sudipto-ducs commited on
Commit
6f8ee2c
·
verified ·
1 Parent(s): 6d0a35f

Upload folder using huggingface_hub

Browse files
README.md ADDED
@@ -0,0 +1,60 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ license: llama2
3
+ library_name: peft
4
+ tags:
5
+ - llama-factory
6
+ - lora
7
+ - generated_from_trainer
8
+ base_model: sudipto-ducs/InLegalLLaMA
9
+ model-index:
10
+ - name: sudipto-ducs/InLegalLLaMA-Instruct
11
+ results: []
12
+ ---
13
+
14
+ <!-- This model card has been generated automatically according to the information the Trainer had access to. You
15
+ should probably proofread and complete it, then remove this comment. -->
16
+
17
+ # inlegalllama-instruct-hf
18
+
19
+ This model is a fine-tuned version of [sudipto-ducs/InLegalLLaMA](https://huggingface.co/sudipto-ducs/InLegalLLaMA) on the legalkg_dataset_prompts, the legal_semantic_segmentation and the lima datasets.
20
+
21
+ ## Model description
22
+
23
+ More information needed
24
+
25
+ ## Intended uses & limitations
26
+
27
+ More information needed
28
+
29
+ ## Training and evaluation data
30
+
31
+ More information needed
32
+
33
+ ## Training procedure
34
+
35
+ ### Training hyperparameters
36
+
37
+ The following hyperparameters were used during training:
38
+ - learning_rate: 3e-05
39
+ - train_batch_size: 2
40
+ - eval_batch_size: 8
41
+ - seed: 42
42
+ - gradient_accumulation_steps: 8
43
+ - total_train_batch_size: 16
44
+ - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
45
+ - lr_scheduler_type: cosine
46
+ - lr_scheduler_warmup_steps: 1000
47
+ - num_epochs: 3.0
48
+ - mixed_precision_training: Native AMP
49
+
50
+ ### Training results
51
+
52
+
53
+
54
+ ### Framework versions
55
+
56
+ - PEFT 0.10.0
57
+ - Transformers 4.39.0
58
+ - Pytorch 2.2.1+cu121
59
+ - Datasets 2.18.0
60
+ - Tokenizers 0.15.2
all_results.json ADDED
@@ -0,0 +1,7 @@
 
 
 
 
 
 
 
 
1
+ {
2
+ "epoch": 3.0,
3
+ "train_loss": 0.5588170812518586,
4
+ "train_runtime": 28902.9641,
5
+ "train_samples_per_second": 1.508,
6
+ "train_steps_per_second": 0.094
7
+ }
config.json ADDED
@@ -0,0 +1,28 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "_name_or_path": "/home/user/Desktop/Sudipto/major/models/inlegalllama-hf",
3
+ "architectures": [
4
+ "LlamaForCausalLM"
5
+ ],
6
+ "attention_bias": false,
7
+ "attention_dropout": 0.0,
8
+ "bos_token_id": 1,
9
+ "eos_token_id": 2,
10
+ "hidden_act": "silu",
11
+ "hidden_size": 4096,
12
+ "initializer_range": 0.02,
13
+ "intermediate_size": 11008,
14
+ "max_position_embeddings": 4096,
15
+ "model_type": "llama",
16
+ "num_attention_heads": 32,
17
+ "num_hidden_layers": 32,
18
+ "num_key_value_heads": 32,
19
+ "pretraining_tp": 1,
20
+ "rms_norm_eps": 1e-05,
21
+ "rope_scaling": null,
22
+ "rope_theta": 10000.0,
23
+ "tie_word_embeddings": false,
24
+ "torch_dtype": "float16",
25
+ "transformers_version": "4.39.0",
26
+ "use_cache": true,
27
+ "vocab_size": 32000
28
+ }
generation_config.json ADDED
@@ -0,0 +1,10 @@
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "bos_token_id": 1,
3
+ "do_sample": true,
4
+ "eos_token_id": 2,
5
+ "max_length": 4096,
6
+ "pad_token_id": 0,
7
+ "temperature": 0.6,
8
+ "top_p": 0.9,
9
+ "transformers_version": "4.39.0"
10
+ }
model-00001-of-00014.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:692ad66fd25265bfdfab256e2b7b976d66e1929219176d257bb1c7a8c25f963a
3
+ size 981485352
model-00002-of-00014.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:7b4d5d03ace17f109340a83aa93b32ec5e0111755eb8ad1c2535b301656984ff
3
+ size 966838840
model-00003-of-00014.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:b7ef30e2613be3f3cf9fe3e1a80396a5d5942f0d20cc7010a0f5d6745991f1f4
3
+ size 966822232
model-00004-of-00014.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:e70b9909559cdac9f7da5fe6c8c701d6a7853dba996e72efb5c9a1d2bf78bdd2
3
+ size 989907400
model-00005-of-00014.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:a560697c29937448d9e21d982a33749ba3b187ffcc117b854317ccbc057b26b5
3
+ size 943753688
model-00006-of-00014.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:a76fdee9c74a21dd83b02bb18d468b8046ddffd6a45e2c1c124dfb4d02cffbc5
3
+ size 989890808
model-00007-of-00014.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:adccdc5e3f967042e53bdd6df0bbc25b8c7051170593638c7962b1e4af1e15d7
3
+ size 966838864
model-00008-of-00014.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:375e29d6cec30f7211fb2561bdc477cb35f683856f7adae9c0ea91f7b2dd5bda
3
+ size 966822256
model-00009-of-00014.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:3c71390281cba2d6ce8b33b4b16e24c59052271a0ed7b6e5ec000d3dc39c33b7
3
+ size 989907416
model-00010-of-00014.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:b9dac30afba12bfe22a77ad990afb66961b941858b14f8cb07dfe0db959f9781
3
+ size 943753696
model-00011-of-00014.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:74aa659ffa036776f6442c231031ea4e399cce50ccc56e9710d7eb3522c214de
3
+ size 989890808
model-00012-of-00014.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:c3736e06f715d0bdb20fa6cd686ffba39b48ba106443edabd6345e0e0ba45ea0
3
+ size 966838864
model-00013-of-00014.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:fbd3fd3d97645933e24cccab595e88718c7aafd5d1dbbb6b3e74ae25a498fec3
3
+ size 966822256
model-00014-of-00014.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:c6d7eb8ea26d35e47fbc70468eb82bbf3a72296827ee79e41bc1aeae437a9b86
3
+ size 847292056
model.safetensors.index.json ADDED
@@ -0,0 +1,298 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "metadata": {
3
+ "total_size": 13476831232
4
+ },
5
+ "weight_map": {
6
+ "lm_head.weight": "model-00014-of-00014.safetensors",
7
+ "model.embed_tokens.weight": "model-00001-of-00014.safetensors",
8
+ "model.layers.0.input_layernorm.weight": "model-00001-of-00014.safetensors",
9
+ "model.layers.0.mlp.down_proj.weight": "model-00001-of-00014.safetensors",
10
+ "model.layers.0.mlp.gate_proj.weight": "model-00001-of-00014.safetensors",
11
+ "model.layers.0.mlp.up_proj.weight": "model-00001-of-00014.safetensors",
12
+ "model.layers.0.post_attention_layernorm.weight": "model-00001-of-00014.safetensors",
13
+ "model.layers.0.self_attn.k_proj.weight": "model-00001-of-00014.safetensors",
14
+ "model.layers.0.self_attn.o_proj.weight": "model-00001-of-00014.safetensors",
15
+ "model.layers.0.self_attn.q_proj.weight": "model-00001-of-00014.safetensors",
16
+ "model.layers.0.self_attn.v_proj.weight": "model-00001-of-00014.safetensors",
17
+ "model.layers.1.input_layernorm.weight": "model-00002-of-00014.safetensors",
18
+ "model.layers.1.mlp.down_proj.weight": "model-00002-of-00014.safetensors",
19
+ "model.layers.1.mlp.gate_proj.weight": "model-00001-of-00014.safetensors",
20
+ "model.layers.1.mlp.up_proj.weight": "model-00001-of-00014.safetensors",
21
+ "model.layers.1.post_attention_layernorm.weight": "model-00002-of-00014.safetensors",
22
+ "model.layers.1.self_attn.k_proj.weight": "model-00001-of-00014.safetensors",
23
+ "model.layers.1.self_attn.o_proj.weight": "model-00001-of-00014.safetensors",
24
+ "model.layers.1.self_attn.q_proj.weight": "model-00001-of-00014.safetensors",
25
+ "model.layers.1.self_attn.v_proj.weight": "model-00001-of-00014.safetensors",
26
+ "model.layers.10.input_layernorm.weight": "model-00005-of-00014.safetensors",
27
+ "model.layers.10.mlp.down_proj.weight": "model-00005-of-00014.safetensors",
28
+ "model.layers.10.mlp.gate_proj.weight": "model-00005-of-00014.safetensors",
29
+ "model.layers.10.mlp.up_proj.weight": "model-00005-of-00014.safetensors",
30
+ "model.layers.10.post_attention_layernorm.weight": "model-00005-of-00014.safetensors",
31
+ "model.layers.10.self_attn.k_proj.weight": "model-00005-of-00014.safetensors",
32
+ "model.layers.10.self_attn.o_proj.weight": "model-00005-of-00014.safetensors",
33
+ "model.layers.10.self_attn.q_proj.weight": "model-00005-of-00014.safetensors",
34
+ "model.layers.10.self_attn.v_proj.weight": "model-00005-of-00014.safetensors",
35
+ "model.layers.11.input_layernorm.weight": "model-00006-of-00014.safetensors",
36
+ "model.layers.11.mlp.down_proj.weight": "model-00006-of-00014.safetensors",
37
+ "model.layers.11.mlp.gate_proj.weight": "model-00006-of-00014.safetensors",
38
+ "model.layers.11.mlp.up_proj.weight": "model-00006-of-00014.safetensors",
39
+ "model.layers.11.post_attention_layernorm.weight": "model-00006-of-00014.safetensors",
40
+ "model.layers.11.self_attn.k_proj.weight": "model-00005-of-00014.safetensors",
41
+ "model.layers.11.self_attn.o_proj.weight": "model-00005-of-00014.safetensors",
42
+ "model.layers.11.self_attn.q_proj.weight": "model-00005-of-00014.safetensors",
43
+ "model.layers.11.self_attn.v_proj.weight": "model-00005-of-00014.safetensors",
44
+ "model.layers.12.input_layernorm.weight": "model-00006-of-00014.safetensors",
45
+ "model.layers.12.mlp.down_proj.weight": "model-00006-of-00014.safetensors",
46
+ "model.layers.12.mlp.gate_proj.weight": "model-00006-of-00014.safetensors",
47
+ "model.layers.12.mlp.up_proj.weight": "model-00006-of-00014.safetensors",
48
+ "model.layers.12.post_attention_layernorm.weight": "model-00006-of-00014.safetensors",
49
+ "model.layers.12.self_attn.k_proj.weight": "model-00006-of-00014.safetensors",
50
+ "model.layers.12.self_attn.o_proj.weight": "model-00006-of-00014.safetensors",
51
+ "model.layers.12.self_attn.q_proj.weight": "model-00006-of-00014.safetensors",
52
+ "model.layers.12.self_attn.v_proj.weight": "model-00006-of-00014.safetensors",
53
+ "model.layers.13.input_layernorm.weight": "model-00007-of-00014.safetensors",
54
+ "model.layers.13.mlp.down_proj.weight": "model-00007-of-00014.safetensors",
55
+ "model.layers.13.mlp.gate_proj.weight": "model-00006-of-00014.safetensors",
56
+ "model.layers.13.mlp.up_proj.weight": "model-00006-of-00014.safetensors",
57
+ "model.layers.13.post_attention_layernorm.weight": "model-00007-of-00014.safetensors",
58
+ "model.layers.13.self_attn.k_proj.weight": "model-00006-of-00014.safetensors",
59
+ "model.layers.13.self_attn.o_proj.weight": "model-00006-of-00014.safetensors",
60
+ "model.layers.13.self_attn.q_proj.weight": "model-00006-of-00014.safetensors",
61
+ "model.layers.13.self_attn.v_proj.weight": "model-00006-of-00014.safetensors",
62
+ "model.layers.14.input_layernorm.weight": "model-00007-of-00014.safetensors",
63
+ "model.layers.14.mlp.down_proj.weight": "model-00007-of-00014.safetensors",
64
+ "model.layers.14.mlp.gate_proj.weight": "model-00007-of-00014.safetensors",
65
+ "model.layers.14.mlp.up_proj.weight": "model-00007-of-00014.safetensors",
66
+ "model.layers.14.post_attention_layernorm.weight": "model-00007-of-00014.safetensors",
67
+ "model.layers.14.self_attn.k_proj.weight": "model-00007-of-00014.safetensors",
68
+ "model.layers.14.self_attn.o_proj.weight": "model-00007-of-00014.safetensors",
69
+ "model.layers.14.self_attn.q_proj.weight": "model-00007-of-00014.safetensors",
70
+ "model.layers.14.self_attn.v_proj.weight": "model-00007-of-00014.safetensors",
71
+ "model.layers.15.input_layernorm.weight": "model-00007-of-00014.safetensors",
72
+ "model.layers.15.mlp.down_proj.weight": "model-00007-of-00014.safetensors",
73
+ "model.layers.15.mlp.gate_proj.weight": "model-00007-of-00014.safetensors",
74
+ "model.layers.15.mlp.up_proj.weight": "model-00007-of-00014.safetensors",
75
+ "model.layers.15.post_attention_layernorm.weight": "model-00007-of-00014.safetensors",
76
+ "model.layers.15.self_attn.k_proj.weight": "model-00007-of-00014.safetensors",
77
+ "model.layers.15.self_attn.o_proj.weight": "model-00007-of-00014.safetensors",
78
+ "model.layers.15.self_attn.q_proj.weight": "model-00007-of-00014.safetensors",
79
+ "model.layers.15.self_attn.v_proj.weight": "model-00007-of-00014.safetensors",
80
+ "model.layers.16.input_layernorm.weight": "model-00008-of-00014.safetensors",
81
+ "model.layers.16.mlp.down_proj.weight": "model-00008-of-00014.safetensors",
82
+ "model.layers.16.mlp.gate_proj.weight": "model-00008-of-00014.safetensors",
83
+ "model.layers.16.mlp.up_proj.weight": "model-00008-of-00014.safetensors",
84
+ "model.layers.16.post_attention_layernorm.weight": "model-00008-of-00014.safetensors",
85
+ "model.layers.16.self_attn.k_proj.weight": "model-00007-of-00014.safetensors",
86
+ "model.layers.16.self_attn.o_proj.weight": "model-00008-of-00014.safetensors",
87
+ "model.layers.16.self_attn.q_proj.weight": "model-00007-of-00014.safetensors",
88
+ "model.layers.16.self_attn.v_proj.weight": "model-00008-of-00014.safetensors",
89
+ "model.layers.17.input_layernorm.weight": "model-00008-of-00014.safetensors",
90
+ "model.layers.17.mlp.down_proj.weight": "model-00008-of-00014.safetensors",
91
+ "model.layers.17.mlp.gate_proj.weight": "model-00008-of-00014.safetensors",
92
+ "model.layers.17.mlp.up_proj.weight": "model-00008-of-00014.safetensors",
93
+ "model.layers.17.post_attention_layernorm.weight": "model-00008-of-00014.safetensors",
94
+ "model.layers.17.self_attn.k_proj.weight": "model-00008-of-00014.safetensors",
95
+ "model.layers.17.self_attn.o_proj.weight": "model-00008-of-00014.safetensors",
96
+ "model.layers.17.self_attn.q_proj.weight": "model-00008-of-00014.safetensors",
97
+ "model.layers.17.self_attn.v_proj.weight": "model-00008-of-00014.safetensors",
98
+ "model.layers.18.input_layernorm.weight": "model-00009-of-00014.safetensors",
99
+ "model.layers.18.mlp.down_proj.weight": "model-00009-of-00014.safetensors",
100
+ "model.layers.18.mlp.gate_proj.weight": "model-00008-of-00014.safetensors",
101
+ "model.layers.18.mlp.up_proj.weight": "model-00009-of-00014.safetensors",
102
+ "model.layers.18.post_attention_layernorm.weight": "model-00009-of-00014.safetensors",
103
+ "model.layers.18.self_attn.k_proj.weight": "model-00008-of-00014.safetensors",
104
+ "model.layers.18.self_attn.o_proj.weight": "model-00008-of-00014.safetensors",
105
+ "model.layers.18.self_attn.q_proj.weight": "model-00008-of-00014.safetensors",
106
+ "model.layers.18.self_attn.v_proj.weight": "model-00008-of-00014.safetensors",
107
+ "model.layers.19.input_layernorm.weight": "model-00009-of-00014.safetensors",
108
+ "model.layers.19.mlp.down_proj.weight": "model-00009-of-00014.safetensors",
109
+ "model.layers.19.mlp.gate_proj.weight": "model-00009-of-00014.safetensors",
110
+ "model.layers.19.mlp.up_proj.weight": "model-00009-of-00014.safetensors",
111
+ "model.layers.19.post_attention_layernorm.weight": "model-00009-of-00014.safetensors",
112
+ "model.layers.19.self_attn.k_proj.weight": "model-00009-of-00014.safetensors",
113
+ "model.layers.19.self_attn.o_proj.weight": "model-00009-of-00014.safetensors",
114
+ "model.layers.19.self_attn.q_proj.weight": "model-00009-of-00014.safetensors",
115
+ "model.layers.19.self_attn.v_proj.weight": "model-00009-of-00014.safetensors",
116
+ "model.layers.2.input_layernorm.weight": "model-00002-of-00014.safetensors",
117
+ "model.layers.2.mlp.down_proj.weight": "model-00002-of-00014.safetensors",
118
+ "model.layers.2.mlp.gate_proj.weight": "model-00002-of-00014.safetensors",
119
+ "model.layers.2.mlp.up_proj.weight": "model-00002-of-00014.safetensors",
120
+ "model.layers.2.post_attention_layernorm.weight": "model-00002-of-00014.safetensors",
121
+ "model.layers.2.self_attn.k_proj.weight": "model-00002-of-00014.safetensors",
122
+ "model.layers.2.self_attn.o_proj.weight": "model-00002-of-00014.safetensors",
123
+ "model.layers.2.self_attn.q_proj.weight": "model-00002-of-00014.safetensors",
124
+ "model.layers.2.self_attn.v_proj.weight": "model-00002-of-00014.safetensors",
125
+ "model.layers.20.input_layernorm.weight": "model-00009-of-00014.safetensors",
126
+ "model.layers.20.mlp.down_proj.weight": "model-00009-of-00014.safetensors",
127
+ "model.layers.20.mlp.gate_proj.weight": "model-00009-of-00014.safetensors",
128
+ "model.layers.20.mlp.up_proj.weight": "model-00009-of-00014.safetensors",
129
+ "model.layers.20.post_attention_layernorm.weight": "model-00009-of-00014.safetensors",
130
+ "model.layers.20.self_attn.k_proj.weight": "model-00009-of-00014.safetensors",
131
+ "model.layers.20.self_attn.o_proj.weight": "model-00009-of-00014.safetensors",
132
+ "model.layers.20.self_attn.q_proj.weight": "model-00009-of-00014.safetensors",
133
+ "model.layers.20.self_attn.v_proj.weight": "model-00009-of-00014.safetensors",
134
+ "model.layers.21.input_layernorm.weight": "model-00010-of-00014.safetensors",
135
+ "model.layers.21.mlp.down_proj.weight": "model-00010-of-00014.safetensors",
136
+ "model.layers.21.mlp.gate_proj.weight": "model-00010-of-00014.safetensors",
137
+ "model.layers.21.mlp.up_proj.weight": "model-00010-of-00014.safetensors",
138
+ "model.layers.21.post_attention_layernorm.weight": "model-00010-of-00014.safetensors",
139
+ "model.layers.21.self_attn.k_proj.weight": "model-00010-of-00014.safetensors",
140
+ "model.layers.21.self_attn.o_proj.weight": "model-00010-of-00014.safetensors",
141
+ "model.layers.21.self_attn.q_proj.weight": "model-00010-of-00014.safetensors",
142
+ "model.layers.21.self_attn.v_proj.weight": "model-00010-of-00014.safetensors",
143
+ "model.layers.22.input_layernorm.weight": "model-00010-of-00014.safetensors",
144
+ "model.layers.22.mlp.down_proj.weight": "model-00010-of-00014.safetensors",
145
+ "model.layers.22.mlp.gate_proj.weight": "model-00010-of-00014.safetensors",
146
+ "model.layers.22.mlp.up_proj.weight": "model-00010-of-00014.safetensors",
147
+ "model.layers.22.post_attention_layernorm.weight": "model-00010-of-00014.safetensors",
148
+ "model.layers.22.self_attn.k_proj.weight": "model-00010-of-00014.safetensors",
149
+ "model.layers.22.self_attn.o_proj.weight": "model-00010-of-00014.safetensors",
150
+ "model.layers.22.self_attn.q_proj.weight": "model-00010-of-00014.safetensors",
151
+ "model.layers.22.self_attn.v_proj.weight": "model-00010-of-00014.safetensors",
152
+ "model.layers.23.input_layernorm.weight": "model-00011-of-00014.safetensors",
153
+ "model.layers.23.mlp.down_proj.weight": "model-00011-of-00014.safetensors",
154
+ "model.layers.23.mlp.gate_proj.weight": "model-00011-of-00014.safetensors",
155
+ "model.layers.23.mlp.up_proj.weight": "model-00011-of-00014.safetensors",
156
+ "model.layers.23.post_attention_layernorm.weight": "model-00011-of-00014.safetensors",
157
+ "model.layers.23.self_attn.k_proj.weight": "model-00010-of-00014.safetensors",
158
+ "model.layers.23.self_attn.o_proj.weight": "model-00010-of-00014.safetensors",
159
+ "model.layers.23.self_attn.q_proj.weight": "model-00010-of-00014.safetensors",
160
+ "model.layers.23.self_attn.v_proj.weight": "model-00010-of-00014.safetensors",
161
+ "model.layers.24.input_layernorm.weight": "model-00011-of-00014.safetensors",
162
+ "model.layers.24.mlp.down_proj.weight": "model-00011-of-00014.safetensors",
163
+ "model.layers.24.mlp.gate_proj.weight": "model-00011-of-00014.safetensors",
164
+ "model.layers.24.mlp.up_proj.weight": "model-00011-of-00014.safetensors",
165
+ "model.layers.24.post_attention_layernorm.weight": "model-00011-of-00014.safetensors",
166
+ "model.layers.24.self_attn.k_proj.weight": "model-00011-of-00014.safetensors",
167
+ "model.layers.24.self_attn.o_proj.weight": "model-00011-of-00014.safetensors",
168
+ "model.layers.24.self_attn.q_proj.weight": "model-00011-of-00014.safetensors",
169
+ "model.layers.24.self_attn.v_proj.weight": "model-00011-of-00014.safetensors",
170
+ "model.layers.25.input_layernorm.weight": "model-00012-of-00014.safetensors",
171
+ "model.layers.25.mlp.down_proj.weight": "model-00012-of-00014.safetensors",
172
+ "model.layers.25.mlp.gate_proj.weight": "model-00011-of-00014.safetensors",
173
+ "model.layers.25.mlp.up_proj.weight": "model-00011-of-00014.safetensors",
174
+ "model.layers.25.post_attention_layernorm.weight": "model-00012-of-00014.safetensors",
175
+ "model.layers.25.self_attn.k_proj.weight": "model-00011-of-00014.safetensors",
176
+ "model.layers.25.self_attn.o_proj.weight": "model-00011-of-00014.safetensors",
177
+ "model.layers.25.self_attn.q_proj.weight": "model-00011-of-00014.safetensors",
178
+ "model.layers.25.self_attn.v_proj.weight": "model-00011-of-00014.safetensors",
179
+ "model.layers.26.input_layernorm.weight": "model-00012-of-00014.safetensors",
180
+ "model.layers.26.mlp.down_proj.weight": "model-00012-of-00014.safetensors",
181
+ "model.layers.26.mlp.gate_proj.weight": "model-00012-of-00014.safetensors",
182
+ "model.layers.26.mlp.up_proj.weight": "model-00012-of-00014.safetensors",
183
+ "model.layers.26.post_attention_layernorm.weight": "model-00012-of-00014.safetensors",
184
+ "model.layers.26.self_attn.k_proj.weight": "model-00012-of-00014.safetensors",
185
+ "model.layers.26.self_attn.o_proj.weight": "model-00012-of-00014.safetensors",
186
+ "model.layers.26.self_attn.q_proj.weight": "model-00012-of-00014.safetensors",
187
+ "model.layers.26.self_attn.v_proj.weight": "model-00012-of-00014.safetensors",
188
+ "model.layers.27.input_layernorm.weight": "model-00012-of-00014.safetensors",
189
+ "model.layers.27.mlp.down_proj.weight": "model-00012-of-00014.safetensors",
190
+ "model.layers.27.mlp.gate_proj.weight": "model-00012-of-00014.safetensors",
191
+ "model.layers.27.mlp.up_proj.weight": "model-00012-of-00014.safetensors",
192
+ "model.layers.27.post_attention_layernorm.weight": "model-00012-of-00014.safetensors",
193
+ "model.layers.27.self_attn.k_proj.weight": "model-00012-of-00014.safetensors",
194
+ "model.layers.27.self_attn.o_proj.weight": "model-00012-of-00014.safetensors",
195
+ "model.layers.27.self_attn.q_proj.weight": "model-00012-of-00014.safetensors",
196
+ "model.layers.27.self_attn.v_proj.weight": "model-00012-of-00014.safetensors",
197
+ "model.layers.28.input_layernorm.weight": "model-00013-of-00014.safetensors",
198
+ "model.layers.28.mlp.down_proj.weight": "model-00013-of-00014.safetensors",
199
+ "model.layers.28.mlp.gate_proj.weight": "model-00013-of-00014.safetensors",
200
+ "model.layers.28.mlp.up_proj.weight": "model-00013-of-00014.safetensors",
201
+ "model.layers.28.post_attention_layernorm.weight": "model-00013-of-00014.safetensors",
202
+ "model.layers.28.self_attn.k_proj.weight": "model-00012-of-00014.safetensors",
203
+ "model.layers.28.self_attn.o_proj.weight": "model-00013-of-00014.safetensors",
204
+ "model.layers.28.self_attn.q_proj.weight": "model-00012-of-00014.safetensors",
205
+ "model.layers.28.self_attn.v_proj.weight": "model-00013-of-00014.safetensors",
206
+ "model.layers.29.input_layernorm.weight": "model-00013-of-00014.safetensors",
207
+ "model.layers.29.mlp.down_proj.weight": "model-00013-of-00014.safetensors",
208
+ "model.layers.29.mlp.gate_proj.weight": "model-00013-of-00014.safetensors",
209
+ "model.layers.29.mlp.up_proj.weight": "model-00013-of-00014.safetensors",
210
+ "model.layers.29.post_attention_layernorm.weight": "model-00013-of-00014.safetensors",
211
+ "model.layers.29.self_attn.k_proj.weight": "model-00013-of-00014.safetensors",
212
+ "model.layers.29.self_attn.o_proj.weight": "model-00013-of-00014.safetensors",
213
+ "model.layers.29.self_attn.q_proj.weight": "model-00013-of-00014.safetensors",
214
+ "model.layers.29.self_attn.v_proj.weight": "model-00013-of-00014.safetensors",
215
+ "model.layers.3.input_layernorm.weight": "model-00002-of-00014.safetensors",
216
+ "model.layers.3.mlp.down_proj.weight": "model-00002-of-00014.safetensors",
217
+ "model.layers.3.mlp.gate_proj.weight": "model-00002-of-00014.safetensors",
218
+ "model.layers.3.mlp.up_proj.weight": "model-00002-of-00014.safetensors",
219
+ "model.layers.3.post_attention_layernorm.weight": "model-00002-of-00014.safetensors",
220
+ "model.layers.3.self_attn.k_proj.weight": "model-00002-of-00014.safetensors",
221
+ "model.layers.3.self_attn.o_proj.weight": "model-00002-of-00014.safetensors",
222
+ "model.layers.3.self_attn.q_proj.weight": "model-00002-of-00014.safetensors",
223
+ "model.layers.3.self_attn.v_proj.weight": "model-00002-of-00014.safetensors",
224
+ "model.layers.30.input_layernorm.weight": "model-00014-of-00014.safetensors",
225
+ "model.layers.30.mlp.down_proj.weight": "model-00014-of-00014.safetensors",
226
+ "model.layers.30.mlp.gate_proj.weight": "model-00013-of-00014.safetensors",
227
+ "model.layers.30.mlp.up_proj.weight": "model-00014-of-00014.safetensors",
228
+ "model.layers.30.post_attention_layernorm.weight": "model-00014-of-00014.safetensors",
229
+ "model.layers.30.self_attn.k_proj.weight": "model-00013-of-00014.safetensors",
230
+ "model.layers.30.self_attn.o_proj.weight": "model-00013-of-00014.safetensors",
231
+ "model.layers.30.self_attn.q_proj.weight": "model-00013-of-00014.safetensors",
232
+ "model.layers.30.self_attn.v_proj.weight": "model-00013-of-00014.safetensors",
233
+ "model.layers.31.input_layernorm.weight": "model-00014-of-00014.safetensors",
234
+ "model.layers.31.mlp.down_proj.weight": "model-00014-of-00014.safetensors",
235
+ "model.layers.31.mlp.gate_proj.weight": "model-00014-of-00014.safetensors",
236
+ "model.layers.31.mlp.up_proj.weight": "model-00014-of-00014.safetensors",
237
+ "model.layers.31.post_attention_layernorm.weight": "model-00014-of-00014.safetensors",
238
+ "model.layers.31.self_attn.k_proj.weight": "model-00014-of-00014.safetensors",
239
+ "model.layers.31.self_attn.o_proj.weight": "model-00014-of-00014.safetensors",
240
+ "model.layers.31.self_attn.q_proj.weight": "model-00014-of-00014.safetensors",
241
+ "model.layers.31.self_attn.v_proj.weight": "model-00014-of-00014.safetensors",
242
+ "model.layers.4.input_layernorm.weight": "model-00003-of-00014.safetensors",
243
+ "model.layers.4.mlp.down_proj.weight": "model-00003-of-00014.safetensors",
244
+ "model.layers.4.mlp.gate_proj.weight": "model-00003-of-00014.safetensors",
245
+ "model.layers.4.mlp.up_proj.weight": "model-00003-of-00014.safetensors",
246
+ "model.layers.4.post_attention_layernorm.weight": "model-00003-of-00014.safetensors",
247
+ "model.layers.4.self_attn.k_proj.weight": "model-00002-of-00014.safetensors",
248
+ "model.layers.4.self_attn.o_proj.weight": "model-00003-of-00014.safetensors",
249
+ "model.layers.4.self_attn.q_proj.weight": "model-00002-of-00014.safetensors",
250
+ "model.layers.4.self_attn.v_proj.weight": "model-00003-of-00014.safetensors",
251
+ "model.layers.5.input_layernorm.weight": "model-00003-of-00014.safetensors",
252
+ "model.layers.5.mlp.down_proj.weight": "model-00003-of-00014.safetensors",
253
+ "model.layers.5.mlp.gate_proj.weight": "model-00003-of-00014.safetensors",
254
+ "model.layers.5.mlp.up_proj.weight": "model-00003-of-00014.safetensors",
255
+ "model.layers.5.post_attention_layernorm.weight": "model-00003-of-00014.safetensors",
256
+ "model.layers.5.self_attn.k_proj.weight": "model-00003-of-00014.safetensors",
257
+ "model.layers.5.self_attn.o_proj.weight": "model-00003-of-00014.safetensors",
258
+ "model.layers.5.self_attn.q_proj.weight": "model-00003-of-00014.safetensors",
259
+ "model.layers.5.self_attn.v_proj.weight": "model-00003-of-00014.safetensors",
260
+ "model.layers.6.input_layernorm.weight": "model-00004-of-00014.safetensors",
261
+ "model.layers.6.mlp.down_proj.weight": "model-00004-of-00014.safetensors",
262
+ "model.layers.6.mlp.gate_proj.weight": "model-00003-of-00014.safetensors",
263
+ "model.layers.6.mlp.up_proj.weight": "model-00004-of-00014.safetensors",
264
+ "model.layers.6.post_attention_layernorm.weight": "model-00004-of-00014.safetensors",
265
+ "model.layers.6.self_attn.k_proj.weight": "model-00003-of-00014.safetensors",
266
+ "model.layers.6.self_attn.o_proj.weight": "model-00003-of-00014.safetensors",
267
+ "model.layers.6.self_attn.q_proj.weight": "model-00003-of-00014.safetensors",
268
+ "model.layers.6.self_attn.v_proj.weight": "model-00003-of-00014.safetensors",
269
+ "model.layers.7.input_layernorm.weight": "model-00004-of-00014.safetensors",
270
+ "model.layers.7.mlp.down_proj.weight": "model-00004-of-00014.safetensors",
271
+ "model.layers.7.mlp.gate_proj.weight": "model-00004-of-00014.safetensors",
272
+ "model.layers.7.mlp.up_proj.weight": "model-00004-of-00014.safetensors",
273
+ "model.layers.7.post_attention_layernorm.weight": "model-00004-of-00014.safetensors",
274
+ "model.layers.7.self_attn.k_proj.weight": "model-00004-of-00014.safetensors",
275
+ "model.layers.7.self_attn.o_proj.weight": "model-00004-of-00014.safetensors",
276
+ "model.layers.7.self_attn.q_proj.weight": "model-00004-of-00014.safetensors",
277
+ "model.layers.7.self_attn.v_proj.weight": "model-00004-of-00014.safetensors",
278
+ "model.layers.8.input_layernorm.weight": "model-00004-of-00014.safetensors",
279
+ "model.layers.8.mlp.down_proj.weight": "model-00004-of-00014.safetensors",
280
+ "model.layers.8.mlp.gate_proj.weight": "model-00004-of-00014.safetensors",
281
+ "model.layers.8.mlp.up_proj.weight": "model-00004-of-00014.safetensors",
282
+ "model.layers.8.post_attention_layernorm.weight": "model-00004-of-00014.safetensors",
283
+ "model.layers.8.self_attn.k_proj.weight": "model-00004-of-00014.safetensors",
284
+ "model.layers.8.self_attn.o_proj.weight": "model-00004-of-00014.safetensors",
285
+ "model.layers.8.self_attn.q_proj.weight": "model-00004-of-00014.safetensors",
286
+ "model.layers.8.self_attn.v_proj.weight": "model-00004-of-00014.safetensors",
287
+ "model.layers.9.input_layernorm.weight": "model-00005-of-00014.safetensors",
288
+ "model.layers.9.mlp.down_proj.weight": "model-00005-of-00014.safetensors",
289
+ "model.layers.9.mlp.gate_proj.weight": "model-00005-of-00014.safetensors",
290
+ "model.layers.9.mlp.up_proj.weight": "model-00005-of-00014.safetensors",
291
+ "model.layers.9.post_attention_layernorm.weight": "model-00005-of-00014.safetensors",
292
+ "model.layers.9.self_attn.k_proj.weight": "model-00005-of-00014.safetensors",
293
+ "model.layers.9.self_attn.o_proj.weight": "model-00005-of-00014.safetensors",
294
+ "model.layers.9.self_attn.q_proj.weight": "model-00005-of-00014.safetensors",
295
+ "model.layers.9.self_attn.v_proj.weight": "model-00005-of-00014.safetensors",
296
+ "model.norm.weight": "model-00014-of-00014.safetensors"
297
+ }
298
+ }
special_tokens_map.json ADDED
@@ -0,0 +1,30 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "bos_token": {
3
+ "content": "<s>",
4
+ "lstrip": false,
5
+ "normalized": false,
6
+ "rstrip": false,
7
+ "single_word": false
8
+ },
9
+ "eos_token": {
10
+ "content": "</s>",
11
+ "lstrip": false,
12
+ "normalized": false,
13
+ "rstrip": false,
14
+ "single_word": false
15
+ },
16
+ "pad_token": {
17
+ "content": "</s>",
18
+ "lstrip": false,
19
+ "normalized": false,
20
+ "rstrip": false,
21
+ "single_word": false
22
+ },
23
+ "unk_token": {
24
+ "content": "<unk>",
25
+ "lstrip": false,
26
+ "normalized": false,
27
+ "rstrip": false,
28
+ "single_word": false
29
+ }
30
+ }
tokenizer.model ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:9e556afd44213b6bd1be2b850ebbbd98f5481437a8021afaf58ee7fb1818d347
3
+ size 499723
tokenizer_config.json ADDED
@@ -0,0 +1,45 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "add_bos_token": true,
3
+ "add_eos_token": false,
4
+ "add_prefix_space": true,
5
+ "added_tokens_decoder": {
6
+ "0": {
7
+ "content": "<unk>",
8
+ "lstrip": false,
9
+ "normalized": false,
10
+ "rstrip": false,
11
+ "single_word": false,
12
+ "special": true
13
+ },
14
+ "1": {
15
+ "content": "<s>",
16
+ "lstrip": false,
17
+ "normalized": false,
18
+ "rstrip": false,
19
+ "single_word": false,
20
+ "special": true
21
+ },
22
+ "2": {
23
+ "content": "</s>",
24
+ "lstrip": false,
25
+ "normalized": false,
26
+ "rstrip": false,
27
+ "single_word": false,
28
+ "special": true
29
+ }
30
+ },
31
+ "bos_token": "<s>",
32
+ "chat_template": "{% set system_message = 'You are a helpful, respectful and honest assistant. Always answer as helpfully as possible, while being safe. Your answers should not include any harmful, unethical, racist, sexist, toxic, dangerous, or illegal content. Please ensure that your responses are socially unbiased and positive in nature.\\n\\nIf a question does not make any sense, or is not factually coherent, explain why instead of answering something not correct. If you don\\'t know the answer to a question, please don\\'t share false information.' %}{% if messages[0]['role'] == 'system' %}{% set system_message = messages[0]['content'] %}{% endif %}{% for message in messages %}{% set content = message['content'] %}{% if loop.index0 == 0 and system_message is defined %}{% set content = '<<SYS>>\\n' + system_message + '\\n<</SYS>>\\n\\n' + message['content'] %}{% endif %}{% if message['role'] == 'user' %}{{ '<s>' + '[INST] ' + content + ' [/INST]' }}{% elif message['role'] == 'assistant' %}{{ content + '</s>' }}{% endif %}{% endfor %}",
33
+ "clean_up_tokenization_spaces": false,
34
+ "eos_token": "</s>",
35
+ "legacy": false,
36
+ "model_max_length": 1000000000000000019884624838656,
37
+ "pad_token": "</s>",
38
+ "padding_side": "left",
39
+ "sp_model_kwargs": {},
40
+ "spaces_between_special_tokens": false,
41
+ "split_special_tokens": false,
42
+ "tokenizer_class": "LlamaTokenizer",
43
+ "unk_token": "<unk>",
44
+ "use_default_system_prompt": false
45
+ }
train_results.json ADDED
@@ -0,0 +1,7 @@
 
 
 
 
 
 
 
 
1
+ {
2
+ "epoch": 3.0,
3
+ "train_loss": 0.5588170812518586,
4
+ "train_runtime": 28902.9641,
5
+ "train_samples_per_second": 1.508,
6
+ "train_steps_per_second": 0.094
7
+ }
trainer_log.jsonl ADDED
The diff for this file is too large to render. See raw diff
 
trainer_state.json ADDED
@@ -0,0 +1,3838 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "best_metric": null,
3
+ "best_model_checkpoint": null,
4
+ "epoch": 2.999174236168456,
5
+ "eval_steps": 500,
6
+ "global_step": 2724,
7
+ "is_hyper_param_search": false,
8
+ "is_local_process_zero": true,
9
+ "is_world_process_zero": true,
10
+ "log_history": [
11
+ {
12
+ "epoch": 0.01,
13
+ "grad_norm": 4.723361968994141,
14
+ "learning_rate": 1.5000000000000002e-07,
15
+ "loss": 3.607,
16
+ "step": 5
17
+ },
18
+ {
19
+ "epoch": 0.01,
20
+ "grad_norm": 2.801504611968994,
21
+ "learning_rate": 3.0000000000000004e-07,
22
+ "loss": 3.6149,
23
+ "step": 10
24
+ },
25
+ {
26
+ "epoch": 0.02,
27
+ "grad_norm": 5.641049861907959,
28
+ "learning_rate": 4.5e-07,
29
+ "loss": 3.933,
30
+ "step": 15
31
+ },
32
+ {
33
+ "epoch": 0.02,
34
+ "grad_norm": 5.0696587562561035,
35
+ "learning_rate": 6.000000000000001e-07,
36
+ "loss": 3.5431,
37
+ "step": 20
38
+ },
39
+ {
40
+ "epoch": 0.03,
41
+ "grad_norm": 6.305172920227051,
42
+ "learning_rate": 7.5e-07,
43
+ "loss": 3.5036,
44
+ "step": 25
45
+ },
46
+ {
47
+ "epoch": 0.03,
48
+ "grad_norm": 5.998531818389893,
49
+ "learning_rate": 9e-07,
50
+ "loss": 3.7618,
51
+ "step": 30
52
+ },
53
+ {
54
+ "epoch": 0.04,
55
+ "grad_norm": 4.491389751434326,
56
+ "learning_rate": 1.0500000000000001e-06,
57
+ "loss": 3.3489,
58
+ "step": 35
59
+ },
60
+ {
61
+ "epoch": 0.04,
62
+ "grad_norm": 5.935448169708252,
63
+ "learning_rate": 1.2000000000000002e-06,
64
+ "loss": 3.9085,
65
+ "step": 40
66
+ },
67
+ {
68
+ "epoch": 0.05,
69
+ "grad_norm": 5.686679363250732,
70
+ "learning_rate": 1.35e-06,
71
+ "loss": 3.6536,
72
+ "step": 45
73
+ },
74
+ {
75
+ "epoch": 0.06,
76
+ "grad_norm": 4.586507797241211,
77
+ "learning_rate": 1.5e-06,
78
+ "loss": 3.4313,
79
+ "step": 50
80
+ },
81
+ {
82
+ "epoch": 0.06,
83
+ "grad_norm": 4.8034772872924805,
84
+ "learning_rate": 1.65e-06,
85
+ "loss": 3.3082,
86
+ "step": 55
87
+ },
88
+ {
89
+ "epoch": 0.07,
90
+ "grad_norm": 5.47461462020874,
91
+ "learning_rate": 1.8e-06,
92
+ "loss": 3.5749,
93
+ "step": 60
94
+ },
95
+ {
96
+ "epoch": 0.07,
97
+ "grad_norm": 6.304111957550049,
98
+ "learning_rate": 1.95e-06,
99
+ "loss": 3.5684,
100
+ "step": 65
101
+ },
102
+ {
103
+ "epoch": 0.08,
104
+ "grad_norm": 6.649425983428955,
105
+ "learning_rate": 2.1000000000000002e-06,
106
+ "loss": 3.25,
107
+ "step": 70
108
+ },
109
+ {
110
+ "epoch": 0.08,
111
+ "grad_norm": 6.285486698150635,
112
+ "learning_rate": 2.25e-06,
113
+ "loss": 3.0361,
114
+ "step": 75
115
+ },
116
+ {
117
+ "epoch": 0.09,
118
+ "grad_norm": 8.364280700683594,
119
+ "learning_rate": 2.4000000000000003e-06,
120
+ "loss": 3.4918,
121
+ "step": 80
122
+ },
123
+ {
124
+ "epoch": 0.09,
125
+ "grad_norm": 8.540417671203613,
126
+ "learning_rate": 2.55e-06,
127
+ "loss": 3.2424,
128
+ "step": 85
129
+ },
130
+ {
131
+ "epoch": 0.1,
132
+ "grad_norm": 3.8771581649780273,
133
+ "learning_rate": 2.7e-06,
134
+ "loss": 2.7386,
135
+ "step": 90
136
+ },
137
+ {
138
+ "epoch": 0.1,
139
+ "grad_norm": 6.713310241699219,
140
+ "learning_rate": 2.8500000000000002e-06,
141
+ "loss": 2.5229,
142
+ "step": 95
143
+ },
144
+ {
145
+ "epoch": 0.11,
146
+ "grad_norm": 7.163495063781738,
147
+ "learning_rate": 3e-06,
148
+ "loss": 2.3543,
149
+ "step": 100
150
+ },
151
+ {
152
+ "epoch": 0.12,
153
+ "grad_norm": 6.106879234313965,
154
+ "learning_rate": 3.15e-06,
155
+ "loss": 2.1774,
156
+ "step": 105
157
+ },
158
+ {
159
+ "epoch": 0.12,
160
+ "grad_norm": 6.056279182434082,
161
+ "learning_rate": 3.3e-06,
162
+ "loss": 2.102,
163
+ "step": 110
164
+ },
165
+ {
166
+ "epoch": 0.13,
167
+ "grad_norm": 6.470534324645996,
168
+ "learning_rate": 3.4500000000000004e-06,
169
+ "loss": 1.8336,
170
+ "step": 115
171
+ },
172
+ {
173
+ "epoch": 0.13,
174
+ "grad_norm": 5.0930376052856445,
175
+ "learning_rate": 3.6e-06,
176
+ "loss": 1.4314,
177
+ "step": 120
178
+ },
179
+ {
180
+ "epoch": 0.14,
181
+ "grad_norm": 4.7424397468566895,
182
+ "learning_rate": 3.75e-06,
183
+ "loss": 1.3507,
184
+ "step": 125
185
+ },
186
+ {
187
+ "epoch": 0.14,
188
+ "grad_norm": 4.056792736053467,
189
+ "learning_rate": 3.9e-06,
190
+ "loss": 1.2108,
191
+ "step": 130
192
+ },
193
+ {
194
+ "epoch": 0.15,
195
+ "grad_norm": 3.122858762741089,
196
+ "learning_rate": 4.05e-06,
197
+ "loss": 0.7046,
198
+ "step": 135
199
+ },
200
+ {
201
+ "epoch": 0.15,
202
+ "grad_norm": 2.3814079761505127,
203
+ "learning_rate": 4.2000000000000004e-06,
204
+ "loss": 0.7918,
205
+ "step": 140
206
+ },
207
+ {
208
+ "epoch": 0.16,
209
+ "grad_norm": 3.257763385772705,
210
+ "learning_rate": 4.35e-06,
211
+ "loss": 0.8256,
212
+ "step": 145
213
+ },
214
+ {
215
+ "epoch": 0.17,
216
+ "grad_norm": 2.871866464614868,
217
+ "learning_rate": 4.5e-06,
218
+ "loss": 0.6759,
219
+ "step": 150
220
+ },
221
+ {
222
+ "epoch": 0.17,
223
+ "grad_norm": 3.0206196308135986,
224
+ "learning_rate": 4.65e-06,
225
+ "loss": 0.7936,
226
+ "step": 155
227
+ },
228
+ {
229
+ "epoch": 0.18,
230
+ "grad_norm": 2.52962589263916,
231
+ "learning_rate": 4.800000000000001e-06,
232
+ "loss": 0.5798,
233
+ "step": 160
234
+ },
235
+ {
236
+ "epoch": 0.18,
237
+ "grad_norm": 1.2966934442520142,
238
+ "learning_rate": 4.95e-06,
239
+ "loss": 0.6066,
240
+ "step": 165
241
+ },
242
+ {
243
+ "epoch": 0.19,
244
+ "grad_norm": 1.9257962703704834,
245
+ "learning_rate": 5.1e-06,
246
+ "loss": 0.6452,
247
+ "step": 170
248
+ },
249
+ {
250
+ "epoch": 0.19,
251
+ "grad_norm": 2.903165340423584,
252
+ "learning_rate": 5.25e-06,
253
+ "loss": 0.6818,
254
+ "step": 175
255
+ },
256
+ {
257
+ "epoch": 0.2,
258
+ "grad_norm": 2.3169002532958984,
259
+ "learning_rate": 5.4e-06,
260
+ "loss": 0.7669,
261
+ "step": 180
262
+ },
263
+ {
264
+ "epoch": 0.2,
265
+ "grad_norm": 2.465702533721924,
266
+ "learning_rate": 5.55e-06,
267
+ "loss": 0.5847,
268
+ "step": 185
269
+ },
270
+ {
271
+ "epoch": 0.21,
272
+ "grad_norm": 2.0977537631988525,
273
+ "learning_rate": 5.7000000000000005e-06,
274
+ "loss": 0.6548,
275
+ "step": 190
276
+ },
277
+ {
278
+ "epoch": 0.21,
279
+ "grad_norm": 2.9947569370269775,
280
+ "learning_rate": 5.850000000000001e-06,
281
+ "loss": 0.6992,
282
+ "step": 195
283
+ },
284
+ {
285
+ "epoch": 0.22,
286
+ "grad_norm": 2.6077871322631836,
287
+ "learning_rate": 6e-06,
288
+ "loss": 0.6392,
289
+ "step": 200
290
+ },
291
+ {
292
+ "epoch": 0.23,
293
+ "grad_norm": 2.76350736618042,
294
+ "learning_rate": 6.1499999999999996e-06,
295
+ "loss": 0.5201,
296
+ "step": 205
297
+ },
298
+ {
299
+ "epoch": 0.23,
300
+ "grad_norm": 1.9421017169952393,
301
+ "learning_rate": 6.3e-06,
302
+ "loss": 0.5464,
303
+ "step": 210
304
+ },
305
+ {
306
+ "epoch": 0.24,
307
+ "grad_norm": 1.9033386707305908,
308
+ "learning_rate": 6.45e-06,
309
+ "loss": 0.567,
310
+ "step": 215
311
+ },
312
+ {
313
+ "epoch": 0.24,
314
+ "grad_norm": 2.0922622680664062,
315
+ "learning_rate": 6.6e-06,
316
+ "loss": 0.6302,
317
+ "step": 220
318
+ },
319
+ {
320
+ "epoch": 0.25,
321
+ "grad_norm": 2.7234456539154053,
322
+ "learning_rate": 6.750000000000001e-06,
323
+ "loss": 0.8481,
324
+ "step": 225
325
+ },
326
+ {
327
+ "epoch": 0.25,
328
+ "grad_norm": 2.4856104850769043,
329
+ "learning_rate": 6.900000000000001e-06,
330
+ "loss": 0.5044,
331
+ "step": 230
332
+ },
333
+ {
334
+ "epoch": 0.26,
335
+ "grad_norm": 2.776841163635254,
336
+ "learning_rate": 7.049999999999999e-06,
337
+ "loss": 0.4163,
338
+ "step": 235
339
+ },
340
+ {
341
+ "epoch": 0.26,
342
+ "grad_norm": 1.360962986946106,
343
+ "learning_rate": 7.2e-06,
344
+ "loss": 0.5952,
345
+ "step": 240
346
+ },
347
+ {
348
+ "epoch": 0.27,
349
+ "grad_norm": 1.9951967000961304,
350
+ "learning_rate": 7.35e-06,
351
+ "loss": 0.4798,
352
+ "step": 245
353
+ },
354
+ {
355
+ "epoch": 0.28,
356
+ "grad_norm": 1.2397233247756958,
357
+ "learning_rate": 7.5e-06,
358
+ "loss": 0.3873,
359
+ "step": 250
360
+ },
361
+ {
362
+ "epoch": 0.28,
363
+ "grad_norm": 1.793684720993042,
364
+ "learning_rate": 7.65e-06,
365
+ "loss": 0.5231,
366
+ "step": 255
367
+ },
368
+ {
369
+ "epoch": 0.29,
370
+ "grad_norm": 4.247454643249512,
371
+ "learning_rate": 7.8e-06,
372
+ "loss": 0.4825,
373
+ "step": 260
374
+ },
375
+ {
376
+ "epoch": 0.29,
377
+ "grad_norm": 2.6619770526885986,
378
+ "learning_rate": 7.95e-06,
379
+ "loss": 0.4743,
380
+ "step": 265
381
+ },
382
+ {
383
+ "epoch": 0.3,
384
+ "grad_norm": 2.1707732677459717,
385
+ "learning_rate": 8.1e-06,
386
+ "loss": 0.3325,
387
+ "step": 270
388
+ },
389
+ {
390
+ "epoch": 0.3,
391
+ "grad_norm": 1.470760464668274,
392
+ "learning_rate": 8.25e-06,
393
+ "loss": 0.6128,
394
+ "step": 275
395
+ },
396
+ {
397
+ "epoch": 0.31,
398
+ "grad_norm": 2.647947072982788,
399
+ "learning_rate": 8.400000000000001e-06,
400
+ "loss": 0.6124,
401
+ "step": 280
402
+ },
403
+ {
404
+ "epoch": 0.31,
405
+ "grad_norm": 5.327182769775391,
406
+ "learning_rate": 8.55e-06,
407
+ "loss": 0.5567,
408
+ "step": 285
409
+ },
410
+ {
411
+ "epoch": 0.32,
412
+ "grad_norm": 2.314610719680786,
413
+ "learning_rate": 8.7e-06,
414
+ "loss": 0.4464,
415
+ "step": 290
416
+ },
417
+ {
418
+ "epoch": 0.32,
419
+ "grad_norm": 2.571409225463867,
420
+ "learning_rate": 8.85e-06,
421
+ "loss": 0.5127,
422
+ "step": 295
423
+ },
424
+ {
425
+ "epoch": 0.33,
426
+ "grad_norm": 2.6803112030029297,
427
+ "learning_rate": 9e-06,
428
+ "loss": 0.4206,
429
+ "step": 300
430
+ },
431
+ {
432
+ "epoch": 0.34,
433
+ "grad_norm": 1.8423502445220947,
434
+ "learning_rate": 9.15e-06,
435
+ "loss": 0.4846,
436
+ "step": 305
437
+ },
438
+ {
439
+ "epoch": 0.34,
440
+ "grad_norm": 1.603908658027649,
441
+ "learning_rate": 9.3e-06,
442
+ "loss": 0.5434,
443
+ "step": 310
444
+ },
445
+ {
446
+ "epoch": 0.35,
447
+ "grad_norm": 2.6442675590515137,
448
+ "learning_rate": 9.450000000000001e-06,
449
+ "loss": 0.56,
450
+ "step": 315
451
+ },
452
+ {
453
+ "epoch": 0.35,
454
+ "grad_norm": 4.274781703948975,
455
+ "learning_rate": 9.600000000000001e-06,
456
+ "loss": 0.4854,
457
+ "step": 320
458
+ },
459
+ {
460
+ "epoch": 0.36,
461
+ "grad_norm": 3.596944570541382,
462
+ "learning_rate": 9.75e-06,
463
+ "loss": 0.6743,
464
+ "step": 325
465
+ },
466
+ {
467
+ "epoch": 0.36,
468
+ "grad_norm": 2.466118574142456,
469
+ "learning_rate": 9.9e-06,
470
+ "loss": 0.5149,
471
+ "step": 330
472
+ },
473
+ {
474
+ "epoch": 0.37,
475
+ "grad_norm": 1.8980193138122559,
476
+ "learning_rate": 1.005e-05,
477
+ "loss": 0.5721,
478
+ "step": 335
479
+ },
480
+ {
481
+ "epoch": 0.37,
482
+ "grad_norm": 1.9017683267593384,
483
+ "learning_rate": 1.02e-05,
484
+ "loss": 0.4637,
485
+ "step": 340
486
+ },
487
+ {
488
+ "epoch": 0.38,
489
+ "grad_norm": 2.220961809158325,
490
+ "learning_rate": 1.035e-05,
491
+ "loss": 0.4672,
492
+ "step": 345
493
+ },
494
+ {
495
+ "epoch": 0.39,
496
+ "grad_norm": 2.758296489715576,
497
+ "learning_rate": 1.05e-05,
498
+ "loss": 0.4269,
499
+ "step": 350
500
+ },
501
+ {
502
+ "epoch": 0.39,
503
+ "grad_norm": 1.6211260557174683,
504
+ "learning_rate": 1.065e-05,
505
+ "loss": 0.4208,
506
+ "step": 355
507
+ },
508
+ {
509
+ "epoch": 0.4,
510
+ "grad_norm": 1.5319430828094482,
511
+ "learning_rate": 1.08e-05,
512
+ "loss": 0.5012,
513
+ "step": 360
514
+ },
515
+ {
516
+ "epoch": 0.4,
517
+ "grad_norm": 2.5233569145202637,
518
+ "learning_rate": 1.095e-05,
519
+ "loss": 0.2889,
520
+ "step": 365
521
+ },
522
+ {
523
+ "epoch": 0.41,
524
+ "grad_norm": 1.5497692823410034,
525
+ "learning_rate": 1.11e-05,
526
+ "loss": 0.3052,
527
+ "step": 370
528
+ },
529
+ {
530
+ "epoch": 0.41,
531
+ "grad_norm": 3.8792238235473633,
532
+ "learning_rate": 1.125e-05,
533
+ "loss": 0.6235,
534
+ "step": 375
535
+ },
536
+ {
537
+ "epoch": 0.42,
538
+ "grad_norm": 2.3589935302734375,
539
+ "learning_rate": 1.1400000000000001e-05,
540
+ "loss": 0.5508,
541
+ "step": 380
542
+ },
543
+ {
544
+ "epoch": 0.42,
545
+ "grad_norm": 2.8691861629486084,
546
+ "learning_rate": 1.1550000000000001e-05,
547
+ "loss": 0.4495,
548
+ "step": 385
549
+ },
550
+ {
551
+ "epoch": 0.43,
552
+ "grad_norm": 2.3704771995544434,
553
+ "learning_rate": 1.1700000000000001e-05,
554
+ "loss": 0.4749,
555
+ "step": 390
556
+ },
557
+ {
558
+ "epoch": 0.43,
559
+ "grad_norm": 2.102457046508789,
560
+ "learning_rate": 1.185e-05,
561
+ "loss": 0.4324,
562
+ "step": 395
563
+ },
564
+ {
565
+ "epoch": 0.44,
566
+ "grad_norm": 6.848997116088867,
567
+ "learning_rate": 1.2e-05,
568
+ "loss": 0.4796,
569
+ "step": 400
570
+ },
571
+ {
572
+ "epoch": 0.45,
573
+ "grad_norm": 1.6692250967025757,
574
+ "learning_rate": 1.215e-05,
575
+ "loss": 0.3403,
576
+ "step": 405
577
+ },
578
+ {
579
+ "epoch": 0.45,
580
+ "grad_norm": 2.407634973526001,
581
+ "learning_rate": 1.2299999999999999e-05,
582
+ "loss": 0.4553,
583
+ "step": 410
584
+ },
585
+ {
586
+ "epoch": 0.46,
587
+ "grad_norm": 2.6080591678619385,
588
+ "learning_rate": 1.245e-05,
589
+ "loss": 0.3708,
590
+ "step": 415
591
+ },
592
+ {
593
+ "epoch": 0.46,
594
+ "grad_norm": 2.4701273441314697,
595
+ "learning_rate": 1.26e-05,
596
+ "loss": 0.3112,
597
+ "step": 420
598
+ },
599
+ {
600
+ "epoch": 0.47,
601
+ "grad_norm": 2.7998530864715576,
602
+ "learning_rate": 1.275e-05,
603
+ "loss": 0.3935,
604
+ "step": 425
605
+ },
606
+ {
607
+ "epoch": 0.47,
608
+ "grad_norm": 2.0203258991241455,
609
+ "learning_rate": 1.29e-05,
610
+ "loss": 0.3994,
611
+ "step": 430
612
+ },
613
+ {
614
+ "epoch": 0.48,
615
+ "grad_norm": 2.6193652153015137,
616
+ "learning_rate": 1.305e-05,
617
+ "loss": 0.5095,
618
+ "step": 435
619
+ },
620
+ {
621
+ "epoch": 0.48,
622
+ "grad_norm": 1.9212027788162231,
623
+ "learning_rate": 1.32e-05,
624
+ "loss": 0.3615,
625
+ "step": 440
626
+ },
627
+ {
628
+ "epoch": 0.49,
629
+ "grad_norm": 3.352229595184326,
630
+ "learning_rate": 1.3350000000000001e-05,
631
+ "loss": 0.6153,
632
+ "step": 445
633
+ },
634
+ {
635
+ "epoch": 0.5,
636
+ "grad_norm": 1.7962478399276733,
637
+ "learning_rate": 1.3500000000000001e-05,
638
+ "loss": 0.6112,
639
+ "step": 450
640
+ },
641
+ {
642
+ "epoch": 0.5,
643
+ "grad_norm": 4.245258331298828,
644
+ "learning_rate": 1.3650000000000001e-05,
645
+ "loss": 0.5036,
646
+ "step": 455
647
+ },
648
+ {
649
+ "epoch": 0.51,
650
+ "grad_norm": 1.9633055925369263,
651
+ "learning_rate": 1.3800000000000002e-05,
652
+ "loss": 0.5212,
653
+ "step": 460
654
+ },
655
+ {
656
+ "epoch": 0.51,
657
+ "grad_norm": 2.65956711769104,
658
+ "learning_rate": 1.395e-05,
659
+ "loss": 0.4709,
660
+ "step": 465
661
+ },
662
+ {
663
+ "epoch": 0.52,
664
+ "grad_norm": 1.38247811794281,
665
+ "learning_rate": 1.4099999999999999e-05,
666
+ "loss": 0.7051,
667
+ "step": 470
668
+ },
669
+ {
670
+ "epoch": 0.52,
671
+ "grad_norm": 1.2942965030670166,
672
+ "learning_rate": 1.4249999999999999e-05,
673
+ "loss": 0.5219,
674
+ "step": 475
675
+ },
676
+ {
677
+ "epoch": 0.53,
678
+ "grad_norm": 1.6196554899215698,
679
+ "learning_rate": 1.44e-05,
680
+ "loss": 0.4838,
681
+ "step": 480
682
+ },
683
+ {
684
+ "epoch": 0.53,
685
+ "grad_norm": 2.9407804012298584,
686
+ "learning_rate": 1.455e-05,
687
+ "loss": 0.4163,
688
+ "step": 485
689
+ },
690
+ {
691
+ "epoch": 0.54,
692
+ "grad_norm": 2.036487340927124,
693
+ "learning_rate": 1.47e-05,
694
+ "loss": 0.3517,
695
+ "step": 490
696
+ },
697
+ {
698
+ "epoch": 0.55,
699
+ "grad_norm": 4.017712116241455,
700
+ "learning_rate": 1.485e-05,
701
+ "loss": 0.3407,
702
+ "step": 495
703
+ },
704
+ {
705
+ "epoch": 0.55,
706
+ "grad_norm": 1.1127279996871948,
707
+ "learning_rate": 1.5e-05,
708
+ "loss": 0.5691,
709
+ "step": 500
710
+ },
711
+ {
712
+ "epoch": 0.56,
713
+ "grad_norm": 2.890312910079956,
714
+ "learning_rate": 1.515e-05,
715
+ "loss": 0.3602,
716
+ "step": 505
717
+ },
718
+ {
719
+ "epoch": 0.56,
720
+ "grad_norm": 2.6266424655914307,
721
+ "learning_rate": 1.53e-05,
722
+ "loss": 0.2707,
723
+ "step": 510
724
+ },
725
+ {
726
+ "epoch": 0.57,
727
+ "grad_norm": 1.9139853715896606,
728
+ "learning_rate": 1.545e-05,
729
+ "loss": 0.4348,
730
+ "step": 515
731
+ },
732
+ {
733
+ "epoch": 0.57,
734
+ "grad_norm": 1.4371010065078735,
735
+ "learning_rate": 1.56e-05,
736
+ "loss": 0.4869,
737
+ "step": 520
738
+ },
739
+ {
740
+ "epoch": 0.58,
741
+ "grad_norm": 2.060549020767212,
742
+ "learning_rate": 1.575e-05,
743
+ "loss": 0.446,
744
+ "step": 525
745
+ },
746
+ {
747
+ "epoch": 0.58,
748
+ "grad_norm": 2.383223295211792,
749
+ "learning_rate": 1.59e-05,
750
+ "loss": 0.4541,
751
+ "step": 530
752
+ },
753
+ {
754
+ "epoch": 0.59,
755
+ "grad_norm": 3.066714286804199,
756
+ "learning_rate": 1.605e-05,
757
+ "loss": 0.654,
758
+ "step": 535
759
+ },
760
+ {
761
+ "epoch": 0.59,
762
+ "grad_norm": 1.502321481704712,
763
+ "learning_rate": 1.62e-05,
764
+ "loss": 0.6171,
765
+ "step": 540
766
+ },
767
+ {
768
+ "epoch": 0.6,
769
+ "grad_norm": 3.31970477104187,
770
+ "learning_rate": 1.635e-05,
771
+ "loss": 0.4521,
772
+ "step": 545
773
+ },
774
+ {
775
+ "epoch": 0.61,
776
+ "grad_norm": 2.2695887088775635,
777
+ "learning_rate": 1.65e-05,
778
+ "loss": 0.5606,
779
+ "step": 550
780
+ },
781
+ {
782
+ "epoch": 0.61,
783
+ "grad_norm": 1.9954079389572144,
784
+ "learning_rate": 1.665e-05,
785
+ "loss": 0.4517,
786
+ "step": 555
787
+ },
788
+ {
789
+ "epoch": 0.62,
790
+ "grad_norm": 3.29400372505188,
791
+ "learning_rate": 1.6800000000000002e-05,
792
+ "loss": 0.6205,
793
+ "step": 560
794
+ },
795
+ {
796
+ "epoch": 0.62,
797
+ "grad_norm": 2.401451587677002,
798
+ "learning_rate": 1.695e-05,
799
+ "loss": 0.5424,
800
+ "step": 565
801
+ },
802
+ {
803
+ "epoch": 0.63,
804
+ "grad_norm": 3.064767837524414,
805
+ "learning_rate": 1.71e-05,
806
+ "loss": 0.5388,
807
+ "step": 570
808
+ },
809
+ {
810
+ "epoch": 0.63,
811
+ "grad_norm": 2.0694704055786133,
812
+ "learning_rate": 1.725e-05,
813
+ "loss": 0.3733,
814
+ "step": 575
815
+ },
816
+ {
817
+ "epoch": 0.64,
818
+ "grad_norm": 1.1812100410461426,
819
+ "learning_rate": 1.74e-05,
820
+ "loss": 0.4173,
821
+ "step": 580
822
+ },
823
+ {
824
+ "epoch": 0.64,
825
+ "grad_norm": 1.7811343669891357,
826
+ "learning_rate": 1.755e-05,
827
+ "loss": 0.7022,
828
+ "step": 585
829
+ },
830
+ {
831
+ "epoch": 0.65,
832
+ "grad_norm": 1.5441101789474487,
833
+ "learning_rate": 1.77e-05,
834
+ "loss": 0.6539,
835
+ "step": 590
836
+ },
837
+ {
838
+ "epoch": 0.66,
839
+ "grad_norm": 2.039987087249756,
840
+ "learning_rate": 1.785e-05,
841
+ "loss": 0.3081,
842
+ "step": 595
843
+ },
844
+ {
845
+ "epoch": 0.66,
846
+ "grad_norm": 2.5088701248168945,
847
+ "learning_rate": 1.8e-05,
848
+ "loss": 0.3314,
849
+ "step": 600
850
+ },
851
+ {
852
+ "epoch": 0.67,
853
+ "grad_norm": 2.6933419704437256,
854
+ "learning_rate": 1.815e-05,
855
+ "loss": 0.5642,
856
+ "step": 605
857
+ },
858
+ {
859
+ "epoch": 0.67,
860
+ "grad_norm": 1.9799847602844238,
861
+ "learning_rate": 1.83e-05,
862
+ "loss": 0.3405,
863
+ "step": 610
864
+ },
865
+ {
866
+ "epoch": 0.68,
867
+ "grad_norm": 2.641113758087158,
868
+ "learning_rate": 1.845e-05,
869
+ "loss": 0.4678,
870
+ "step": 615
871
+ },
872
+ {
873
+ "epoch": 0.68,
874
+ "grad_norm": 1.5051275491714478,
875
+ "learning_rate": 1.86e-05,
876
+ "loss": 0.5578,
877
+ "step": 620
878
+ },
879
+ {
880
+ "epoch": 0.69,
881
+ "grad_norm": 1.5316920280456543,
882
+ "learning_rate": 1.8750000000000002e-05,
883
+ "loss": 0.5345,
884
+ "step": 625
885
+ },
886
+ {
887
+ "epoch": 0.69,
888
+ "grad_norm": 0.8923272490501404,
889
+ "learning_rate": 1.8900000000000002e-05,
890
+ "loss": 0.4797,
891
+ "step": 630
892
+ },
893
+ {
894
+ "epoch": 0.7,
895
+ "grad_norm": 1.6083885431289673,
896
+ "learning_rate": 1.9050000000000002e-05,
897
+ "loss": 0.4117,
898
+ "step": 635
899
+ },
900
+ {
901
+ "epoch": 0.7,
902
+ "grad_norm": 1.3130501508712769,
903
+ "learning_rate": 1.9200000000000003e-05,
904
+ "loss": 0.4314,
905
+ "step": 640
906
+ },
907
+ {
908
+ "epoch": 0.71,
909
+ "grad_norm": 1.2643862962722778,
910
+ "learning_rate": 1.935e-05,
911
+ "loss": 0.3503,
912
+ "step": 645
913
+ },
914
+ {
915
+ "epoch": 0.72,
916
+ "grad_norm": 2.3432857990264893,
917
+ "learning_rate": 1.95e-05,
918
+ "loss": 0.4664,
919
+ "step": 650
920
+ },
921
+ {
922
+ "epoch": 0.72,
923
+ "grad_norm": 1.6133382320404053,
924
+ "learning_rate": 1.965e-05,
925
+ "loss": 0.5415,
926
+ "step": 655
927
+ },
928
+ {
929
+ "epoch": 0.73,
930
+ "grad_norm": 2.1628336906433105,
931
+ "learning_rate": 1.98e-05,
932
+ "loss": 0.3583,
933
+ "step": 660
934
+ },
935
+ {
936
+ "epoch": 0.73,
937
+ "grad_norm": 1.1896861791610718,
938
+ "learning_rate": 1.995e-05,
939
+ "loss": 0.3906,
940
+ "step": 665
941
+ },
942
+ {
943
+ "epoch": 0.74,
944
+ "grad_norm": 1.399902582168579,
945
+ "learning_rate": 2.01e-05,
946
+ "loss": 0.5711,
947
+ "step": 670
948
+ },
949
+ {
950
+ "epoch": 0.74,
951
+ "grad_norm": 1.9324532747268677,
952
+ "learning_rate": 2.025e-05,
953
+ "loss": 0.447,
954
+ "step": 675
955
+ },
956
+ {
957
+ "epoch": 0.75,
958
+ "grad_norm": 1.4938113689422607,
959
+ "learning_rate": 2.04e-05,
960
+ "loss": 0.6049,
961
+ "step": 680
962
+ },
963
+ {
964
+ "epoch": 0.75,
965
+ "grad_norm": 0.6185623407363892,
966
+ "learning_rate": 2.055e-05,
967
+ "loss": 0.44,
968
+ "step": 685
969
+ },
970
+ {
971
+ "epoch": 0.76,
972
+ "grad_norm": 1.0526788234710693,
973
+ "learning_rate": 2.07e-05,
974
+ "loss": 0.5259,
975
+ "step": 690
976
+ },
977
+ {
978
+ "epoch": 0.77,
979
+ "grad_norm": 1.5097798109054565,
980
+ "learning_rate": 2.085e-05,
981
+ "loss": 0.4513,
982
+ "step": 695
983
+ },
984
+ {
985
+ "epoch": 0.77,
986
+ "grad_norm": 1.4816968441009521,
987
+ "learning_rate": 2.1e-05,
988
+ "loss": 0.6861,
989
+ "step": 700
990
+ },
991
+ {
992
+ "epoch": 0.78,
993
+ "grad_norm": 2.5907509326934814,
994
+ "learning_rate": 2.115e-05,
995
+ "loss": 0.5984,
996
+ "step": 705
997
+ },
998
+ {
999
+ "epoch": 0.78,
1000
+ "grad_norm": 1.7099113464355469,
1001
+ "learning_rate": 2.13e-05,
1002
+ "loss": 0.2523,
1003
+ "step": 710
1004
+ },
1005
+ {
1006
+ "epoch": 0.79,
1007
+ "grad_norm": 1.2753609418869019,
1008
+ "learning_rate": 2.145e-05,
1009
+ "loss": 0.5409,
1010
+ "step": 715
1011
+ },
1012
+ {
1013
+ "epoch": 0.79,
1014
+ "grad_norm": 0.9064136147499084,
1015
+ "learning_rate": 2.16e-05,
1016
+ "loss": 0.3004,
1017
+ "step": 720
1018
+ },
1019
+ {
1020
+ "epoch": 0.8,
1021
+ "grad_norm": 1.4393867254257202,
1022
+ "learning_rate": 2.175e-05,
1023
+ "loss": 0.4156,
1024
+ "step": 725
1025
+ },
1026
+ {
1027
+ "epoch": 0.8,
1028
+ "grad_norm": 1.8317877054214478,
1029
+ "learning_rate": 2.19e-05,
1030
+ "loss": 0.5019,
1031
+ "step": 730
1032
+ },
1033
+ {
1034
+ "epoch": 0.81,
1035
+ "grad_norm": 1.2695151567459106,
1036
+ "learning_rate": 2.205e-05,
1037
+ "loss": 0.6344,
1038
+ "step": 735
1039
+ },
1040
+ {
1041
+ "epoch": 0.81,
1042
+ "grad_norm": 0.9795133471488953,
1043
+ "learning_rate": 2.22e-05,
1044
+ "loss": 0.4634,
1045
+ "step": 740
1046
+ },
1047
+ {
1048
+ "epoch": 0.82,
1049
+ "grad_norm": 2.9170186519622803,
1050
+ "learning_rate": 2.235e-05,
1051
+ "loss": 0.5323,
1052
+ "step": 745
1053
+ },
1054
+ {
1055
+ "epoch": 0.83,
1056
+ "grad_norm": 1.4109234809875488,
1057
+ "learning_rate": 2.25e-05,
1058
+ "loss": 0.4622,
1059
+ "step": 750
1060
+ },
1061
+ {
1062
+ "epoch": 0.83,
1063
+ "grad_norm": 1.0275310277938843,
1064
+ "learning_rate": 2.265e-05,
1065
+ "loss": 0.4223,
1066
+ "step": 755
1067
+ },
1068
+ {
1069
+ "epoch": 0.84,
1070
+ "grad_norm": 2.929098129272461,
1071
+ "learning_rate": 2.2800000000000002e-05,
1072
+ "loss": 0.4939,
1073
+ "step": 760
1074
+ },
1075
+ {
1076
+ "epoch": 0.84,
1077
+ "grad_norm": 1.730406641960144,
1078
+ "learning_rate": 2.2950000000000002e-05,
1079
+ "loss": 0.6818,
1080
+ "step": 765
1081
+ },
1082
+ {
1083
+ "epoch": 0.85,
1084
+ "grad_norm": 0.8586449027061462,
1085
+ "learning_rate": 2.3100000000000002e-05,
1086
+ "loss": 0.5406,
1087
+ "step": 770
1088
+ },
1089
+ {
1090
+ "epoch": 0.85,
1091
+ "grad_norm": 1.2498224973678589,
1092
+ "learning_rate": 2.3250000000000003e-05,
1093
+ "loss": 0.3736,
1094
+ "step": 775
1095
+ },
1096
+ {
1097
+ "epoch": 0.86,
1098
+ "grad_norm": 0.6030346751213074,
1099
+ "learning_rate": 2.3400000000000003e-05,
1100
+ "loss": 0.5458,
1101
+ "step": 780
1102
+ },
1103
+ {
1104
+ "epoch": 0.86,
1105
+ "grad_norm": 1.4750096797943115,
1106
+ "learning_rate": 2.3550000000000003e-05,
1107
+ "loss": 0.5234,
1108
+ "step": 785
1109
+ },
1110
+ {
1111
+ "epoch": 0.87,
1112
+ "grad_norm": 1.3055192232131958,
1113
+ "learning_rate": 2.37e-05,
1114
+ "loss": 0.5177,
1115
+ "step": 790
1116
+ },
1117
+ {
1118
+ "epoch": 0.88,
1119
+ "grad_norm": 1.990779995918274,
1120
+ "learning_rate": 2.385e-05,
1121
+ "loss": 0.4851,
1122
+ "step": 795
1123
+ },
1124
+ {
1125
+ "epoch": 0.88,
1126
+ "grad_norm": 2.6766905784606934,
1127
+ "learning_rate": 2.4e-05,
1128
+ "loss": 0.5505,
1129
+ "step": 800
1130
+ },
1131
+ {
1132
+ "epoch": 0.89,
1133
+ "grad_norm": 2.486478090286255,
1134
+ "learning_rate": 2.415e-05,
1135
+ "loss": 0.4049,
1136
+ "step": 805
1137
+ },
1138
+ {
1139
+ "epoch": 0.89,
1140
+ "grad_norm": 1.191136360168457,
1141
+ "learning_rate": 2.43e-05,
1142
+ "loss": 0.3537,
1143
+ "step": 810
1144
+ },
1145
+ {
1146
+ "epoch": 0.9,
1147
+ "grad_norm": 1.3190600872039795,
1148
+ "learning_rate": 2.4449999999999998e-05,
1149
+ "loss": 0.5542,
1150
+ "step": 815
1151
+ },
1152
+ {
1153
+ "epoch": 0.9,
1154
+ "grad_norm": 1.4110169410705566,
1155
+ "learning_rate": 2.4599999999999998e-05,
1156
+ "loss": 0.4228,
1157
+ "step": 820
1158
+ },
1159
+ {
1160
+ "epoch": 0.91,
1161
+ "grad_norm": 2.436192512512207,
1162
+ "learning_rate": 2.475e-05,
1163
+ "loss": 0.5922,
1164
+ "step": 825
1165
+ },
1166
+ {
1167
+ "epoch": 0.91,
1168
+ "grad_norm": 2.8494598865509033,
1169
+ "learning_rate": 2.49e-05,
1170
+ "loss": 0.6034,
1171
+ "step": 830
1172
+ },
1173
+ {
1174
+ "epoch": 0.92,
1175
+ "grad_norm": 1.5710737705230713,
1176
+ "learning_rate": 2.505e-05,
1177
+ "loss": 0.2955,
1178
+ "step": 835
1179
+ },
1180
+ {
1181
+ "epoch": 0.92,
1182
+ "grad_norm": 2.6547062397003174,
1183
+ "learning_rate": 2.52e-05,
1184
+ "loss": 0.4286,
1185
+ "step": 840
1186
+ },
1187
+ {
1188
+ "epoch": 0.93,
1189
+ "grad_norm": 1.1925177574157715,
1190
+ "learning_rate": 2.535e-05,
1191
+ "loss": 0.4727,
1192
+ "step": 845
1193
+ },
1194
+ {
1195
+ "epoch": 0.94,
1196
+ "grad_norm": 1.3642709255218506,
1197
+ "learning_rate": 2.55e-05,
1198
+ "loss": 0.406,
1199
+ "step": 850
1200
+ },
1201
+ {
1202
+ "epoch": 0.94,
1203
+ "grad_norm": 1.1482707262039185,
1204
+ "learning_rate": 2.565e-05,
1205
+ "loss": 0.4667,
1206
+ "step": 855
1207
+ },
1208
+ {
1209
+ "epoch": 0.95,
1210
+ "grad_norm": 2.0437512397766113,
1211
+ "learning_rate": 2.58e-05,
1212
+ "loss": 0.5288,
1213
+ "step": 860
1214
+ },
1215
+ {
1216
+ "epoch": 0.95,
1217
+ "grad_norm": 1.0377088785171509,
1218
+ "learning_rate": 2.595e-05,
1219
+ "loss": 0.3604,
1220
+ "step": 865
1221
+ },
1222
+ {
1223
+ "epoch": 0.96,
1224
+ "grad_norm": 2.0166819095611572,
1225
+ "learning_rate": 2.61e-05,
1226
+ "loss": 0.4019,
1227
+ "step": 870
1228
+ },
1229
+ {
1230
+ "epoch": 0.96,
1231
+ "grad_norm": 1.1202322244644165,
1232
+ "learning_rate": 2.625e-05,
1233
+ "loss": 0.397,
1234
+ "step": 875
1235
+ },
1236
+ {
1237
+ "epoch": 0.97,
1238
+ "grad_norm": 1.1196401119232178,
1239
+ "learning_rate": 2.64e-05,
1240
+ "loss": 0.3056,
1241
+ "step": 880
1242
+ },
1243
+ {
1244
+ "epoch": 0.97,
1245
+ "grad_norm": 1.8753234148025513,
1246
+ "learning_rate": 2.655e-05,
1247
+ "loss": 0.3347,
1248
+ "step": 885
1249
+ },
1250
+ {
1251
+ "epoch": 0.98,
1252
+ "grad_norm": 2.1503918170928955,
1253
+ "learning_rate": 2.6700000000000002e-05,
1254
+ "loss": 0.6701,
1255
+ "step": 890
1256
+ },
1257
+ {
1258
+ "epoch": 0.99,
1259
+ "grad_norm": 1.2472453117370605,
1260
+ "learning_rate": 2.6850000000000002e-05,
1261
+ "loss": 0.513,
1262
+ "step": 895
1263
+ },
1264
+ {
1265
+ "epoch": 0.99,
1266
+ "grad_norm": 1.2424818277359009,
1267
+ "learning_rate": 2.7000000000000002e-05,
1268
+ "loss": 0.3437,
1269
+ "step": 900
1270
+ },
1271
+ {
1272
+ "epoch": 1.0,
1273
+ "grad_norm": 1.36464524269104,
1274
+ "learning_rate": 2.7150000000000003e-05,
1275
+ "loss": 0.5147,
1276
+ "step": 905
1277
+ },
1278
+ {
1279
+ "epoch": 1.0,
1280
+ "grad_norm": 2.0129966735839844,
1281
+ "learning_rate": 2.7300000000000003e-05,
1282
+ "loss": 0.5189,
1283
+ "step": 910
1284
+ },
1285
+ {
1286
+ "epoch": 1.01,
1287
+ "grad_norm": 3.107072114944458,
1288
+ "learning_rate": 2.7450000000000003e-05,
1289
+ "loss": 0.527,
1290
+ "step": 915
1291
+ },
1292
+ {
1293
+ "epoch": 1.01,
1294
+ "grad_norm": 1.9841065406799316,
1295
+ "learning_rate": 2.7600000000000003e-05,
1296
+ "loss": 0.3458,
1297
+ "step": 920
1298
+ },
1299
+ {
1300
+ "epoch": 1.02,
1301
+ "grad_norm": 1.4352362155914307,
1302
+ "learning_rate": 2.7750000000000004e-05,
1303
+ "loss": 0.4081,
1304
+ "step": 925
1305
+ },
1306
+ {
1307
+ "epoch": 1.02,
1308
+ "grad_norm": 1.5732287168502808,
1309
+ "learning_rate": 2.79e-05,
1310
+ "loss": 0.6428,
1311
+ "step": 930
1312
+ },
1313
+ {
1314
+ "epoch": 1.03,
1315
+ "grad_norm": 1.5462892055511475,
1316
+ "learning_rate": 2.805e-05,
1317
+ "loss": 0.5453,
1318
+ "step": 935
1319
+ },
1320
+ {
1321
+ "epoch": 1.03,
1322
+ "grad_norm": 2.118161201477051,
1323
+ "learning_rate": 2.8199999999999998e-05,
1324
+ "loss": 0.5021,
1325
+ "step": 940
1326
+ },
1327
+ {
1328
+ "epoch": 1.04,
1329
+ "grad_norm": 2.953655481338501,
1330
+ "learning_rate": 2.8349999999999998e-05,
1331
+ "loss": 0.4168,
1332
+ "step": 945
1333
+ },
1334
+ {
1335
+ "epoch": 1.05,
1336
+ "grad_norm": 0.539341390132904,
1337
+ "learning_rate": 2.8499999999999998e-05,
1338
+ "loss": 0.5838,
1339
+ "step": 950
1340
+ },
1341
+ {
1342
+ "epoch": 1.05,
1343
+ "grad_norm": 0.8679121732711792,
1344
+ "learning_rate": 2.865e-05,
1345
+ "loss": 0.4803,
1346
+ "step": 955
1347
+ },
1348
+ {
1349
+ "epoch": 1.06,
1350
+ "grad_norm": 0.6618215441703796,
1351
+ "learning_rate": 2.88e-05,
1352
+ "loss": 0.4741,
1353
+ "step": 960
1354
+ },
1355
+ {
1356
+ "epoch": 1.06,
1357
+ "grad_norm": 1.349791407585144,
1358
+ "learning_rate": 2.895e-05,
1359
+ "loss": 0.539,
1360
+ "step": 965
1361
+ },
1362
+ {
1363
+ "epoch": 1.07,
1364
+ "grad_norm": 0.9783216714859009,
1365
+ "learning_rate": 2.91e-05,
1366
+ "loss": 0.4964,
1367
+ "step": 970
1368
+ },
1369
+ {
1370
+ "epoch": 1.07,
1371
+ "grad_norm": 0.7639239430427551,
1372
+ "learning_rate": 2.925e-05,
1373
+ "loss": 0.305,
1374
+ "step": 975
1375
+ },
1376
+ {
1377
+ "epoch": 1.08,
1378
+ "grad_norm": 1.376918911933899,
1379
+ "learning_rate": 2.94e-05,
1380
+ "loss": 0.415,
1381
+ "step": 980
1382
+ },
1383
+ {
1384
+ "epoch": 1.08,
1385
+ "grad_norm": 0.8644680380821228,
1386
+ "learning_rate": 2.955e-05,
1387
+ "loss": 0.4427,
1388
+ "step": 985
1389
+ },
1390
+ {
1391
+ "epoch": 1.09,
1392
+ "grad_norm": 0.9307350516319275,
1393
+ "learning_rate": 2.97e-05,
1394
+ "loss": 0.3651,
1395
+ "step": 990
1396
+ },
1397
+ {
1398
+ "epoch": 1.1,
1399
+ "grad_norm": 1.0594663619995117,
1400
+ "learning_rate": 2.985e-05,
1401
+ "loss": 0.3768,
1402
+ "step": 995
1403
+ },
1404
+ {
1405
+ "epoch": 1.1,
1406
+ "grad_norm": 1.9165922403335571,
1407
+ "learning_rate": 3e-05,
1408
+ "loss": 0.3997,
1409
+ "step": 1000
1410
+ },
1411
+ {
1412
+ "epoch": 1.11,
1413
+ "grad_norm": 1.4573155641555786,
1414
+ "learning_rate": 2.999937737939374e-05,
1415
+ "loss": 0.2581,
1416
+ "step": 1005
1417
+ },
1418
+ {
1419
+ "epoch": 1.11,
1420
+ "grad_norm": 1.2896963357925415,
1421
+ "learning_rate": 2.9997509569262485e-05,
1422
+ "loss": 0.3903,
1423
+ "step": 1010
1424
+ },
1425
+ {
1426
+ "epoch": 1.12,
1427
+ "grad_norm": 1.1831902265548706,
1428
+ "learning_rate": 2.9994396724664514e-05,
1429
+ "loss": 0.49,
1430
+ "step": 1015
1431
+ },
1432
+ {
1433
+ "epoch": 1.12,
1434
+ "grad_norm": 2.8245599269866943,
1435
+ "learning_rate": 2.9990039104015984e-05,
1436
+ "loss": 0.4482,
1437
+ "step": 1020
1438
+ },
1439
+ {
1440
+ "epoch": 1.13,
1441
+ "grad_norm": 1.2168867588043213,
1442
+ "learning_rate": 2.998443706906948e-05,
1443
+ "loss": 0.5133,
1444
+ "step": 1025
1445
+ },
1446
+ {
1447
+ "epoch": 1.13,
1448
+ "grad_norm": 1.0247105360031128,
1449
+ "learning_rate": 2.9977591084883992e-05,
1450
+ "loss": 0.4762,
1451
+ "step": 1030
1452
+ },
1453
+ {
1454
+ "epoch": 1.14,
1455
+ "grad_norm": 0.7047167420387268,
1456
+ "learning_rate": 2.9969501719786296e-05,
1457
+ "loss": 0.6164,
1458
+ "step": 1035
1459
+ },
1460
+ {
1461
+ "epoch": 1.15,
1462
+ "grad_norm": 1.1248735189437866,
1463
+ "learning_rate": 2.9960169645323774e-05,
1464
+ "loss": 0.3757,
1465
+ "step": 1040
1466
+ },
1467
+ {
1468
+ "epoch": 1.15,
1469
+ "grad_norm": 0.8849346041679382,
1470
+ "learning_rate": 2.9949595636208678e-05,
1471
+ "loss": 0.3092,
1472
+ "step": 1045
1473
+ },
1474
+ {
1475
+ "epoch": 1.16,
1476
+ "grad_norm": 1.1959189176559448,
1477
+ "learning_rate": 2.9937780570253807e-05,
1478
+ "loss": 0.3765,
1479
+ "step": 1050
1480
+ },
1481
+ {
1482
+ "epoch": 1.16,
1483
+ "grad_norm": 0.845991313457489,
1484
+ "learning_rate": 2.9924725428299625e-05,
1485
+ "loss": 0.5164,
1486
+ "step": 1055
1487
+ },
1488
+ {
1489
+ "epoch": 1.17,
1490
+ "grad_norm": 0.6847428679466248,
1491
+ "learning_rate": 2.991043129413285e-05,
1492
+ "loss": 0.439,
1493
+ "step": 1060
1494
+ },
1495
+ {
1496
+ "epoch": 1.17,
1497
+ "grad_norm": 0.9967267513275146,
1498
+ "learning_rate": 2.9894899354396496e-05,
1499
+ "loss": 0.4436,
1500
+ "step": 1065
1501
+ },
1502
+ {
1503
+ "epoch": 1.18,
1504
+ "grad_norm": 0.8753231167793274,
1505
+ "learning_rate": 2.9878130898491303e-05,
1506
+ "loss": 0.3638,
1507
+ "step": 1070
1508
+ },
1509
+ {
1510
+ "epoch": 1.18,
1511
+ "grad_norm": 0.7683019042015076,
1512
+ "learning_rate": 2.9860127318468782e-05,
1513
+ "loss": 0.5267,
1514
+ "step": 1075
1515
+ },
1516
+ {
1517
+ "epoch": 1.19,
1518
+ "grad_norm": 1.2402276992797852,
1519
+ "learning_rate": 2.9840890108915572e-05,
1520
+ "loss": 0.66,
1521
+ "step": 1080
1522
+ },
1523
+ {
1524
+ "epoch": 1.19,
1525
+ "grad_norm": 0.9644812345504761,
1526
+ "learning_rate": 2.9820420866829433e-05,
1527
+ "loss": 0.1985,
1528
+ "step": 1085
1529
+ },
1530
+ {
1531
+ "epoch": 1.2,
1532
+ "grad_norm": 1.2949899435043335,
1533
+ "learning_rate": 2.979872129148661e-05,
1534
+ "loss": 0.4225,
1535
+ "step": 1090
1536
+ },
1537
+ {
1538
+ "epoch": 1.21,
1539
+ "grad_norm": 1.2814561128616333,
1540
+ "learning_rate": 2.9775793184300798e-05,
1541
+ "loss": 0.2877,
1542
+ "step": 1095
1543
+ },
1544
+ {
1545
+ "epoch": 1.21,
1546
+ "grad_norm": 2.1358540058135986,
1547
+ "learning_rate": 2.9751638448673612e-05,
1548
+ "loss": 0.609,
1549
+ "step": 1100
1550
+ },
1551
+ {
1552
+ "epoch": 1.22,
1553
+ "grad_norm": NaN,
1554
+ "learning_rate": 2.9731432831792347e-05,
1555
+ "loss": 0.5548,
1556
+ "step": 1105
1557
+ },
1558
+ {
1559
+ "epoch": 1.22,
1560
+ "grad_norm": 1.0352325439453125,
1561
+ "learning_rate": 2.9705075286477642e-05,
1562
+ "loss": 0.5043,
1563
+ "step": 1110
1564
+ },
1565
+ {
1566
+ "epoch": 1.23,
1567
+ "grad_norm": 1.3879212141036987,
1568
+ "learning_rate": 2.9677496983444274e-05,
1569
+ "loss": 0.3721,
1570
+ "step": 1115
1571
+ },
1572
+ {
1573
+ "epoch": 1.23,
1574
+ "grad_norm": 1.3792262077331543,
1575
+ "learning_rate": 2.9648700212134885e-05,
1576
+ "loss": 0.4842,
1577
+ "step": 1120
1578
+ },
1579
+ {
1580
+ "epoch": 1.24,
1581
+ "grad_norm": 1.1040356159210205,
1582
+ "learning_rate": 2.961868736314456e-05,
1583
+ "loss": 0.4203,
1584
+ "step": 1125
1585
+ },
1586
+ {
1587
+ "epoch": 1.24,
1588
+ "grad_norm": 1.0859042406082153,
1589
+ "learning_rate": 2.9587460928022404e-05,
1590
+ "loss": 0.4129,
1591
+ "step": 1130
1592
+ },
1593
+ {
1594
+ "epoch": 1.25,
1595
+ "grad_norm": 0.9380947351455688,
1596
+ "learning_rate": 2.9555023499064677e-05,
1597
+ "loss": 0.3209,
1598
+ "step": 1135
1599
+ },
1600
+ {
1601
+ "epoch": 1.26,
1602
+ "grad_norm": 0.6131200194358826,
1603
+ "learning_rate": 2.9521377769099603e-05,
1604
+ "loss": 0.4211,
1605
+ "step": 1140
1606
+ },
1607
+ {
1608
+ "epoch": 1.26,
1609
+ "grad_norm": 1.2759392261505127,
1610
+ "learning_rate": 2.948652653126382e-05,
1611
+ "loss": 0.7952,
1612
+ "step": 1145
1613
+ },
1614
+ {
1615
+ "epoch": 1.27,
1616
+ "grad_norm": 2.88456130027771,
1617
+ "learning_rate": 2.9450472678770505e-05,
1618
+ "loss": 0.5054,
1619
+ "step": 1150
1620
+ },
1621
+ {
1622
+ "epoch": 1.27,
1623
+ "grad_norm": 0.833156943321228,
1624
+ "learning_rate": 2.9413219204669195e-05,
1625
+ "loss": 0.37,
1626
+ "step": 1155
1627
+ },
1628
+ {
1629
+ "epoch": 1.28,
1630
+ "grad_norm": 1.2013107538223267,
1631
+ "learning_rate": 2.9374769201597305e-05,
1632
+ "loss": 0.4595,
1633
+ "step": 1160
1634
+ },
1635
+ {
1636
+ "epoch": 1.28,
1637
+ "grad_norm": 1.4866896867752075,
1638
+ "learning_rate": 2.9335125861523395e-05,
1639
+ "loss": 0.318,
1640
+ "step": 1165
1641
+ },
1642
+ {
1643
+ "epoch": 1.29,
1644
+ "grad_norm": 3.088609218597412,
1645
+ "learning_rate": 2.9294292475482192e-05,
1646
+ "loss": 0.5222,
1647
+ "step": 1170
1648
+ },
1649
+ {
1650
+ "epoch": 1.29,
1651
+ "grad_norm": 1.1780695915222168,
1652
+ "learning_rate": 2.9252272433301376e-05,
1653
+ "loss": 0.6204,
1654
+ "step": 1175
1655
+ },
1656
+ {
1657
+ "epoch": 1.3,
1658
+ "grad_norm": 0.6830143928527832,
1659
+ "learning_rate": 2.920906922332016e-05,
1660
+ "loss": 0.5025,
1661
+ "step": 1180
1662
+ },
1663
+ {
1664
+ "epoch": 1.3,
1665
+ "grad_norm": 1.2696876525878906,
1666
+ "learning_rate": 2.9164686432099713e-05,
1667
+ "loss": 0.3402,
1668
+ "step": 1185
1669
+ },
1670
+ {
1671
+ "epoch": 1.31,
1672
+ "grad_norm": 0.5633934736251831,
1673
+ "learning_rate": 2.9119127744125428e-05,
1674
+ "loss": 0.4001,
1675
+ "step": 1190
1676
+ },
1677
+ {
1678
+ "epoch": 1.32,
1679
+ "grad_norm": 0.7630770802497864,
1680
+ "learning_rate": 2.9072396941501023e-05,
1681
+ "loss": 0.4415,
1682
+ "step": 1195
1683
+ },
1684
+ {
1685
+ "epoch": 1.32,
1686
+ "grad_norm": 1.4518195390701294,
1687
+ "learning_rate": 2.9024497903634584e-05,
1688
+ "loss": 0.5651,
1689
+ "step": 1200
1690
+ },
1691
+ {
1692
+ "epoch": 1.33,
1693
+ "grad_norm": 1.5180546045303345,
1694
+ "learning_rate": 2.8975434606916515e-05,
1695
+ "loss": 0.4689,
1696
+ "step": 1205
1697
+ },
1698
+ {
1699
+ "epoch": 1.33,
1700
+ "grad_norm": 1.4250961542129517,
1701
+ "learning_rate": 2.8925211124389423e-05,
1702
+ "loss": 0.2893,
1703
+ "step": 1210
1704
+ },
1705
+ {
1706
+ "epoch": 1.34,
1707
+ "grad_norm": 1.938849687576294,
1708
+ "learning_rate": 2.887383162540999e-05,
1709
+ "loss": 0.3407,
1710
+ "step": 1215
1711
+ },
1712
+ {
1713
+ "epoch": 1.34,
1714
+ "grad_norm": 1.0794405937194824,
1715
+ "learning_rate": 2.8821300375302858e-05,
1716
+ "loss": 0.374,
1717
+ "step": 1220
1718
+ },
1719
+ {
1720
+ "epoch": 1.35,
1721
+ "grad_norm": 1.5490267276763916,
1722
+ "learning_rate": 2.876762173500653e-05,
1723
+ "loss": 0.5285,
1724
+ "step": 1225
1725
+ },
1726
+ {
1727
+ "epoch": 1.35,
1728
+ "grad_norm": 1.1713478565216064,
1729
+ "learning_rate": 2.8712800160711353e-05,
1730
+ "loss": 0.5842,
1731
+ "step": 1230
1732
+ },
1733
+ {
1734
+ "epoch": 1.36,
1735
+ "grad_norm": 1.5063586235046387,
1736
+ "learning_rate": 2.8656840203489565e-05,
1737
+ "loss": 0.4172,
1738
+ "step": 1235
1739
+ },
1740
+ {
1741
+ "epoch": 1.37,
1742
+ "grad_norm": 0.477967232465744,
1743
+ "learning_rate": 2.8599746508917496e-05,
1744
+ "loss": 0.4052,
1745
+ "step": 1240
1746
+ },
1747
+ {
1748
+ "epoch": 1.37,
1749
+ "grad_norm": 1.269463062286377,
1750
+ "learning_rate": 2.8541523816689917e-05,
1751
+ "loss": 0.5223,
1752
+ "step": 1245
1753
+ },
1754
+ {
1755
+ "epoch": 1.38,
1756
+ "grad_norm": 0.9727627038955688,
1757
+ "learning_rate": 2.8482176960226555e-05,
1758
+ "loss": 0.3865,
1759
+ "step": 1250
1760
+ },
1761
+ {
1762
+ "epoch": 1.38,
1763
+ "grad_norm": 1.1779907941818237,
1764
+ "learning_rate": 2.842171086627083e-05,
1765
+ "loss": 0.4907,
1766
+ "step": 1255
1767
+ },
1768
+ {
1769
+ "epoch": 1.39,
1770
+ "grad_norm": 1.321874976158142,
1771
+ "learning_rate": 2.8360130554480895e-05,
1772
+ "loss": 0.4799,
1773
+ "step": 1260
1774
+ },
1775
+ {
1776
+ "epoch": 1.39,
1777
+ "grad_norm": 1.128961205482483,
1778
+ "learning_rate": 2.829744113701289e-05,
1779
+ "loss": 0.2856,
1780
+ "step": 1265
1781
+ },
1782
+ {
1783
+ "epoch": 1.4,
1784
+ "grad_norm": 0.7564502358436584,
1785
+ "learning_rate": 2.8233647818096562e-05,
1786
+ "loss": 0.4064,
1787
+ "step": 1270
1788
+ },
1789
+ {
1790
+ "epoch": 1.4,
1791
+ "grad_norm": 1.3942064046859741,
1792
+ "learning_rate": 2.8168755893603233e-05,
1793
+ "loss": 0.4904,
1794
+ "step": 1275
1795
+ },
1796
+ {
1797
+ "epoch": 1.41,
1798
+ "grad_norm": 0.8835464715957642,
1799
+ "learning_rate": 2.8102770750606147e-05,
1800
+ "loss": 0.4211,
1801
+ "step": 1280
1802
+ },
1803
+ {
1804
+ "epoch": 1.41,
1805
+ "grad_norm": 1.4010355472564697,
1806
+ "learning_rate": 2.8035697866933277e-05,
1807
+ "loss": 0.3368,
1808
+ "step": 1285
1809
+ },
1810
+ {
1811
+ "epoch": 1.42,
1812
+ "grad_norm": 0.8351401686668396,
1813
+ "learning_rate": 2.7967542810712548e-05,
1814
+ "loss": 0.4576,
1815
+ "step": 1290
1816
+ },
1817
+ {
1818
+ "epoch": 1.43,
1819
+ "grad_norm": 1.1750423908233643,
1820
+ "learning_rate": 2.789831123990962e-05,
1821
+ "loss": 0.2992,
1822
+ "step": 1295
1823
+ },
1824
+ {
1825
+ "epoch": 1.43,
1826
+ "grad_norm": 0.9141637682914734,
1827
+ "learning_rate": 2.7828008901858175e-05,
1828
+ "loss": 0.5354,
1829
+ "step": 1300
1830
+ },
1831
+ {
1832
+ "epoch": 1.44,
1833
+ "grad_norm": 1.4612001180648804,
1834
+ "learning_rate": 2.775664163278278e-05,
1835
+ "loss": 0.4124,
1836
+ "step": 1305
1837
+ },
1838
+ {
1839
+ "epoch": 1.44,
1840
+ "grad_norm": 0.8740494847297668,
1841
+ "learning_rate": 2.7684215357314428e-05,
1842
+ "loss": 0.4102,
1843
+ "step": 1310
1844
+ },
1845
+ {
1846
+ "epoch": 1.45,
1847
+ "grad_norm": 1.0325684547424316,
1848
+ "learning_rate": 2.7610736087998648e-05,
1849
+ "loss": 0.3746,
1850
+ "step": 1315
1851
+ },
1852
+ {
1853
+ "epoch": 1.45,
1854
+ "grad_norm": 1.2742629051208496,
1855
+ "learning_rate": 2.7536209924796407e-05,
1856
+ "loss": 0.5872,
1857
+ "step": 1320
1858
+ },
1859
+ {
1860
+ "epoch": 1.46,
1861
+ "grad_norm": 0.6541928052902222,
1862
+ "learning_rate": 2.7460643054577684e-05,
1863
+ "loss": 0.4492,
1864
+ "step": 1325
1865
+ },
1866
+ {
1867
+ "epoch": 1.46,
1868
+ "grad_norm": 0.9362463355064392,
1869
+ "learning_rate": 2.7384041750607895e-05,
1870
+ "loss": 0.3903,
1871
+ "step": 1330
1872
+ },
1873
+ {
1874
+ "epoch": 1.47,
1875
+ "grad_norm": 1.3968509435653687,
1876
+ "learning_rate": 2.7306412372027082e-05,
1877
+ "loss": 0.557,
1878
+ "step": 1335
1879
+ },
1880
+ {
1881
+ "epoch": 1.48,
1882
+ "grad_norm": 1.368221640586853,
1883
+ "learning_rate": 2.7227761363322006e-05,
1884
+ "loss": 0.446,
1885
+ "step": 1340
1886
+ },
1887
+ {
1888
+ "epoch": 1.48,
1889
+ "grad_norm": 1.2684072256088257,
1890
+ "learning_rate": 2.7148095253791174e-05,
1891
+ "loss": 0.6294,
1892
+ "step": 1345
1893
+ },
1894
+ {
1895
+ "epoch": 1.49,
1896
+ "grad_norm": 1.466238260269165,
1897
+ "learning_rate": 2.706742065700276e-05,
1898
+ "loss": 0.4555,
1899
+ "step": 1350
1900
+ },
1901
+ {
1902
+ "epoch": 1.49,
1903
+ "grad_norm": 1.2599902153015137,
1904
+ "learning_rate": 2.6985744270245627e-05,
1905
+ "loss": 0.4199,
1906
+ "step": 1355
1907
+ },
1908
+ {
1909
+ "epoch": 1.5,
1910
+ "grad_norm": 0.8082879185676575,
1911
+ "learning_rate": 2.690307287397329e-05,
1912
+ "loss": 0.3501,
1913
+ "step": 1360
1914
+ },
1915
+ {
1916
+ "epoch": 1.5,
1917
+ "grad_norm": 1.3563495874404907,
1918
+ "learning_rate": 2.681941333124107e-05,
1919
+ "loss": 0.4526,
1920
+ "step": 1365
1921
+ },
1922
+ {
1923
+ "epoch": 1.51,
1924
+ "grad_norm": 0.7122817039489746,
1925
+ "learning_rate": 2.6734772587136324e-05,
1926
+ "loss": 0.4239,
1927
+ "step": 1370
1928
+ },
1929
+ {
1930
+ "epoch": 1.51,
1931
+ "grad_norm": 1.2698917388916016,
1932
+ "learning_rate": 2.664915766820191e-05,
1933
+ "loss": 0.3165,
1934
+ "step": 1375
1935
+ },
1936
+ {
1937
+ "epoch": 1.52,
1938
+ "grad_norm": 1.7459849119186401,
1939
+ "learning_rate": 2.656257568185286e-05,
1940
+ "loss": 0.3812,
1941
+ "step": 1380
1942
+ },
1943
+ {
1944
+ "epoch": 1.52,
1945
+ "grad_norm": 0.7778897285461426,
1946
+ "learning_rate": 2.6475033815786353e-05,
1947
+ "loss": 0.4149,
1948
+ "step": 1385
1949
+ },
1950
+ {
1951
+ "epoch": 1.53,
1952
+ "grad_norm": 1.0717759132385254,
1953
+ "learning_rate": 2.6386539337385012e-05,
1954
+ "loss": 0.515,
1955
+ "step": 1390
1956
+ },
1957
+ {
1958
+ "epoch": 1.54,
1959
+ "grad_norm": 0.9191924929618835,
1960
+ "learning_rate": 2.629709959311361e-05,
1961
+ "loss": 0.3977,
1962
+ "step": 1395
1963
+ },
1964
+ {
1965
+ "epoch": 1.54,
1966
+ "grad_norm": 1.0447479486465454,
1967
+ "learning_rate": 2.62067220079092e-05,
1968
+ "loss": 0.335,
1969
+ "step": 1400
1970
+ },
1971
+ {
1972
+ "epoch": 1.55,
1973
+ "grad_norm": 1.2984446287155151,
1974
+ "learning_rate": 2.6115414084564682e-05,
1975
+ "loss": 0.5425,
1976
+ "step": 1405
1977
+ },
1978
+ {
1979
+ "epoch": 1.55,
1980
+ "grad_norm": 0.9010884761810303,
1981
+ "learning_rate": 2.6023183403106014e-05,
1982
+ "loss": 0.4465,
1983
+ "step": 1410
1984
+ },
1985
+ {
1986
+ "epoch": 1.56,
1987
+ "grad_norm": 1.8324975967407227,
1988
+ "learning_rate": 2.59300376201629e-05,
1989
+ "loss": 0.3131,
1990
+ "step": 1415
1991
+ },
1992
+ {
1993
+ "epoch": 1.56,
1994
+ "grad_norm": 1.0951191186904907,
1995
+ "learning_rate": 2.583598446833319e-05,
1996
+ "loss": 0.4113,
1997
+ "step": 1420
1998
+ },
1999
+ {
2000
+ "epoch": 1.57,
2001
+ "grad_norm": 0.9710536003112793,
2002
+ "learning_rate": 2.5741031755540932e-05,
2003
+ "loss": 0.368,
2004
+ "step": 1425
2005
+ },
2006
+ {
2007
+ "epoch": 1.57,
2008
+ "grad_norm": 0.8006061911582947,
2009
+ "learning_rate": 2.564518736438821e-05,
2010
+ "loss": 0.5833,
2011
+ "step": 1430
2012
+ },
2013
+ {
2014
+ "epoch": 1.58,
2015
+ "grad_norm": 0.47641128301620483,
2016
+ "learning_rate": 2.5548459251500747e-05,
2017
+ "loss": 0.5812,
2018
+ "step": 1435
2019
+ },
2020
+ {
2021
+ "epoch": 1.59,
2022
+ "grad_norm": 0.873199999332428,
2023
+ "learning_rate": 2.5450855446867384e-05,
2024
+ "loss": 0.5852,
2025
+ "step": 1440
2026
+ },
2027
+ {
2028
+ "epoch": 1.59,
2029
+ "grad_norm": 1.6408307552337646,
2030
+ "learning_rate": 2.5352384053173453e-05,
2031
+ "loss": 0.4245,
2032
+ "step": 1445
2033
+ },
2034
+ {
2035
+ "epoch": 1.6,
2036
+ "grad_norm": 0.8571744561195374,
2037
+ "learning_rate": 2.5253053245128135e-05,
2038
+ "loss": 0.3346,
2039
+ "step": 1450
2040
+ },
2041
+ {
2042
+ "epoch": 1.6,
2043
+ "grad_norm": 0.6984312534332275,
2044
+ "learning_rate": 2.5152871268785813e-05,
2045
+ "loss": 0.3652,
2046
+ "step": 1455
2047
+ },
2048
+ {
2049
+ "epoch": 1.61,
2050
+ "grad_norm": 0.6111830472946167,
2051
+ "learning_rate": 2.5051846440861545e-05,
2052
+ "loss": 0.2863,
2053
+ "step": 1460
2054
+ },
2055
+ {
2056
+ "epoch": 1.61,
2057
+ "grad_norm": 1.2058312892913818,
2058
+ "learning_rate": 2.4949987148040608e-05,
2059
+ "loss": 0.5868,
2060
+ "step": 1465
2061
+ },
2062
+ {
2063
+ "epoch": 1.62,
2064
+ "grad_norm": 0.940091609954834,
2065
+ "learning_rate": 2.4847301846282277e-05,
2066
+ "loss": 0.4137,
2067
+ "step": 1470
2068
+ },
2069
+ {
2070
+ "epoch": 1.62,
2071
+ "grad_norm": 1.831299901008606,
2072
+ "learning_rate": 2.474379906011788e-05,
2073
+ "loss": 0.4452,
2074
+ "step": 1475
2075
+ },
2076
+ {
2077
+ "epoch": 1.63,
2078
+ "grad_norm": 0.8370305299758911,
2079
+ "learning_rate": 2.4639487381943075e-05,
2080
+ "loss": 0.4705,
2081
+ "step": 1480
2082
+ },
2083
+ {
2084
+ "epoch": 1.64,
2085
+ "grad_norm": 1.1725839376449585,
2086
+ "learning_rate": 2.4534375471304563e-05,
2087
+ "loss": 0.3157,
2088
+ "step": 1485
2089
+ },
2090
+ {
2091
+ "epoch": 1.64,
2092
+ "grad_norm": 1.3950480222702026,
2093
+ "learning_rate": 2.442847205418122e-05,
2094
+ "loss": 0.4179,
2095
+ "step": 1490
2096
+ },
2097
+ {
2098
+ "epoch": 1.65,
2099
+ "grad_norm": 1.3916176557540894,
2100
+ "learning_rate": 2.4321785922259685e-05,
2101
+ "loss": 0.5267,
2102
+ "step": 1495
2103
+ },
2104
+ {
2105
+ "epoch": 1.65,
2106
+ "grad_norm": 1.6205462217330933,
2107
+ "learning_rate": 2.42143259322045e-05,
2108
+ "loss": 0.5793,
2109
+ "step": 1500
2110
+ },
2111
+ {
2112
+ "epoch": 1.66,
2113
+ "grad_norm": 1.0348162651062012,
2114
+ "learning_rate": 2.4106101004922893e-05,
2115
+ "loss": 0.4365,
2116
+ "step": 1505
2117
+ },
2118
+ {
2119
+ "epoch": 1.66,
2120
+ "grad_norm": 0.5200983285903931,
2121
+ "learning_rate": 2.3997120124824178e-05,
2122
+ "loss": 0.3882,
2123
+ "step": 1510
2124
+ },
2125
+ {
2126
+ "epoch": 1.67,
2127
+ "grad_norm": 1.8840643167495728,
2128
+ "learning_rate": 2.3887392339073898e-05,
2129
+ "loss": 0.3899,
2130
+ "step": 1515
2131
+ },
2132
+ {
2133
+ "epoch": 1.67,
2134
+ "grad_norm": 1.1195874214172363,
2135
+ "learning_rate": 2.3776926756842787e-05,
2136
+ "loss": 0.3071,
2137
+ "step": 1520
2138
+ },
2139
+ {
2140
+ "epoch": 1.68,
2141
+ "grad_norm": 0.9049373269081116,
2142
+ "learning_rate": 2.3665732548550558e-05,
2143
+ "loss": 0.3486,
2144
+ "step": 1525
2145
+ },
2146
+ {
2147
+ "epoch": 1.68,
2148
+ "grad_norm": 1.0285577774047852,
2149
+ "learning_rate": 2.3553818945104588e-05,
2150
+ "loss": 0.4388,
2151
+ "step": 1530
2152
+ },
2153
+ {
2154
+ "epoch": 1.69,
2155
+ "grad_norm": 1.3187785148620605,
2156
+ "learning_rate": 2.3441195237133624e-05,
2157
+ "loss": 0.4953,
2158
+ "step": 1535
2159
+ },
2160
+ {
2161
+ "epoch": 1.7,
2162
+ "grad_norm": 1.222777247428894,
2163
+ "learning_rate": 2.3327870774216515e-05,
2164
+ "loss": 0.4594,
2165
+ "step": 1540
2166
+ },
2167
+ {
2168
+ "epoch": 1.7,
2169
+ "grad_norm": 0.6450194120407104,
2170
+ "learning_rate": 2.3213854964106035e-05,
2171
+ "loss": 0.4665,
2172
+ "step": 1545
2173
+ },
2174
+ {
2175
+ "epoch": 1.71,
2176
+ "grad_norm": 1.990315318107605,
2177
+ "learning_rate": 2.309915727194789e-05,
2178
+ "loss": 0.3313,
2179
+ "step": 1550
2180
+ },
2181
+ {
2182
+ "epoch": 1.71,
2183
+ "grad_norm": 1.7571722269058228,
2184
+ "learning_rate": 2.2983787219494964e-05,
2185
+ "loss": 0.3571,
2186
+ "step": 1555
2187
+ },
2188
+ {
2189
+ "epoch": 1.72,
2190
+ "grad_norm": 0.9484684467315674,
2191
+ "learning_rate": 2.2867754384316865e-05,
2192
+ "loss": 0.4045,
2193
+ "step": 1560
2194
+ },
2195
+ {
2196
+ "epoch": 1.72,
2197
+ "grad_norm": 0.9541623592376709,
2198
+ "learning_rate": 2.2751068399004806e-05,
2199
+ "loss": 0.5165,
2200
+ "step": 1565
2201
+ },
2202
+ {
2203
+ "epoch": 1.73,
2204
+ "grad_norm": 1.3149410486221313,
2205
+ "learning_rate": 2.2633738950371984e-05,
2206
+ "loss": 0.3404,
2207
+ "step": 1570
2208
+ },
2209
+ {
2210
+ "epoch": 1.73,
2211
+ "grad_norm": 0.7877027988433838,
2212
+ "learning_rate": 2.2515775778649386e-05,
2213
+ "loss": 0.3857,
2214
+ "step": 1575
2215
+ },
2216
+ {
2217
+ "epoch": 1.74,
2218
+ "grad_norm": 0.8127877116203308,
2219
+ "learning_rate": 2.2397188676677217e-05,
2220
+ "loss": 0.5441,
2221
+ "step": 1580
2222
+ },
2223
+ {
2224
+ "epoch": 1.75,
2225
+ "grad_norm": 1.8573230504989624,
2226
+ "learning_rate": 2.227798748909191e-05,
2227
+ "loss": 0.4012,
2228
+ "step": 1585
2229
+ },
2230
+ {
2231
+ "epoch": 1.75,
2232
+ "grad_norm": 1.7995444536209106,
2233
+ "learning_rate": 2.2158182111508904e-05,
2234
+ "loss": 0.3189,
2235
+ "step": 1590
2236
+ },
2237
+ {
2238
+ "epoch": 1.76,
2239
+ "grad_norm": 0.9786883592605591,
2240
+ "learning_rate": 2.20377824897011e-05,
2241
+ "loss": 0.4802,
2242
+ "step": 1595
2243
+ },
2244
+ {
2245
+ "epoch": 1.76,
2246
+ "grad_norm": 0.9040762186050415,
2247
+ "learning_rate": 2.191679861877323e-05,
2248
+ "loss": 0.4147,
2249
+ "step": 1600
2250
+ },
2251
+ {
2252
+ "epoch": 1.77,
2253
+ "grad_norm": 0.962874174118042,
2254
+ "learning_rate": 2.179524054233211e-05,
2255
+ "loss": 0.3856,
2256
+ "step": 1605
2257
+ },
2258
+ {
2259
+ "epoch": 1.77,
2260
+ "grad_norm": 1.2043737173080444,
2261
+ "learning_rate": 2.1673118351652843e-05,
2262
+ "loss": 0.5292,
2263
+ "step": 1610
2264
+ },
2265
+ {
2266
+ "epoch": 1.78,
2267
+ "grad_norm": 0.5223831534385681,
2268
+ "learning_rate": 2.1550442184841072e-05,
2269
+ "loss": 0.4305,
2270
+ "step": 1615
2271
+ },
2272
+ {
2273
+ "epoch": 1.78,
2274
+ "grad_norm": 0.9191122055053711,
2275
+ "learning_rate": 2.1427222225991383e-05,
2276
+ "loss": 0.472,
2277
+ "step": 1620
2278
+ },
2279
+ {
2280
+ "epoch": 1.79,
2281
+ "grad_norm": 1.261473536491394,
2282
+ "learning_rate": 2.130346870434184e-05,
2283
+ "loss": 0.4266,
2284
+ "step": 1625
2285
+ },
2286
+ {
2287
+ "epoch": 1.79,
2288
+ "grad_norm": 1.202399730682373,
2289
+ "learning_rate": 2.1179191893424797e-05,
2290
+ "loss": 0.3269,
2291
+ "step": 1630
2292
+ },
2293
+ {
2294
+ "epoch": 1.8,
2295
+ "grad_norm": 0.7132131457328796,
2296
+ "learning_rate": 2.105440211021404e-05,
2297
+ "loss": 0.2125,
2298
+ "step": 1635
2299
+ },
2300
+ {
2301
+ "epoch": 1.81,
2302
+ "grad_norm": 1.0556139945983887,
2303
+ "learning_rate": 2.09291097142683e-05,
2304
+ "loss": 0.3205,
2305
+ "step": 1640
2306
+ },
2307
+ {
2308
+ "epoch": 1.81,
2309
+ "grad_norm": 0.7523159980773926,
2310
+ "learning_rate": 2.0803325106871234e-05,
2311
+ "loss": 0.3239,
2312
+ "step": 1645
2313
+ },
2314
+ {
2315
+ "epoch": 1.82,
2316
+ "grad_norm": 1.4122850894927979,
2317
+ "learning_rate": 2.0677058730168e-05,
2318
+ "loss": 0.4792,
2319
+ "step": 1650
2320
+ },
2321
+ {
2322
+ "epoch": 1.82,
2323
+ "grad_norm": 1.4816789627075195,
2324
+ "learning_rate": 2.055032106629831e-05,
2325
+ "loss": 0.6169,
2326
+ "step": 1655
2327
+ },
2328
+ {
2329
+ "epoch": 1.83,
2330
+ "grad_norm": 0.8011027574539185,
2331
+ "learning_rate": 2.0423122636526325e-05,
2332
+ "loss": 0.4804,
2333
+ "step": 1660
2334
+ },
2335
+ {
2336
+ "epoch": 1.83,
2337
+ "grad_norm": 0.6560605764389038,
2338
+ "learning_rate": 2.0295474000367173e-05,
2339
+ "loss": 0.3411,
2340
+ "step": 1665
2341
+ },
2342
+ {
2343
+ "epoch": 1.84,
2344
+ "grad_norm": 1.2358989715576172,
2345
+ "learning_rate": 2.0167385754710346e-05,
2346
+ "loss": 0.3476,
2347
+ "step": 1670
2348
+ },
2349
+ {
2350
+ "epoch": 1.84,
2351
+ "grad_norm": 1.342943787574768,
2352
+ "learning_rate": 2.0038868532940003e-05,
2353
+ "loss": 0.3981,
2354
+ "step": 1675
2355
+ },
2356
+ {
2357
+ "epoch": 1.85,
2358
+ "grad_norm": 1.1446216106414795,
2359
+ "learning_rate": 1.990993300405222e-05,
2360
+ "loss": 0.406,
2361
+ "step": 1680
2362
+ },
2363
+ {
2364
+ "epoch": 1.86,
2365
+ "grad_norm": 1.2379969358444214,
2366
+ "learning_rate": 1.9780589871769272e-05,
2367
+ "loss": 0.4369,
2368
+ "step": 1685
2369
+ },
2370
+ {
2371
+ "epoch": 1.86,
2372
+ "grad_norm": 1.4717028141021729,
2373
+ "learning_rate": 1.9650849873651102e-05,
2374
+ "loss": 0.5346,
2375
+ "step": 1690
2376
+ },
2377
+ {
2378
+ "epoch": 1.87,
2379
+ "grad_norm": 0.824568510055542,
2380
+ "learning_rate": 1.952072378020387e-05,
2381
+ "loss": 0.3544,
2382
+ "step": 1695
2383
+ },
2384
+ {
2385
+ "epoch": 1.87,
2386
+ "grad_norm": 1.0470279455184937,
2387
+ "learning_rate": 1.9390222393985866e-05,
2388
+ "loss": 0.2773,
2389
+ "step": 1700
2390
+ },
2391
+ {
2392
+ "epoch": 1.88,
2393
+ "grad_norm": 0.9954514503479004,
2394
+ "learning_rate": 1.9259356548710722e-05,
2395
+ "loss": 0.3972,
2396
+ "step": 1705
2397
+ },
2398
+ {
2399
+ "epoch": 1.88,
2400
+ "grad_norm": 0.49930986762046814,
2401
+ "learning_rate": 1.912813710834803e-05,
2402
+ "loss": 0.3004,
2403
+ "step": 1710
2404
+ },
2405
+ {
2406
+ "epoch": 1.89,
2407
+ "grad_norm": 0.7324523329734802,
2408
+ "learning_rate": 1.8996574966221453e-05,
2409
+ "loss": 0.7305,
2410
+ "step": 1715
2411
+ },
2412
+ {
2413
+ "epoch": 1.89,
2414
+ "grad_norm": 0.9635807275772095,
2415
+ "learning_rate": 1.886468104410442e-05,
2416
+ "loss": 0.4353,
2417
+ "step": 1720
2418
+ },
2419
+ {
2420
+ "epoch": 1.9,
2421
+ "grad_norm": 1.794856309890747,
2422
+ "learning_rate": 1.873246629131343e-05,
2423
+ "loss": 0.3805,
2424
+ "step": 1725
2425
+ },
2426
+ {
2427
+ "epoch": 1.9,
2428
+ "grad_norm": 1.0289092063903809,
2429
+ "learning_rate": 1.8599941683799087e-05,
2430
+ "loss": 0.4203,
2431
+ "step": 1730
2432
+ },
2433
+ {
2434
+ "epoch": 1.91,
2435
+ "grad_norm": 0.6733255982398987,
2436
+ "learning_rate": 1.846711822323492e-05,
2437
+ "loss": 0.3358,
2438
+ "step": 1735
2439
+ },
2440
+ {
2441
+ "epoch": 1.92,
2442
+ "grad_norm": 0.44114547967910767,
2443
+ "learning_rate": 1.8334006936104077e-05,
2444
+ "loss": 0.4077,
2445
+ "step": 1740
2446
+ },
2447
+ {
2448
+ "epoch": 1.92,
2449
+ "grad_norm": 1.2705578804016113,
2450
+ "learning_rate": 1.8200618872783917e-05,
2451
+ "loss": 0.2637,
2452
+ "step": 1745
2453
+ },
2454
+ {
2455
+ "epoch": 1.93,
2456
+ "grad_norm": 1.1656275987625122,
2457
+ "learning_rate": 1.8066965106628698e-05,
2458
+ "loss": 0.2701,
2459
+ "step": 1750
2460
+ },
2461
+ {
2462
+ "epoch": 1.93,
2463
+ "grad_norm": 1.0239408016204834,
2464
+ "learning_rate": 1.7933056733050267e-05,
2465
+ "loss": 0.3862,
2466
+ "step": 1755
2467
+ },
2468
+ {
2469
+ "epoch": 1.94,
2470
+ "grad_norm": 1.3315787315368652,
2471
+ "learning_rate": 1.7798904868596994e-05,
2472
+ "loss": 0.4242,
2473
+ "step": 1760
2474
+ },
2475
+ {
2476
+ "epoch": 1.94,
2477
+ "grad_norm": 1.190731406211853,
2478
+ "learning_rate": 1.7664520650030903e-05,
2479
+ "loss": 0.1688,
2480
+ "step": 1765
2481
+ },
2482
+ {
2483
+ "epoch": 1.95,
2484
+ "grad_norm": 1.2880607843399048,
2485
+ "learning_rate": 1.7529915233403145e-05,
2486
+ "loss": 0.3489,
2487
+ "step": 1770
2488
+ },
2489
+ {
2490
+ "epoch": 1.95,
2491
+ "grad_norm": 0.499487966299057,
2492
+ "learning_rate": 1.7395099793127865e-05,
2493
+ "loss": 0.4446,
2494
+ "step": 1775
2495
+ },
2496
+ {
2497
+ "epoch": 1.96,
2498
+ "grad_norm": 1.118751049041748,
2499
+ "learning_rate": 1.726008552105455e-05,
2500
+ "loss": 0.4587,
2501
+ "step": 1780
2502
+ },
2503
+ {
2504
+ "epoch": 1.97,
2505
+ "grad_norm": 1.0625907182693481,
2506
+ "learning_rate": 1.712488362553893e-05,
2507
+ "loss": 0.6011,
2508
+ "step": 1785
2509
+ },
2510
+ {
2511
+ "epoch": 1.97,
2512
+ "grad_norm": 0.5367158055305481,
2513
+ "learning_rate": 1.6989505330512484e-05,
2514
+ "loss": 0.292,
2515
+ "step": 1790
2516
+ },
2517
+ {
2518
+ "epoch": 1.98,
2519
+ "grad_norm": 0.6846025586128235,
2520
+ "learning_rate": 1.6853961874550698e-05,
2521
+ "loss": 0.396,
2522
+ "step": 1795
2523
+ },
2524
+ {
2525
+ "epoch": 1.98,
2526
+ "grad_norm": 1.0111944675445557,
2527
+ "learning_rate": 1.6718264509940076e-05,
2528
+ "loss": 0.3749,
2529
+ "step": 1800
2530
+ },
2531
+ {
2532
+ "epoch": 1.99,
2533
+ "grad_norm": 1.2397122383117676,
2534
+ "learning_rate": 1.6582424501743996e-05,
2535
+ "loss": 0.2241,
2536
+ "step": 1805
2537
+ },
2538
+ {
2539
+ "epoch": 1.99,
2540
+ "grad_norm": 1.4244718551635742,
2541
+ "learning_rate": 1.644645312686757e-05,
2542
+ "loss": 0.3892,
2543
+ "step": 1810
2544
+ },
2545
+ {
2546
+ "epoch": 2.0,
2547
+ "grad_norm": 2.0830795764923096,
2548
+ "learning_rate": 1.631036167312144e-05,
2549
+ "loss": 0.4523,
2550
+ "step": 1815
2551
+ },
2552
+ {
2553
+ "epoch": 2.0,
2554
+ "grad_norm": 0.6778771281242371,
2555
+ "learning_rate": 1.617416143828473e-05,
2556
+ "loss": 0.3769,
2557
+ "step": 1820
2558
+ },
2559
+ {
2560
+ "epoch": 2.01,
2561
+ "grad_norm": 0.6887485384941101,
2562
+ "learning_rate": 1.603786372916714e-05,
2563
+ "loss": 0.4108,
2564
+ "step": 1825
2565
+ },
2566
+ {
2567
+ "epoch": 2.01,
2568
+ "grad_norm": 1.05043625831604,
2569
+ "learning_rate": 1.5901479860670323e-05,
2570
+ "loss": 0.4774,
2571
+ "step": 1830
2572
+ },
2573
+ {
2574
+ "epoch": 2.02,
2575
+ "grad_norm": 0.8635022044181824,
2576
+ "learning_rate": 1.576502115484852e-05,
2577
+ "loss": 0.46,
2578
+ "step": 1835
2579
+ },
2580
+ {
2581
+ "epoch": 2.03,
2582
+ "grad_norm": 0.7978819608688354,
2583
+ "learning_rate": 1.5628498939968686e-05,
2584
+ "loss": 0.4967,
2585
+ "step": 1840
2586
+ },
2587
+ {
2588
+ "epoch": 2.03,
2589
+ "grad_norm": 0.591788113117218,
2590
+ "learning_rate": 1.549192454957005e-05,
2591
+ "loss": 0.4264,
2592
+ "step": 1845
2593
+ },
2594
+ {
2595
+ "epoch": 2.04,
2596
+ "grad_norm": 0.7562071084976196,
2597
+ "learning_rate": 1.5355309321523237e-05,
2598
+ "loss": 0.5705,
2599
+ "step": 1850
2600
+ },
2601
+ {
2602
+ "epoch": 2.04,
2603
+ "grad_norm": 0.5904907584190369,
2604
+ "learning_rate": 1.5218664597089071e-05,
2605
+ "loss": 0.6413,
2606
+ "step": 1855
2607
+ },
2608
+ {
2609
+ "epoch": 2.05,
2610
+ "grad_norm": 1.1089377403259277,
2611
+ "learning_rate": 1.508200171997704e-05,
2612
+ "loss": 0.4454,
2613
+ "step": 1860
2614
+ },
2615
+ {
2616
+ "epoch": 2.05,
2617
+ "grad_norm": 0.8817293643951416,
2618
+ "learning_rate": 1.4945332035403587e-05,
2619
+ "loss": 0.4438,
2620
+ "step": 1865
2621
+ },
2622
+ {
2623
+ "epoch": 2.06,
2624
+ "grad_norm": 1.1409955024719238,
2625
+ "learning_rate": 1.4808666889150303e-05,
2626
+ "loss": 0.4391,
2627
+ "step": 1870
2628
+ },
2629
+ {
2630
+ "epoch": 2.06,
2631
+ "grad_norm": 0.8762648701667786,
2632
+ "learning_rate": 1.4672017626622023e-05,
2633
+ "loss": 0.3385,
2634
+ "step": 1875
2635
+ },
2636
+ {
2637
+ "epoch": 2.07,
2638
+ "grad_norm": 0.9974231123924255,
2639
+ "learning_rate": 1.4535395591904958e-05,
2640
+ "loss": 0.3412,
2641
+ "step": 1880
2642
+ },
2643
+ {
2644
+ "epoch": 2.08,
2645
+ "grad_norm": 0.7490105032920837,
2646
+ "learning_rate": 1.439881212682499e-05,
2647
+ "loss": 0.4903,
2648
+ "step": 1885
2649
+ },
2650
+ {
2651
+ "epoch": 2.08,
2652
+ "grad_norm": 1.0734269618988037,
2653
+ "learning_rate": 1.4262278570006103e-05,
2654
+ "loss": 0.5753,
2655
+ "step": 1890
2656
+ },
2657
+ {
2658
+ "epoch": 2.09,
2659
+ "grad_norm": 1.4163916110992432,
2660
+ "learning_rate": 1.4125806255929076e-05,
2661
+ "loss": 0.2856,
2662
+ "step": 1895
2663
+ },
2664
+ {
2665
+ "epoch": 2.09,
2666
+ "grad_norm": 0.6236549019813538,
2667
+ "learning_rate": 1.3989406513990575e-05,
2668
+ "loss": 0.286,
2669
+ "step": 1900
2670
+ },
2671
+ {
2672
+ "epoch": 2.1,
2673
+ "grad_norm": 0.8455921411514282,
2674
+ "learning_rate": 1.38530906675626e-05,
2675
+ "loss": 0.4819,
2676
+ "step": 1905
2677
+ },
2678
+ {
2679
+ "epoch": 2.1,
2680
+ "grad_norm": 0.7641191482543945,
2681
+ "learning_rate": 1.3716870033052476e-05,
2682
+ "loss": 0.497,
2683
+ "step": 1910
2684
+ },
2685
+ {
2686
+ "epoch": 2.11,
2687
+ "grad_norm": 0.9699380993843079,
2688
+ "learning_rate": 1.358075591896341e-05,
2689
+ "loss": 0.1826,
2690
+ "step": 1915
2691
+ },
2692
+ {
2693
+ "epoch": 2.11,
2694
+ "grad_norm": 1.1498082876205444,
2695
+ "learning_rate": 1.34447596249557e-05,
2696
+ "loss": 0.2888,
2697
+ "step": 1920
2698
+ },
2699
+ {
2700
+ "epoch": 2.12,
2701
+ "grad_norm": 1.7836366891860962,
2702
+ "learning_rate": 1.3308892440908678e-05,
2703
+ "loss": 0.5541,
2704
+ "step": 1925
2705
+ },
2706
+ {
2707
+ "epoch": 2.12,
2708
+ "grad_norm": 1.6860030889511108,
2709
+ "learning_rate": 1.3173165645983482e-05,
2710
+ "loss": 0.3234,
2711
+ "step": 1930
2712
+ },
2713
+ {
2714
+ "epoch": 2.13,
2715
+ "grad_norm": 0.7591866850852966,
2716
+ "learning_rate": 1.3037590507686695e-05,
2717
+ "loss": 0.5428,
2718
+ "step": 1935
2719
+ },
2720
+ {
2721
+ "epoch": 2.14,
2722
+ "grad_norm": 1.1677800416946411,
2723
+ "learning_rate": 1.2902178280934948e-05,
2724
+ "loss": 0.3434,
2725
+ "step": 1940
2726
+ },
2727
+ {
2728
+ "epoch": 2.14,
2729
+ "grad_norm": 1.8365012407302856,
2730
+ "learning_rate": 1.2766940207120609e-05,
2731
+ "loss": 0.2709,
2732
+ "step": 1945
2733
+ },
2734
+ {
2735
+ "epoch": 2.15,
2736
+ "grad_norm": 0.8034731149673462,
2737
+ "learning_rate": 1.2631887513178544e-05,
2738
+ "loss": 0.5227,
2739
+ "step": 1950
2740
+ },
2741
+ {
2742
+ "epoch": 2.15,
2743
+ "grad_norm": 0.7503282427787781,
2744
+ "learning_rate": 1.249703141065411e-05,
2745
+ "loss": 0.3255,
2746
+ "step": 1955
2747
+ },
2748
+ {
2749
+ "epoch": 2.16,
2750
+ "grad_norm": 1.1902406215667725,
2751
+ "learning_rate": 1.2362383094772413e-05,
2752
+ "loss": 0.518,
2753
+ "step": 1960
2754
+ },
2755
+ {
2756
+ "epoch": 2.16,
2757
+ "grad_norm": 0.50048828125,
2758
+ "learning_rate": 1.2227953743508935e-05,
2759
+ "loss": 0.412,
2760
+ "step": 1965
2761
+ },
2762
+ {
2763
+ "epoch": 2.17,
2764
+ "grad_norm": 1.088340163230896,
2765
+ "learning_rate": 1.209375451666156e-05,
2766
+ "loss": 0.3134,
2767
+ "step": 1970
2768
+ },
2769
+ {
2770
+ "epoch": 2.17,
2771
+ "grad_norm": 0.9749330878257751,
2772
+ "learning_rate": 1.1959796554924155e-05,
2773
+ "loss": 0.2601,
2774
+ "step": 1975
2775
+ },
2776
+ {
2777
+ "epoch": 2.18,
2778
+ "grad_norm": 1.1269935369491577,
2779
+ "learning_rate": 1.1826090978961706e-05,
2780
+ "loss": 0.4026,
2781
+ "step": 1980
2782
+ },
2783
+ {
2784
+ "epoch": 2.19,
2785
+ "grad_norm": 1.243455171585083,
2786
+ "learning_rate": 1.1692648888487106e-05,
2787
+ "loss": 0.3724,
2788
+ "step": 1985
2789
+ },
2790
+ {
2791
+ "epoch": 2.19,
2792
+ "grad_norm": 1.3622498512268066,
2793
+ "learning_rate": 1.1559481361339723e-05,
2794
+ "loss": 0.3994,
2795
+ "step": 1990
2796
+ },
2797
+ {
2798
+ "epoch": 2.2,
2799
+ "grad_norm": 1.5660467147827148,
2800
+ "learning_rate": 1.142659945256576e-05,
2801
+ "loss": 0.4255,
2802
+ "step": 1995
2803
+ },
2804
+ {
2805
+ "epoch": 2.2,
2806
+ "grad_norm": 1.1115527153015137,
2807
+ "learning_rate": 1.12940141935005e-05,
2808
+ "loss": 0.4976,
2809
+ "step": 2000
2810
+ },
2811
+ {
2812
+ "epoch": 2.21,
2813
+ "grad_norm": 0.8586636781692505,
2814
+ "learning_rate": 1.1161736590852522e-05,
2815
+ "loss": 0.2858,
2816
+ "step": 2005
2817
+ },
2818
+ {
2819
+ "epoch": 2.21,
2820
+ "grad_norm": 2.1333322525024414,
2821
+ "learning_rate": 1.1029777625789982e-05,
2822
+ "loss": 0.3974,
2823
+ "step": 2010
2824
+ },
2825
+ {
2826
+ "epoch": 2.22,
2827
+ "grad_norm": 0.8023208379745483,
2828
+ "learning_rate": 1.0898148253028992e-05,
2829
+ "loss": 0.4768,
2830
+ "step": 2015
2831
+ },
2832
+ {
2833
+ "epoch": 2.22,
2834
+ "grad_norm": 1.3136727809906006,
2835
+ "learning_rate": 1.0766859399924198e-05,
2836
+ "loss": 0.3854,
2837
+ "step": 2020
2838
+ },
2839
+ {
2840
+ "epoch": 2.23,
2841
+ "grad_norm": 1.2942872047424316,
2842
+ "learning_rate": 1.0635921965561644e-05,
2843
+ "loss": 0.6315,
2844
+ "step": 2025
2845
+ },
2846
+ {
2847
+ "epoch": 2.24,
2848
+ "grad_norm": 1.1733945608139038,
2849
+ "learning_rate": 1.0505346819853966e-05,
2850
+ "loss": 0.2202,
2851
+ "step": 2030
2852
+ },
2853
+ {
2854
+ "epoch": 2.24,
2855
+ "grad_norm": 1.2896422147750854,
2856
+ "learning_rate": 1.0375144802638011e-05,
2857
+ "loss": 0.3692,
2858
+ "step": 2035
2859
+ },
2860
+ {
2861
+ "epoch": 2.25,
2862
+ "grad_norm": 1.188212275505066,
2863
+ "learning_rate": 1.024532672277497e-05,
2864
+ "loss": 0.4869,
2865
+ "step": 2040
2866
+ },
2867
+ {
2868
+ "epoch": 2.25,
2869
+ "grad_norm": 1.2566425800323486,
2870
+ "learning_rate": 1.0115903357253056e-05,
2871
+ "loss": 0.3254,
2872
+ "step": 2045
2873
+ },
2874
+ {
2875
+ "epoch": 2.26,
2876
+ "grad_norm": 1.7713689804077148,
2877
+ "learning_rate": 9.986885450292837e-06,
2878
+ "loss": 0.3681,
2879
+ "step": 2050
2880
+ },
2881
+ {
2882
+ "epoch": 2.26,
2883
+ "grad_norm": 1.208200454711914,
2884
+ "learning_rate": 9.858283712455311e-06,
2885
+ "loss": 0.2643,
2886
+ "step": 2055
2887
+ },
2888
+ {
2889
+ "epoch": 2.27,
2890
+ "grad_norm": 0.957243025302887,
2891
+ "learning_rate": 9.730108819752737e-06,
2892
+ "loss": 0.2966,
2893
+ "step": 2060
2894
+ },
2895
+ {
2896
+ "epoch": 2.27,
2897
+ "grad_norm": 0.9913397431373596,
2898
+ "learning_rate": 9.602371412762371e-06,
2899
+ "loss": 0.3375,
2900
+ "step": 2065
2901
+ },
2902
+ {
2903
+ "epoch": 2.28,
2904
+ "grad_norm": 1.0104014873504639,
2905
+ "learning_rate": 9.475082095743123e-06,
2906
+ "loss": 0.3598,
2907
+ "step": 2070
2908
+ },
2909
+ {
2910
+ "epoch": 2.28,
2911
+ "grad_norm": 0.6341925859451294,
2912
+ "learning_rate": 9.348251435755213e-06,
2913
+ "loss": 0.41,
2914
+ "step": 2075
2915
+ },
2916
+ {
2917
+ "epoch": 2.29,
2918
+ "grad_norm": 0.6854486465454102,
2919
+ "learning_rate": 9.221889961782971e-06,
2920
+ "loss": 0.3253,
2921
+ "step": 2080
2922
+ },
2923
+ {
2924
+ "epoch": 2.3,
2925
+ "grad_norm": 1.3789153099060059,
2926
+ "learning_rate": 9.096008163860735e-06,
2927
+ "loss": 0.4887,
2928
+ "step": 2085
2929
+ },
2930
+ {
2931
+ "epoch": 2.3,
2932
+ "grad_norm": 0.9915759563446045,
2933
+ "learning_rate": 8.97061649220201e-06,
2934
+ "loss": 0.3067,
2935
+ "step": 2090
2936
+ },
2937
+ {
2938
+ "epoch": 2.31,
2939
+ "grad_norm": 0.6337260603904724,
2940
+ "learning_rate": 8.84572535633195e-06,
2941
+ "loss": 0.4107,
2942
+ "step": 2095
2943
+ },
2944
+ {
2945
+ "epoch": 2.31,
2946
+ "grad_norm": 1.3694593906402588,
2947
+ "learning_rate": 8.721345124223193e-06,
2948
+ "loss": 0.2412,
2949
+ "step": 2100
2950
+ },
2951
+ {
2952
+ "epoch": 2.32,
2953
+ "grad_norm": 1.0332863330841064,
2954
+ "learning_rate": 8.597486121435126e-06,
2955
+ "loss": 0.5425,
2956
+ "step": 2105
2957
+ },
2958
+ {
2959
+ "epoch": 2.32,
2960
+ "grad_norm": 0.7652474641799927,
2961
+ "learning_rate": 8.474158630256755e-06,
2962
+ "loss": 0.5445,
2963
+ "step": 2110
2964
+ },
2965
+ {
2966
+ "epoch": 2.33,
2967
+ "grad_norm": 1.368090271949768,
2968
+ "learning_rate": 8.351372888853045e-06,
2969
+ "loss": 0.4415,
2970
+ "step": 2115
2971
+ },
2972
+ {
2973
+ "epoch": 2.33,
2974
+ "grad_norm": 1.044106125831604,
2975
+ "learning_rate": 8.229139090415035e-06,
2976
+ "loss": 0.4247,
2977
+ "step": 2120
2978
+ },
2979
+ {
2980
+ "epoch": 2.34,
2981
+ "grad_norm": 0.9483750462532043,
2982
+ "learning_rate": 8.107467382313608e-06,
2983
+ "loss": 0.3865,
2984
+ "step": 2125
2985
+ },
2986
+ {
2987
+ "epoch": 2.35,
2988
+ "grad_norm": 0.7410837411880493,
2989
+ "learning_rate": 7.986367865257129e-06,
2990
+ "loss": 0.3543,
2991
+ "step": 2130
2992
+ },
2993
+ {
2994
+ "epoch": 2.35,
2995
+ "grad_norm": 0.6833118200302124,
2996
+ "learning_rate": 7.865850592452894e-06,
2997
+ "loss": 0.1985,
2998
+ "step": 2135
2999
+ },
3000
+ {
3001
+ "epoch": 2.36,
3002
+ "grad_norm": 0.7763660550117493,
3003
+ "learning_rate": 7.745925568772554e-06,
3004
+ "loss": 0.4385,
3005
+ "step": 2140
3006
+ },
3007
+ {
3008
+ "epoch": 2.36,
3009
+ "grad_norm": 1.189669132232666,
3010
+ "learning_rate": 7.626602749921589e-06,
3011
+ "loss": 0.4026,
3012
+ "step": 2145
3013
+ },
3014
+ {
3015
+ "epoch": 2.37,
3016
+ "grad_norm": 1.6189225912094116,
3017
+ "learning_rate": 7.5078920416127495e-06,
3018
+ "loss": 0.3927,
3019
+ "step": 2150
3020
+ },
3021
+ {
3022
+ "epoch": 2.37,
3023
+ "grad_norm": 1.7551486492156982,
3024
+ "learning_rate": 7.389803298743809e-06,
3025
+ "loss": 0.5965,
3026
+ "step": 2155
3027
+ },
3028
+ {
3029
+ "epoch": 2.38,
3030
+ "grad_norm": 1.2080819606781006,
3031
+ "learning_rate": 7.272346324579388e-06,
3032
+ "loss": 0.2134,
3033
+ "step": 2160
3034
+ },
3035
+ {
3036
+ "epoch": 2.38,
3037
+ "grad_norm": 1.190613865852356,
3038
+ "learning_rate": 7.1555308699371416e-06,
3039
+ "loss": 0.4577,
3040
+ "step": 2165
3041
+ },
3042
+ {
3043
+ "epoch": 2.39,
3044
+ "grad_norm": 1.435311198234558,
3045
+ "learning_rate": 7.039366632378304e-06,
3046
+ "loss": 0.2424,
3047
+ "step": 2170
3048
+ },
3049
+ {
3050
+ "epoch": 2.39,
3051
+ "grad_norm": 0.7552112936973572,
3052
+ "learning_rate": 6.9238632554026084e-06,
3053
+ "loss": 0.2778,
3054
+ "step": 2175
3055
+ },
3056
+ {
3057
+ "epoch": 2.4,
3058
+ "grad_norm": 0.6694565415382385,
3059
+ "learning_rate": 6.809030327647728e-06,
3060
+ "loss": 0.4163,
3061
+ "step": 2180
3062
+ },
3063
+ {
3064
+ "epoch": 2.41,
3065
+ "grad_norm": 1.4150924682617188,
3066
+ "learning_rate": 6.694877382093284e-06,
3067
+ "loss": 0.278,
3068
+ "step": 2185
3069
+ },
3070
+ {
3071
+ "epoch": 2.41,
3072
+ "grad_norm": 1.9875400066375732,
3073
+ "learning_rate": 6.5814138952694305e-06,
3074
+ "loss": 0.4271,
3075
+ "step": 2190
3076
+ },
3077
+ {
3078
+ "epoch": 2.42,
3079
+ "grad_norm": 1.8704239130020142,
3080
+ "learning_rate": 6.468649286470153e-06,
3081
+ "loss": 0.3261,
3082
+ "step": 2195
3083
+ },
3084
+ {
3085
+ "epoch": 2.42,
3086
+ "grad_norm": 0.6322317123413086,
3087
+ "learning_rate": 6.356592916971343e-06,
3088
+ "loss": 0.4293,
3089
+ "step": 2200
3090
+ },
3091
+ {
3092
+ "epoch": 2.43,
3093
+ "grad_norm": 0.6502904891967773,
3094
+ "learning_rate": 6.2452540892536245e-06,
3095
+ "loss": 0.3743,
3096
+ "step": 2205
3097
+ },
3098
+ {
3099
+ "epoch": 2.43,
3100
+ "grad_norm": 3.024371385574341,
3101
+ "learning_rate": 6.1346420462301125e-06,
3102
+ "loss": 0.4385,
3103
+ "step": 2210
3104
+ },
3105
+ {
3106
+ "epoch": 2.44,
3107
+ "grad_norm": 0.7644482254981995,
3108
+ "learning_rate": 6.024765970479122e-06,
3109
+ "loss": 0.2991,
3110
+ "step": 2215
3111
+ },
3112
+ {
3113
+ "epoch": 2.44,
3114
+ "grad_norm": 0.7494433522224426,
3115
+ "learning_rate": 5.915634983481835e-06,
3116
+ "loss": 0.4962,
3117
+ "step": 2220
3118
+ },
3119
+ {
3120
+ "epoch": 2.45,
3121
+ "grad_norm": 2.201181411743164,
3122
+ "learning_rate": 5.807258144865086e-06,
3123
+ "loss": 0.4794,
3124
+ "step": 2225
3125
+ },
3126
+ {
3127
+ "epoch": 2.46,
3128
+ "grad_norm": 0.9114490151405334,
3129
+ "learning_rate": 5.699644451649277e-06,
3130
+ "loss": 0.2898,
3131
+ "step": 2230
3132
+ },
3133
+ {
3134
+ "epoch": 2.46,
3135
+ "grad_norm": 1.601459264755249,
3136
+ "learning_rate": 5.59280283750146e-06,
3137
+ "loss": 0.3268,
3138
+ "step": 2235
3139
+ },
3140
+ {
3141
+ "epoch": 2.47,
3142
+ "grad_norm": 1.5998916625976562,
3143
+ "learning_rate": 5.486742171993705e-06,
3144
+ "loss": 0.4436,
3145
+ "step": 2240
3146
+ },
3147
+ {
3148
+ "epoch": 2.47,
3149
+ "grad_norm": 0.8929490447044373,
3150
+ "learning_rate": 5.381471259866807e-06,
3151
+ "loss": 0.359,
3152
+ "step": 2245
3153
+ },
3154
+ {
3155
+ "epoch": 2.48,
3156
+ "grad_norm": 0.9474959969520569,
3157
+ "learning_rate": 5.276998840299308e-06,
3158
+ "loss": 0.484,
3159
+ "step": 2250
3160
+ },
3161
+ {
3162
+ "epoch": 2.48,
3163
+ "grad_norm": 1.7978712320327759,
3164
+ "learning_rate": 5.1733335861820305e-06,
3165
+ "loss": 0.2033,
3166
+ "step": 2255
3167
+ },
3168
+ {
3169
+ "epoch": 2.49,
3170
+ "grad_norm": 0.9559624195098877,
3171
+ "learning_rate": 5.070484103398103e-06,
3172
+ "loss": 0.3781,
3173
+ "step": 2260
3174
+ },
3175
+ {
3176
+ "epoch": 2.49,
3177
+ "grad_norm": 0.7897327542304993,
3178
+ "learning_rate": 4.968458930108495e-06,
3179
+ "loss": 0.3866,
3180
+ "step": 2265
3181
+ },
3182
+ {
3183
+ "epoch": 2.5,
3184
+ "grad_norm": 1.8434853553771973,
3185
+ "learning_rate": 4.867266536043235e-06,
3186
+ "loss": 0.487,
3187
+ "step": 2270
3188
+ },
3189
+ {
3190
+ "epoch": 2.5,
3191
+ "grad_norm": 1.959332823753357,
3192
+ "learning_rate": 4.766915321798297e-06,
3193
+ "loss": 0.5033,
3194
+ "step": 2275
3195
+ },
3196
+ {
3197
+ "epoch": 2.51,
3198
+ "grad_norm": 1.3424344062805176,
3199
+ "learning_rate": 4.667413618138192e-06,
3200
+ "loss": 0.6175,
3201
+ "step": 2280
3202
+ },
3203
+ {
3204
+ "epoch": 2.52,
3205
+ "grad_norm": 1.1145857572555542,
3206
+ "learning_rate": 4.568769685304388e-06,
3207
+ "loss": 0.2437,
3208
+ "step": 2285
3209
+ },
3210
+ {
3211
+ "epoch": 2.52,
3212
+ "grad_norm": 1.2104226350784302,
3213
+ "learning_rate": 4.470991712329597e-06,
3214
+ "loss": 0.4342,
3215
+ "step": 2290
3216
+ },
3217
+ {
3218
+ "epoch": 2.53,
3219
+ "grad_norm": 0.958635687828064,
3220
+ "learning_rate": 4.374087816357923e-06,
3221
+ "loss": 0.3341,
3222
+ "step": 2295
3223
+ },
3224
+ {
3225
+ "epoch": 2.53,
3226
+ "grad_norm": 1.011942982673645,
3227
+ "learning_rate": 4.278066041971024e-06,
3228
+ "loss": 0.573,
3229
+ "step": 2300
3230
+ },
3231
+ {
3232
+ "epoch": 2.54,
3233
+ "grad_norm": 0.9302467107772827,
3234
+ "learning_rate": 4.1829343605202895e-06,
3235
+ "loss": 0.4891,
3236
+ "step": 2305
3237
+ },
3238
+ {
3239
+ "epoch": 2.54,
3240
+ "grad_norm": 0.598698079586029,
3241
+ "learning_rate": 4.088700669465074e-06,
3242
+ "loss": 0.2921,
3243
+ "step": 2310
3244
+ },
3245
+ {
3246
+ "epoch": 2.55,
3247
+ "grad_norm": 1.0277636051177979,
3248
+ "learning_rate": 3.995372791717092e-06,
3249
+ "loss": 0.3742,
3250
+ "step": 2315
3251
+ },
3252
+ {
3253
+ "epoch": 2.55,
3254
+ "grad_norm": 1.5416873693466187,
3255
+ "learning_rate": 3.902958474990987e-06,
3256
+ "loss": 0.2199,
3257
+ "step": 2320
3258
+ },
3259
+ {
3260
+ "epoch": 2.56,
3261
+ "grad_norm": 1.640619158744812,
3262
+ "learning_rate": 3.8114653911611452e-06,
3263
+ "loss": 0.3463,
3264
+ "step": 2325
3265
+ },
3266
+ {
3267
+ "epoch": 2.57,
3268
+ "grad_norm": 0.802915632724762,
3269
+ "learning_rate": 3.720901135624807e-06,
3270
+ "loss": 0.3876,
3271
+ "step": 2330
3272
+ },
3273
+ {
3274
+ "epoch": 2.57,
3275
+ "grad_norm": 0.6372286677360535,
3276
+ "learning_rate": 3.6312732266715374e-06,
3277
+ "loss": 0.3851,
3278
+ "step": 2335
3279
+ },
3280
+ {
3281
+ "epoch": 2.58,
3282
+ "grad_norm": 1.0239226818084717,
3283
+ "learning_rate": 3.5425891048590693e-06,
3284
+ "loss": 0.5176,
3285
+ "step": 2340
3286
+ },
3287
+ {
3288
+ "epoch": 2.58,
3289
+ "grad_norm": 1.344281792640686,
3290
+ "learning_rate": 3.454856132395623e-06,
3291
+ "loss": 0.4344,
3292
+ "step": 2345
3293
+ },
3294
+ {
3295
+ "epoch": 2.59,
3296
+ "grad_norm": 1.4836249351501465,
3297
+ "learning_rate": 3.368081592528739e-06,
3298
+ "loss": 0.3258,
3299
+ "step": 2350
3300
+ },
3301
+ {
3302
+ "epoch": 2.59,
3303
+ "grad_norm": 0.48362186551094055,
3304
+ "learning_rate": 3.2822726889406296e-06,
3305
+ "loss": 0.3484,
3306
+ "step": 2355
3307
+ },
3308
+ {
3309
+ "epoch": 2.6,
3310
+ "grad_norm": 1.674930214881897,
3311
+ "learning_rate": 3.197436545150168e-06,
3312
+ "loss": 0.2531,
3313
+ "step": 2360
3314
+ },
3315
+ {
3316
+ "epoch": 2.6,
3317
+ "grad_norm": 1.283719539642334,
3318
+ "learning_rate": 3.113580203921533e-06,
3319
+ "loss": 0.4796,
3320
+ "step": 2365
3321
+ },
3322
+ {
3323
+ "epoch": 2.61,
3324
+ "grad_norm": 1.3754234313964844,
3325
+ "learning_rate": 3.030710626679522e-06,
3326
+ "loss": 0.3232,
3327
+ "step": 2370
3328
+ },
3329
+ {
3330
+ "epoch": 2.61,
3331
+ "grad_norm": 1.8028233051300049,
3332
+ "learning_rate": 2.9488346929316546e-06,
3333
+ "loss": 0.4161,
3334
+ "step": 2375
3335
+ },
3336
+ {
3337
+ "epoch": 2.62,
3338
+ "grad_norm": 1.4452279806137085,
3339
+ "learning_rate": 2.8679591996970728e-06,
3340
+ "loss": 0.2511,
3341
+ "step": 2380
3342
+ },
3343
+ {
3344
+ "epoch": 2.63,
3345
+ "grad_norm": 0.9447839856147766,
3346
+ "learning_rate": 2.7880908609422563e-06,
3347
+ "loss": 0.2869,
3348
+ "step": 2385
3349
+ },
3350
+ {
3351
+ "epoch": 2.63,
3352
+ "grad_norm": 0.5915132164955139,
3353
+ "learning_rate": 2.7092363070236686e-06,
3354
+ "loss": 0.3261,
3355
+ "step": 2390
3356
+ },
3357
+ {
3358
+ "epoch": 2.64,
3359
+ "grad_norm": 1.6882514953613281,
3360
+ "learning_rate": 2.631402084137337e-06,
3361
+ "loss": 0.2105,
3362
+ "step": 2395
3363
+ },
3364
+ {
3365
+ "epoch": 2.64,
3366
+ "grad_norm": 1.2579067945480347,
3367
+ "learning_rate": 2.5545946537753994e-06,
3368
+ "loss": 0.2521,
3369
+ "step": 2400
3370
+ },
3371
+ {
3372
+ "epoch": 2.65,
3373
+ "grad_norm": 2.2939579486846924,
3374
+ "learning_rate": 2.478820392189699e-06,
3375
+ "loss": 0.3847,
3376
+ "step": 2405
3377
+ },
3378
+ {
3379
+ "epoch": 2.65,
3380
+ "grad_norm": 1.4380046129226685,
3381
+ "learning_rate": 2.4040855898624677e-06,
3382
+ "loss": 0.3619,
3383
+ "step": 2410
3384
+ },
3385
+ {
3386
+ "epoch": 2.66,
3387
+ "grad_norm": 2.006512403488159,
3388
+ "learning_rate": 2.3303964509840916e-06,
3389
+ "loss": 0.5343,
3390
+ "step": 2415
3391
+ },
3392
+ {
3393
+ "epoch": 2.66,
3394
+ "grad_norm": 0.8354169726371765,
3395
+ "learning_rate": 2.25775909293808e-06,
3396
+ "loss": 0.2209,
3397
+ "step": 2420
3398
+ },
3399
+ {
3400
+ "epoch": 2.67,
3401
+ "grad_norm": 2.4486894607543945,
3402
+ "learning_rate": 2.1861795457932236e-06,
3403
+ "loss": 0.4199,
3404
+ "step": 2425
3405
+ },
3406
+ {
3407
+ "epoch": 2.68,
3408
+ "grad_norm": 2.1726739406585693,
3409
+ "learning_rate": 2.1156637518029943e-06,
3410
+ "loss": 0.3883,
3411
+ "step": 2430
3412
+ },
3413
+ {
3414
+ "epoch": 2.68,
3415
+ "grad_norm": 1.3366342782974243,
3416
+ "learning_rate": 2.0462175649122407e-06,
3417
+ "loss": 0.4508,
3418
+ "step": 2435
3419
+ },
3420
+ {
3421
+ "epoch": 2.69,
3422
+ "grad_norm": 1.2342681884765625,
3423
+ "learning_rate": 1.9778467502712334e-06,
3424
+ "loss": 0.4942,
3425
+ "step": 2440
3426
+ },
3427
+ {
3428
+ "epoch": 2.69,
3429
+ "grad_norm": 0.9087796211242676,
3430
+ "learning_rate": 1.9105569837570457e-06,
3431
+ "loss": 0.3828,
3432
+ "step": 2445
3433
+ },
3434
+ {
3435
+ "epoch": 2.7,
3436
+ "grad_norm": 1.1849201917648315,
3437
+ "learning_rate": 1.844353851502371e-06,
3438
+ "loss": 0.3724,
3439
+ "step": 2450
3440
+ },
3441
+ {
3442
+ "epoch": 2.7,
3443
+ "grad_norm": 1.1934826374053955,
3444
+ "learning_rate": 1.779242849431793e-06,
3445
+ "loss": 0.376,
3446
+ "step": 2455
3447
+ },
3448
+ {
3449
+ "epoch": 2.71,
3450
+ "grad_norm": 1.01549232006073,
3451
+ "learning_rate": 1.7152293828055194e-06,
3452
+ "loss": 0.4463,
3453
+ "step": 2460
3454
+ },
3455
+ {
3456
+ "epoch": 2.71,
3457
+ "grad_norm": 1.314704179763794,
3458
+ "learning_rate": 1.6523187657706672e-06,
3459
+ "loss": 0.4637,
3460
+ "step": 2465
3461
+ },
3462
+ {
3463
+ "epoch": 2.72,
3464
+ "grad_norm": 1.545615553855896,
3465
+ "learning_rate": 1.5905162209201135e-06,
3466
+ "loss": 0.3411,
3467
+ "step": 2470
3468
+ },
3469
+ {
3470
+ "epoch": 2.73,
3471
+ "grad_norm": 0.7735347747802734,
3472
+ "learning_rate": 1.529826878858912e-06,
3473
+ "loss": 0.3245,
3474
+ "step": 2475
3475
+ },
3476
+ {
3477
+ "epoch": 2.73,
3478
+ "grad_norm": 1.3003946542739868,
3479
+ "learning_rate": 1.4702557777783904e-06,
3480
+ "loss": 0.3665,
3481
+ "step": 2480
3482
+ },
3483
+ {
3484
+ "epoch": 2.74,
3485
+ "grad_norm": 1.4502391815185547,
3486
+ "learning_rate": 1.4118078630378906e-06,
3487
+ "loss": 0.3318,
3488
+ "step": 2485
3489
+ },
3490
+ {
3491
+ "epoch": 2.74,
3492
+ "grad_norm": 0.8701452016830444,
3493
+ "learning_rate": 1.3544879867542275e-06,
3494
+ "loss": 0.2807,
3495
+ "step": 2490
3496
+ },
3497
+ {
3498
+ "epoch": 2.75,
3499
+ "grad_norm": 1.2284448146820068,
3500
+ "learning_rate": 1.2983009073988832e-06,
3501
+ "loss": 0.3733,
3502
+ "step": 2495
3503
+ },
3504
+ {
3505
+ "epoch": 2.75,
3506
+ "grad_norm": 0.8479854464530945,
3507
+ "learning_rate": 1.2432512894029823e-06,
3508
+ "loss": 0.3448,
3509
+ "step": 2500
3510
+ },
3511
+ {
3512
+ "epoch": 2.76,
3513
+ "grad_norm": 0.9034194350242615,
3514
+ "learning_rate": 1.1893437027700604e-06,
3515
+ "loss": 0.3248,
3516
+ "step": 2505
3517
+ },
3518
+ {
3519
+ "epoch": 2.76,
3520
+ "grad_norm": 0.9006950259208679,
3521
+ "learning_rate": 1.136582622696684e-06,
3522
+ "loss": 0.389,
3523
+ "step": 2510
3524
+ },
3525
+ {
3526
+ "epoch": 2.77,
3527
+ "grad_norm": 0.8429726362228394,
3528
+ "learning_rate": 1.0849724292009467e-06,
3529
+ "loss": 0.3469,
3530
+ "step": 2515
3531
+ },
3532
+ {
3533
+ "epoch": 2.77,
3534
+ "grad_norm": 1.1029099225997925,
3535
+ "learning_rate": 1.034517406758842e-06,
3536
+ "loss": 0.2766,
3537
+ "step": 2520
3538
+ },
3539
+ {
3540
+ "epoch": 2.78,
3541
+ "grad_norm": 1.1907734870910645,
3542
+ "learning_rate": 9.852217439485893e-07,
3543
+ "loss": 0.341,
3544
+ "step": 2525
3545
+ },
3546
+ {
3547
+ "epoch": 2.79,
3548
+ "grad_norm": 0.5092141628265381,
3549
+ "learning_rate": 9.3708953310292e-07,
3550
+ "loss": 0.6436,
3551
+ "step": 2530
3552
+ },
3553
+ {
3554
+ "epoch": 2.79,
3555
+ "grad_norm": 1.428278923034668,
3556
+ "learning_rate": 8.901247699693399e-07,
3557
+ "loss": 0.2796,
3558
+ "step": 2535
3559
+ },
3560
+ {
3561
+ "epoch": 2.8,
3562
+ "grad_norm": 0.8995442986488342,
3563
+ "learning_rate": 8.443313533784175e-07,
3564
+ "loss": 0.4055,
3565
+ "step": 2540
3566
+ },
3567
+ {
3568
+ "epoch": 2.8,
3569
+ "grad_norm": 0.4836633801460266,
3570
+ "learning_rate": 7.997130849201323e-07,
3571
+ "loss": 0.3853,
3572
+ "step": 2545
3573
+ },
3574
+ {
3575
+ "epoch": 2.81,
3576
+ "grad_norm": 2.5244317054748535,
3577
+ "learning_rate": 7.56273668628264e-07,
3578
+ "loss": 0.5473,
3579
+ "step": 2550
3580
+ },
3581
+ {
3582
+ "epoch": 2.81,
3583
+ "grad_norm": 2.398171901702881,
3584
+ "learning_rate": 7.140167106729017e-07,
3585
+ "loss": 0.4997,
3586
+ "step": 2555
3587
+ },
3588
+ {
3589
+ "epoch": 2.82,
3590
+ "grad_norm": 0.6999978423118591,
3591
+ "learning_rate": 6.729457190610888e-07,
3592
+ "loss": 0.3492,
3593
+ "step": 2560
3594
+ },
3595
+ {
3596
+ "epoch": 2.82,
3597
+ "grad_norm": 1.3380895853042603,
3598
+ "learning_rate": 6.330641033455837e-07,
3599
+ "loss": 0.3369,
3600
+ "step": 2565
3601
+ },
3602
+ {
3603
+ "epoch": 2.83,
3604
+ "grad_norm": 1.4348106384277344,
3605
+ "learning_rate": 5.943751743418179e-07,
3606
+ "loss": 0.2401,
3607
+ "step": 2570
3608
+ },
3609
+ {
3610
+ "epoch": 2.84,
3611
+ "grad_norm": 1.0490989685058594,
3612
+ "learning_rate": 5.568821438530519e-07,
3613
+ "loss": 0.2856,
3614
+ "step": 2575
3615
+ },
3616
+ {
3617
+ "epoch": 2.84,
3618
+ "grad_norm": 2.1060283184051514,
3619
+ "learning_rate": 5.205881244037352e-07,
3620
+ "loss": 0.2513,
3621
+ "step": 2580
3622
+ },
3623
+ {
3624
+ "epoch": 2.85,
3625
+ "grad_norm": 1.4565911293029785,
3626
+ "learning_rate": 4.85496128981116e-07,
3627
+ "loss": 0.545,
3628
+ "step": 2585
3629
+ },
3630
+ {
3631
+ "epoch": 2.85,
3632
+ "grad_norm": 0.6282710433006287,
3633
+ "learning_rate": 4.5160907078512894e-07,
3634
+ "loss": 0.4935,
3635
+ "step": 2590
3636
+ },
3637
+ {
3638
+ "epoch": 2.86,
3639
+ "grad_norm": 1.2574007511138916,
3640
+ "learning_rate": 4.189297629865335e-07,
3641
+ "loss": 0.5524,
3642
+ "step": 2595
3643
+ },
3644
+ {
3645
+ "epoch": 2.86,
3646
+ "grad_norm": 2.5676729679107666,
3647
+ "learning_rate": 3.874609184933847e-07,
3648
+ "loss": 0.3217,
3649
+ "step": 2600
3650
+ },
3651
+ {
3652
+ "epoch": 2.87,
3653
+ "grad_norm": 1.900389552116394,
3654
+ "learning_rate": 3.5720514972582776e-07,
3655
+ "loss": 0.203,
3656
+ "step": 2605
3657
+ },
3658
+ {
3659
+ "epoch": 2.87,
3660
+ "grad_norm": 1.0852973461151123,
3661
+ "learning_rate": 3.281649683992033e-07,
3662
+ "loss": 0.3713,
3663
+ "step": 2610
3664
+ },
3665
+ {
3666
+ "epoch": 2.88,
3667
+ "grad_norm": 1.8293077945709229,
3668
+ "learning_rate": 3.0034278531555105e-07,
3669
+ "loss": 0.426,
3670
+ "step": 2615
3671
+ },
3672
+ {
3673
+ "epoch": 2.88,
3674
+ "grad_norm": 1.1292721033096313,
3675
+ "learning_rate": 2.737409101634747e-07,
3676
+ "loss": 0.4578,
3677
+ "step": 2620
3678
+ },
3679
+ {
3680
+ "epoch": 2.89,
3681
+ "grad_norm": 0.7649122476577759,
3682
+ "learning_rate": 2.4836155132638874e-07,
3683
+ "loss": 0.2586,
3684
+ "step": 2625
3685
+ },
3686
+ {
3687
+ "epoch": 2.9,
3688
+ "grad_norm": 1.4662760496139526,
3689
+ "learning_rate": 2.2420681569919998e-07,
3690
+ "loss": 0.4307,
3691
+ "step": 2630
3692
+ },
3693
+ {
3694
+ "epoch": 2.9,
3695
+ "grad_norm": 1.294457197189331,
3696
+ "learning_rate": 2.012787085133927e-07,
3697
+ "loss": 0.4343,
3698
+ "step": 2635
3699
+ },
3700
+ {
3701
+ "epoch": 2.91,
3702
+ "grad_norm": 0.9145516157150269,
3703
+ "learning_rate": 1.7957913317056817e-07,
3704
+ "loss": 0.4964,
3705
+ "step": 2640
3706
+ },
3707
+ {
3708
+ "epoch": 2.91,
3709
+ "grad_norm": 0.9060572981834412,
3710
+ "learning_rate": 1.5910989108442632e-07,
3711
+ "loss": 0.3721,
3712
+ "step": 2645
3713
+ },
3714
+ {
3715
+ "epoch": 2.92,
3716
+ "grad_norm": 1.0683475732803345,
3717
+ "learning_rate": 1.398726815312218e-07,
3718
+ "loss": 0.5016,
3719
+ "step": 2650
3720
+ },
3721
+ {
3722
+ "epoch": 2.92,
3723
+ "grad_norm": 0.8625506162643433,
3724
+ "learning_rate": 1.2186910150869867e-07,
3725
+ "loss": 0.4209,
3726
+ "step": 2655
3727
+ },
3728
+ {
3729
+ "epoch": 2.93,
3730
+ "grad_norm": 1.0874123573303223,
3731
+ "learning_rate": 1.0510064560350974e-07,
3732
+ "loss": 0.44,
3733
+ "step": 2660
3734
+ },
3735
+ {
3736
+ "epoch": 2.93,
3737
+ "grad_norm": 1.2623063325881958,
3738
+ "learning_rate": 8.956870586714739e-08,
3739
+ "loss": 0.3736,
3740
+ "step": 2665
3741
+ },
3742
+ {
3743
+ "epoch": 2.94,
3744
+ "grad_norm": 1.6609416007995605,
3745
+ "learning_rate": 7.527457170037776e-08,
3746
+ "loss": 0.5932,
3747
+ "step": 2670
3748
+ },
3749
+ {
3750
+ "epoch": 2.95,
3751
+ "grad_norm": 1.819159984588623,
3752
+ "learning_rate": 6.221942974619476e-08,
3753
+ "loss": 0.4801,
3754
+ "step": 2675
3755
+ },
3756
+ {
3757
+ "epoch": 2.95,
3758
+ "grad_norm": 1.391512155532837,
3759
+ "learning_rate": 5.0404363791322074e-08,
3760
+ "loss": 0.4572,
3761
+ "step": 2680
3762
+ },
3763
+ {
3764
+ "epoch": 2.96,
3765
+ "grad_norm": 1.40304696559906,
3766
+ "learning_rate": 3.983035467622853e-08,
3767
+ "loss": 0.2913,
3768
+ "step": 2685
3769
+ },
3770
+ {
3771
+ "epoch": 2.96,
3772
+ "grad_norm": 2.047868013381958,
3773
+ "learning_rate": 3.049828021370826e-08,
3774
+ "loss": 0.2785,
3775
+ "step": 2690
3776
+ },
3777
+ {
3778
+ "epoch": 2.97,
3779
+ "grad_norm": 1.6269519329071045,
3780
+ "learning_rate": 2.2408915116008956e-08,
3781
+ "loss": 0.1878,
3782
+ "step": 2695
3783
+ },
3784
+ {
3785
+ "epoch": 2.97,
3786
+ "grad_norm": 1.4585676193237305,
3787
+ "learning_rate": 1.5562930930519968e-08,
3788
+ "loss": 0.697,
3789
+ "step": 2700
3790
+ },
3791
+ {
3792
+ "epoch": 2.98,
3793
+ "grad_norm": 1.2848623991012573,
3794
+ "learning_rate": 9.960895984016949e-09,
3795
+ "loss": 0.3595,
3796
+ "step": 2705
3797
+ },
3798
+ {
3799
+ "epoch": 2.98,
3800
+ "grad_norm": 1.122453212738037,
3801
+ "learning_rate": 5.603275335484548e-09,
3802
+ "loss": 0.3628,
3803
+ "step": 2710
3804
+ },
3805
+ {
3806
+ "epoch": 2.99,
3807
+ "grad_norm": 1.7388654947280884,
3808
+ "learning_rate": 2.490430737512317e-09,
3809
+ "loss": 0.2751,
3810
+ "step": 2715
3811
+ },
3812
+ {
3813
+ "epoch": 2.99,
3814
+ "grad_norm": 0.46183499693870544,
3815
+ "learning_rate": 6.22620606258728e-10,
3816
+ "loss": 0.357,
3817
+ "step": 2720
3818
+ },
3819
+ {
3820
+ "epoch": 3.0,
3821
+ "step": 2724,
3822
+ "total_flos": 1.004173813492482e+18,
3823
+ "train_loss": 0.5588170812518586,
3824
+ "train_runtime": 28902.9641,
3825
+ "train_samples_per_second": 1.508,
3826
+ "train_steps_per_second": 0.094
3827
+ }
3828
+ ],
3829
+ "logging_steps": 5,
3830
+ "max_steps": 2724,
3831
+ "num_input_tokens_seen": 0,
3832
+ "num_train_epochs": 3,
3833
+ "save_steps": 100,
3834
+ "total_flos": 1.004173813492482e+18,
3835
+ "train_batch_size": 2,
3836
+ "trial_name": null,
3837
+ "trial_params": null
3838
+ }
training.png ADDED
training_args.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:fe24035ec61535d0309492249f1ccf018912d6ab37208cbd8964da8cc71b783b
3
+ size 5112