File size: 4,191 Bytes
aae9588
6d17f3c
aae9588
 
9cbf151
 
 
 
 
 
53443e2
5052eca
 
53443e2
 
5052eca
 
c9b19b9
5052eca
 
089134f
 
5052eca
 
 
 
 
 
 
53443e2
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
c9b19b9
53443e2
9751425
83c688f
9751425
 
 
 
 
83c688f
 
 
 
 
 
 
a3c01b0
83c688f
 
 
 
 
 
 
 
 
 
1b7bf17
 
 
 
 
83c688f
 
53443e2
 
aae9588
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
---
library_name: keras-hub
pipeline_tag: text-generation
---

Hey I am CosmoGemma 👋 I can answer cosmology questions from astroph.CO research articles.

This is a Gemma_2b_en fine-tuned on QA pairs (3.5k) generated from Cosmology and Nongalactic Astrophysics articles (arXiv astro-ph.CO) 
from 2018-2022 and tested on QA pairs (1k) generated from 2023 articles, scoring over 75% accuracy.




To generate an answer for a given question using this model, please use:

Requirements:

```
keras==3.6.0
keras_nlp==0.15.1
```

```
import os

os.environ["KERAS_BACKEND"] = "jax"  # Or "torch" or "tensorflow".                                                                                                                          
# Avoid memory fragmentation on JAX backend.                                                                                                                                                
os.environ["XLA_PYTHON_CLIENT_MEM_FRACTION"]="1.00"

import keras
import keras_nlp

gemma_lm = keras_nlp.models.CausalLM.from_preset("hf://sultan-hassan/CosmoGemma_2b_en")
template = "Instruction:\n{instruction}\n\nResponse:\n{response}"

Question = "write your question here"

prompt = template.format(
  instruction=Question,                                                                   
  response="",
  )
out = gemma_lm.generate(prompt, max_length=1024)
ind = out.index('Response') + len('Response')+2
print ("Question:", Question)
print ("Answer:", out[ind:])
```


Training dataset


Dataset has been generated from the llama3.1:8b-instruct-fp16 model to generate QA pairs from abstracts of the Cosmology and Nongalactic Astrophysics articles (arXiv astro-ph.CO) 
from 2018-2022.

Examples for some questions from the training dataset:

```
Question: What are some common methods for model selection in astrophysics?
Answer: The goodness of fit, the likelihood ratio test, Bayesian model selection using Bayes factors, and the classical as well as the Bayesian information theoretic approaches.

Question: What type of coupling in inflationary models can affect the prediction of inflationary parameters?
Answer: Non-minimal coupling to gravity.

Question: What type of distribution is used to model the probability of non-linear density field?
Answer: A superposition of a Gaussian and a lognormal distribution.

Question: Can the shape of central cluster galaxies be used as a predictor of weak-lensing mass bias in individual clusters?
Answer: Yes, we find that on average, the lensing masses of clusters with the roundest / most elliptical 25% of BCGs are biased ~20% high / low compared to the average.

Question: What could be the cause of remaining excess power in a signal after foreground mitigation?
Answer: Residual foreground emission from sources or diffuse emission far away from the phase centre, polarization leakage, chromatic calibration errors, ionosphere, or low-level radio-frequency interference

Question: What is the precision of photometric redshift estimates for LRGs?
Answer: 0.02

Question: What is the form of the scaling relation used to calculate X-ray luminosity?
Answer: $L_{\rm{X}} \propto \text{A}_{\rm{X}}M_{\text{200c}}^{\text{B}_{\rm{X}}} E(z)^2 (1+z)^{\gamma_{\rm{X}}}$

```


This is a [`Gemma` model](https://keras.io/api/keras_nlp/models/gemma) uploaded using the KerasNLP library and can be used with JAX, TensorFlow, and PyTorch backends.
This model is related to a `CausalLM` task.

Model config:
* **name:** gemma_backbone
* **trainable:** True
* **vocabulary_size:** 256000
* **num_layers:** 18
* **num_query_heads:** 8
* **num_key_value_heads:** 1
* **hidden_dim:** 2048
* **intermediate_dim:** 32768
* **head_dim:** 256
* **layer_norm_epsilon:** 1e-06
* **dropout:** 0
* **query_head_dim_normalize:** True
* **use_post_ffw_norm:** False
* **use_post_attention_norm:** False
* **final_logit_soft_cap:** None
* **attention_logit_soft_cap:** None
* **sliding_window_size:** 4096
* **use_sliding_window_attention:** False

This model card has been generated automatically and should be completed by the model author. See [Model Cards documentation](https://huggingface.co/docs/hub/model-cards) for more information.