuracy Pumpkin | Accuracy Cucumber | Accuracy White radish | Accuracy Carrot | Accuracy Asparagus | Accuracy Bamboo shoots | Accuracy Broccoli | Accuracy Celery stick | Accuracy Cilantro mint | Accuracy Snow peas | Accuracy cabbage | Accuracy Bean sprouts | Accuracy Onion | Accuracy Pepper | Accuracy Green beans | Accuracy French beans | Accuracy King oyster mushroom | Accuracy Shiitake | Accuracy Enoki mushroom | Accuracy Oyster mushroom | Accuracy White button mushroom | Accuracy Salad | Accuracy Other ingredients | Iou Background | Iou Candy | Iou Egg tart | Iou French fries | Iou Chocolate | Iou Biscuit | Iou Popcorn | Iou Pudding | Iou Ice cream | Iou Cheese butter | Iou Cake | Iou Wine | Iou Milkshake | Iou Coffee | Iou Juice | Iou Milk | Iou Tea | Iou Almond | Iou Red beans | Iou Cashew | Iou Dried cranberries | Iou Soy | Iou Walnut | Iou Peanut | Iou Egg | Iou Apple | Iou Date | Iou Apricot | Iou Avocado | Iou Banana | Iou Strawberry | Iou Cherry | Iou Blueberry | Iou Raspberry | Iou Mango | Iou Olives | Iou Peach | Iou Lemon | Iou Pear | Iou Fig | Iou Pineapple | Iou Grape | Iou Kiwi | Iou Melon | Iou Orange | Iou Watermelon | Iou Steak | Iou Pork | Iou Chicken duck | Iou Sausage | Iou Fried meat | Iou Lamb | Iou Sauce | Iou Crab | Iou Fish | Iou Shellfish | Iou Shrimp | Iou Soup | Iou Bread | Iou Corn | Iou Hamburg | Iou Pizza | Iou hanamaki baozi | Iou Wonton dumplings | Iou Pasta | Iou Noodles | Iou Rice | Iou Pie | Iou Tofu | Iou Eggplant | Iou Potato | Iou Garlic | Iou Cauliflower | Iou Tomato | Iou Kelp | Iou Seaweed | Iou Spring onion | Iou Rape | Iou Ginger | Iou Okra | Iou Lettuce | Iou Pumpkin | Iou Cucumber | Iou White radish | Iou Carrot | Iou Asparagus | Iou Bamboo shoots | Iou Broccoli | Iou Celery stick | Iou Cilantro mint | Iou Snow peas | Iou cabbage | Iou Bean sprouts | Iou Onion | Iou Pepper | Iou Green beans | Iou French beans | Iou King oyster mushroom | Iou Shiitake | Iou Enoki mushroom | Iou Oyster mushroom | Iou White button mushroom | Iou Salad | Iou Other ingredients |
|
262 |
|:-------------:|:-----:|:----:|:---------------:|:--------:|:-------------:|:----------------:|:-------------------:|:--------------:|:-----------------:|:---------------------:|:------------------:|:----------------:|:----------------:|:----------------:|:------------------:|:----------------------:|:-------------:|:-------------:|:------------------:|:---------------:|:--------------:|:-------------:|:------------:|:---------------:|:------------------:|:---------------:|:--------------------------:|:------------:|:---------------:|:---------------:|:------------:|:--------------:|:-------------:|:----------------:|:----------------:|:---------------:|:-------------------:|:---------------:|:------------------:|:------------------:|:--------------:|:---------------:|:--------------:|:--------------:|:-------------:|:------------:|:------------------:|:--------------:|:-------------:|:--------------:|:---------------:|:-------------------:|:--------------:|:-------------:|:---------------------:|:----------------:|:-------------------:|:-------------:|:--------------:|:-------------:|:-------------:|:------------------:|:---------------:|:-------------:|:--------------:|:-------------:|:----------------:|:--------------:|:------------------------:|:-------------------------:|:--------------:|:----------------:|:-------------:|:------------:|:-------------:|:-----------------:|:---------------:|:---------------:|:--------------------:|:---------------:|:-------------:|:----------------:|:---------------------:|:-------------:|:---------------:|:-------------:|:----------------:|:----------------:|:-----------------:|:---------------------:|:---------------:|:------------------:|:----------------------:|:-----------------:|:---------------------:|:----------------------:|:------------------:|:-----------------:|:---------------------:|:--------------:|:---------------:|:--------------------:|:---------------------:|:-----------------------------:|:-----------------:|:-----------------------:|:------------------------:|:------------------------------:|:--------------:|:--------------------------:|:--------------:|:---------:|:------------:|:----------------:|:-------------:|:-----------:|:-----------:|:-----------:|:-------------:|:-----------------:|:--------:|:--------:|:-------------:|:----------:|:---------:|:--------:|:-------:|:----------:|:-------------:|:----------:|:---------------------:|:-------:|:----------:|:----------:|:-------:|:---------:|:--------:|:-----------:|:-----------:|:----------:|:--------------:|:----------:|:-------------:|:-------------:|:---------:|:----------:|:---------:|:---------:|:--------:|:-------:|:-------------:|:---------:|:--------:|:---------:|:----------:|:--------------:|:---------:|:--------:|:----------------:|:-----------:|:--------------:|:--------:|:---------:|:--------:|:--------:|:-------------:|:----------:|:--------:|:---------:|:--------:|:-----------:|:---------:|:-------------------:|:--------------------:|:---------:|:-----------:|:--------:|:-------:|:--------:|:------------:|:----------:|:----------:|:---------------:|:----------:|:--------:|:-----------:|:----------------:|:--------:|:----------:|:--------:|:-----------:|:-----------:|:------------:|:----------------:|:----------:|:-------------:|:-----------------:|:------------:|:----------------:|:-----------------:|:-------------:|:------------:|:----------------:|:---------:|:----------:|:---------------:|:----------------:|:------------------------:|:------------:|:------------------:|:-------------------:|:-------------------------:|:---------:|:---------------------:|
|
263 |
+
| 2.7162 | 10.0 | 100 | 2.6801 | 0.0326 | 0.0975 | 0.1897 | nan | nan | nan | 0.0000 | nan | 0.0 | nan | nan | 0.0 | 0.0 | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | 0.0 | nan | nan | nan | 0.0 | nan | nan | nan | 0.0 | nan | nan | nan | nan | 0.0 | nan | nan | nan | 0.0 | 0.0 | nan | 0.0 | nan | nan | 0.0008 | 0.3998 | 0.0 | nan | nan | 0.0106 | nan | 0.0 | nan | nan | nan | 0.5280 | nan | nan | nan | nan | nan | nan | nan | 0.2789 | 0.0 | nan | nan | 0.3304 | nan | 0.0 | 0.1307 | nan | nan | 0.0 | nan | nan | nan | 0.0 | 0.0 | 0.0 | nan | 0.8033 | nan | nan | 0.8330 | 0.0 | 0.0 | nan | nan | nan | 0.0 | 0.0 | 0.0 | nan | nan | nan | nan | nan | nan | nan | 0.0 | 0.0 | nan | nan | 0.0000 | nan | 0.0 | nan | nan | 0.0 | 0.0 | 0.0 | nan | nan | nan | nan | 0.0 | nan | nan | nan | nan | nan | nan | nan | nan | 0.0 | nan | nan | nan | 0.0 | nan | 0.0 | nan | 0.0 | nan | nan | nan | nan | 0.0 | nan | nan | nan | 0.0 | 0.0 | nan | 0.0 | nan | 0.0 | 0.0007 | 0.0741 | 0.0 | nan | nan | 0.0042 | nan | 0.0 | 0.0 | nan | nan | 0.2886 | 0.0 | nan | nan | nan | nan | nan | nan | 0.2364 | 0.0 | nan | nan | 0.2336 | nan | 0.0 | 0.1061 | nan | nan | 0.0 | nan | nan | nan | 0.0 | 0.0 | 0.0 | nan | 0.2684 | 0.0 | nan | 0.1901 | 0.0 | 0.0 | nan | nan | nan | 0.0 | 0.0 | 0.0 | nan | nan | nan | nan | nan | nan | 0.0 | 0.0 |
|
264 |
+
| 1.859 | 20.0 | 200 | 2.2530 | 0.0489 | 0.1145 | 0.2253 | nan | nan | nan | 0.0 | nan | 0.0 | nan | nan | 0.0 | 0.0 | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | 0.0 | nan | nan | nan | 0.0 | nan | nan | nan | 0.0 | nan | nan | nan | nan | 0.0 | nan | nan | nan | 0.0 | 0.0 | nan | 0.0 | nan | nan | 0.0035 | 0.1003 | 0.0 | nan | nan | 0.0500 | nan | 0.0 | nan | nan | nan | 0.5894 | nan | nan | nan | nan | nan | nan | nan | 0.7771 | 0.0025 | nan | nan | 0.4030 | nan | 0.0 | 0.3669 | nan | nan | 0.0 | nan | nan | nan | 0.0 | 0.0 | 0.0 | nan | 0.7427 | nan | nan | 0.8588 | 0.0 | 0.0 | nan | nan | nan | 0.0 | 0.0 | 0.0 | nan | nan | nan | nan | nan | nan | nan | 0.0 | 0.0 | nan | nan | 0.0 | nan | 0.0 | nan | nan | 0.0 | 0.0 | 0.0 | nan | nan | nan | nan | 0.0 | nan | nan | nan | nan | nan | nan | nan | nan | 0.0 | nan | nan | nan | 0.0 | nan | nan | nan | 0.0 | nan | nan | nan | nan | 0.0 | nan | nan | nan | 0.0 | 0.0 | nan | 0.0 | nan | 0.0 | 0.0032 | 0.0411 | 0.0 | nan | nan | 0.0177 | nan | 0.0 | nan | nan | nan | 0.2596 | 0.0 | nan | nan | nan | nan | nan | nan | 0.4561 | 0.0010 | nan | nan | 0.2965 | nan | 0.0 | 0.2613 | nan | nan | 0.0 | nan | nan | nan | 0.0 | 0.0 | 0.0 | nan | 0.4270 | 0.0 | nan | 0.1933 | 0.0 | 0.0 | nan | nan | nan | 0.0 | 0.0 | 0.0 | nan | nan | nan | nan | nan | nan | nan | 0.0 |
|
265 |
+
| 1.4433 | 30.0 | 300 | 2.1218 | 0.0597 | 0.1303 | 0.2362 | nan | nan | nan | 0.0 | nan | 0.0 | nan | nan | 0.0 | 0.0 | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | 0.0 | nan | nan | nan | 0.0 | nan | nan | nan | 0.0 | nan | nan | nan | nan | 0.1094 | nan | nan | nan | 0.0 | 0.0 | nan | 0.0394 | nan | nan | 0.0811 | 0.2829 | 0.0 | nan | nan | 0.0623 | nan | 0.0 | nan | nan | nan | 0.5184 | nan | nan | nan | nan | nan | nan | nan | 0.8217 | 0.0 | nan | nan | 0.4458 | nan | 0.0 | 0.3345 | nan | nan | 0.0 | nan | nan | nan | 0.0 | 0.0 | 0.0 | nan | 0.8465 | nan | nan | 0.8885 | 0.0 | 0.0 | nan | nan | nan | 0.0 | 0.0 | 0.0 | nan | nan | nan | nan | nan | nan | nan | 0.0 | 0.0 | nan | nan | 0.0 | nan | 0.0 | nan | nan | 0.0 | 0.0 | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | 0.0 | nan | nan | nan | 0.0 | nan | nan | nan | 0.0 | nan | nan | nan | nan | 0.1064 | nan | nan | nan | 0.0 | 0.0 | nan | 0.0394 | nan | 0.0 | 0.0789 | 0.1016 | 0.0 | nan | nan | 0.0218 | nan | 0.0 | nan | nan | nan | 0.2490 | 0.0 | nan | nan | nan | nan | nan | nan | 0.5284 | 0.0 | nan | nan | 0.2913 | nan | 0.0 | 0.2548 | nan | nan | 0.0 | nan | nan | nan | 0.0 | 0.0 | 0.0 | nan | 0.4633 | 0.0 | nan | 0.1923 | 0.0 | 0.0 | nan | nan | nan | 0.0 | 0.0 | 0.0 | 0.0 | nan | nan | nan | nan | nan | nan | 0.0 |
|
266 |
+
| 1.2355 | 40.0 | 400 | 2.0425 | 0.0637 | 0.1411 | 0.2425 | nan | nan | nan | 0.0088 | nan | 0.0 | nan | nan | 0.0 | 0.0 | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | 0.0 | nan | nan | nan | 0.0 | nan | nan | nan | 0.0 | nan | nan | nan | nan | 0.3867 | nan | nan | nan | 0.0 | 0.0 | nan | 0.0263 | nan | nan | 0.1149 | 0.2447 | 0.0 | nan | nan | 0.0802 | nan | 0.0 | nan | nan | nan | 0.5466 | nan | nan | nan | nan | nan | nan | nan | 0.8522 | 0.0000 | nan | nan | 0.4784 | nan | 0.0 | 0.3390 | nan | nan | 0.0 | nan | nan | nan | 0.0 | 0.0 | 0.0 | nan | 0.8193 | nan | nan | 0.9016 | 0.0 | 0.0 | nan | nan | nan | 0.0 | 0.0 | 0.0 | nan | nan | nan | nan | nan | nan | nan | 0.0 | 0.0 | nan | nan | 0.0080 | nan | 0.0 | nan | nan | 0.0 | 0.0 | 0.0 | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | 0.0 | nan | nan | nan | 0.0 | nan | 0.0 | nan | 0.0 | nan | nan | nan | nan | 0.2547 | nan | nan | nan | 0.0 | 0.0 | nan | 0.0263 | nan | 0.0 | 0.1059 | 0.0885 | 0.0 | nan | nan | 0.0276 | nan | 0.0 | nan | nan | nan | 0.2568 | 0.0 | nan | nan | nan | nan | nan | nan | 0.5456 | 0.0000 | nan | nan | 0.2725 | nan | 0.0 | 0.2551 | nan | nan | 0.0 | nan | nan | nan | 0.0 | 0.0 | 0.0 | nan | 0.5393 | 0.0 | nan | 0.2314 | 0.0 | 0.0 | nan | nan | nan | 0.0 | 0.0 | 0.0 | 0.0 | nan | nan | nan | nan | nan | nan | 0.0 |
|
267 |
+
| 1.1372 | 50.0 | 500 | 2.0228 | 0.0621 | 0.1402 | 0.2390 | nan | nan | nan | 0.0048 | nan | 0.0 | nan | nan | 0.0 | 0.0 | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | 0.0 | nan | nan | nan | 0.0 | nan | nan | nan | 0.0 | nan | nan | nan | nan | 0.3528 | nan | nan | nan | 0.0 | 0.0 | nan | 0.0326 | nan | nan | 0.1314 | 0.2786 | 0.0 | nan | nan | 0.0907 | nan | 0.0 | nan | nan | nan | 0.5107 | nan | nan | nan | nan | nan | nan | nan | 0.8496 | 0.0 | nan | nan | 0.4847 | nan | 0.0 | 0.3533 | nan | nan | 0.0 | nan | nan | nan | 0.0 | 0.0 | 0.0 | nan | 0.7820 | nan | nan | 0.8968 | 0.0 | 0.0 | nan | nan | nan | 0.0 | 0.0 | 0.0 | nan | nan | nan | nan | nan | nan | nan | 0.0 | 0.0 | nan | nan | 0.0043 | nan | 0.0 | nan | nan | 0.0 | 0.0 | 0.0 | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | 0.0 | nan | nan | nan | 0.0 | nan | 0.0 | nan | 0.0 | nan | nan | nan | nan | 0.1992 | nan | nan | nan | 0.0 | 0.0 | nan | 0.0326 | nan | 0.0 | 0.1148 | 0.0950 | 0.0 | nan | nan | 0.0298 | nan | 0.0 | nan | nan | nan | 0.2608 | 0.0 | nan | nan | nan | nan | nan | nan | 0.5581 | 0.0 | nan | nan | 0.2434 | nan | 0.0 | 0.2617 | nan | nan | 0.0 | nan | nan | nan | 0.0 | 0.0 | 0.0 | nan | 0.5110 | 0.0 | nan | 0.2335 | 0.0 | 0.0 | nan | nan | nan | 0.0 | 0.0 | 0.0 | 0.0 | nan | nan | nan | nan | nan | nan | 0.0 |
|
268 |
|
269 |
|
270 |
### Framework versions
|
model.safetensors
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
size 14989656
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:b771685a291854ed0c3cb4806fcd06d5efae76fe4af7e28d520f1a343927e274
|
3 |
size 14989656
|
runs/Dec17_07-33-45_9a5cce3f87e4/events.out.tfevents.1734420881.9a5cce3f87e4.776.0
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:14e9b43ad3f9cbf8db96c617e43a9c4a7567f51c682eceed3f7f4f9171d769ec
|
3 |
+
size 74688
|
training_args.bin
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
size 5368
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:ea560783c360660ed42005630d57a736a9aa507c3fdbbb4e7b6ce1cb1c81c3d6
|
3 |
size 5368
|