subatomicseer commited on
Commit
ad84922
·
1 Parent(s): 557f7a4

Model save

Browse files
Files changed (1) hide show
  1. README.md +8 -11
README.md CHANGED
@@ -1,8 +1,5 @@
1
  ---
2
- base_model: wav2vec2-pretrained-base-hyperVQ
3
  tags:
4
- - automatic-speech-recognition
5
- - timit_asr
6
  - generated_from_trainer
7
  datasets:
8
  - timit_asr
@@ -15,15 +12,15 @@ model-index:
15
  name: Automatic Speech Recognition
16
  type: automatic-speech-recognition
17
  dataset:
18
- name: TIMIT_ASR - NA
19
  type: timit_asr
20
  config: clean
21
  split: test
22
- args: 'Config: na, Training split: train, Eval split: test'
23
  metrics:
24
  - name: Wer
25
  type: wer
26
- value: 0.5904486251808972
27
  ---
28
 
29
  <!-- This model card has been generated automatically according to the information the Trainer had access to. You
@@ -31,10 +28,10 @@ should probably proofread and complete it, then remove this comment. -->
31
 
32
  # wav2vec2-base-hyperVQ-timit-fine-tuned
33
 
34
- This model is a fine-tuned version of [wav2vec2-pretrained-base-hyperVQ](https://huggingface.co/wav2vec2-pretrained-base-hyperVQ) on the TIMIT_ASR - NA dataset.
35
  It achieves the following results on the evaluation set:
36
- - Loss: 0.6917
37
- - Wer: 0.5904
38
 
39
  ## Model description
40
 
@@ -66,8 +63,8 @@ The following hyperparameters were used during training:
66
 
67
  | Training Loss | Epoch | Step | Validation Loss | Wer |
68
  |:-------------:|:-----:|:----:|:---------------:|:------:|
69
- | 0.6057 | 10.0 | 1450 | 0.6450 | 0.6166 |
70
- | 0.327 | 20.0 | 2900 | 0.6917 | 0.5904 |
71
 
72
 
73
  ### Framework versions
 
1
  ---
 
2
  tags:
 
 
3
  - generated_from_trainer
4
  datasets:
5
  - timit_asr
 
12
  name: Automatic Speech Recognition
13
  type: automatic-speech-recognition
14
  dataset:
15
+ name: timit_asr
16
  type: timit_asr
17
  config: clean
18
  split: test
19
+ args: clean
20
  metrics:
21
  - name: Wer
22
  type: wer
23
+ value: 0.9993108676176694
24
  ---
25
 
26
  <!-- This model card has been generated automatically according to the information the Trainer had access to. You
 
28
 
29
  # wav2vec2-base-hyperVQ-timit-fine-tuned
30
 
31
+ This model was trained from scratch on the timit_asr dataset.
32
  It achieves the following results on the evaluation set:
33
+ - Loss: 3.3628
34
+ - Wer: 0.9993
35
 
36
  ## Model description
37
 
 
63
 
64
  | Training Loss | Epoch | Step | Validation Loss | Wer |
65
  |:-------------:|:-----:|:----:|:---------------:|:------:|
66
+ | 3.2725 | 10.0 | 1450 | 3.4699 | 1.0006 |
67
+ | 3.1682 | 20.0 | 2900 | 3.3628 | 0.9993 |
68
 
69
 
70
  ### Framework versions