File size: 3,427 Bytes
2028854 b54e382 2028854 e2ce1d2 b54e382 e2ce1d2 b54e382 2028854 b54e382 2028854 88910d5 a10f357 b54e382 2028854 46f4618 b54e382 2028854 b54e382 2028854 b54e382 2028854 b54e382 2028854 b54e382 2028854 b54e382 2028854 b54e382 88910d5 2028854 88910d5 b54e382 88910d5 b54e382 88910d5 b54e382 88910d5 b54e382 88910d5 b54e382 2028854 b54e382 2028854 b54e382 f6fafc2 b54e382 2028854 b54e382 2028854 b54e382 2028854 b54e382 2028854 b54e382 f6fafc2 b54e382 f6fafc2 b54e382 f6fafc2 b54e382 2028854 b54e382 2028854 b54e382 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 |
---
library_name: transformers
tags:
- math
- lora
- science
- chemistry
- biology
- code
- text-generation-inference
- unsloth
- llama
license: apache-2.0
datasets:
- HuggingFaceTB/smoltalk
language:
- en
- de
- es
- fr
- it
- pt
- hi
- th
base_model:
- meta-llama/Llama-3.2-1B-Instruct
---
![FastLlama-Logo](FastLlama.png)
These are only LoRA adapters of [FastLlama-3.2-1B-Instruct](https://huggingface.co/suayptalha/FastLlama-3.2-1B-Instruct). You should also import the base model in order to use them!
You can use ChatML & Alpaca format.
You can chat with the model via this [space](https://huggingface.co/spaces/suayptalha/Chat-with-FastLlama).
**Overview:**
FastLlama is a highly optimized version of the Llama-3.2-1B-Instruct model. Designed for superior performance in constrained environments, it combines speed, compactness, and high accuracy. This version has been fine-tuned using the MetaMathQA-50k section of the HuggingFaceTB/smoltalk dataset to enhance its mathematical reasoning and problem-solving abilities.
**Features:**
Lightweight and Fast: Optimized to deliver Llama-class capabilities with reduced computational overhead.
Fine-Tuned for Math Reasoning: Utilizes MetaMathQA-50k for better handling of complex mathematical problems and logical reasoning tasks.
Instruction-Tuned: Pre-trained on instruction-following tasks, making it robust in understanding and executing detailed queries.
Versatile Use Cases: Suitable for educational tools, tutoring systems, or any application requiring mathematical reasoning.
**Performance Highlights:**
Smaller Footprint: The model delivers comparable results to larger counterparts while operating efficiently on smaller hardware.
Enhanced Accuracy: Demonstrates improved performance on mathematical QA benchmarks.
Instruction Adherence: Retains high fidelity in understanding and following user instructions, even for complex queries.
**Loading the Model:**
```py
import torch
from transformers import AutoModelForCausalLM, AutoTokenizer, pipeline
from peft import PeftModel, PeftConfig
base_model_id = "meta-llama/Llama-3.2-1B-Instruct" # Base model ID
adapter_id = "suayptalha/FastLlama-3.2-LoRA" # Adapter ID
tokenizer = AutoTokenizer.from_pretrained(base_model_id)
base_model = AutoModelForCausalLM.from_pretrained(
base_model_id,
torch_dtype=torch.bfloat16,
device_map="auto"
)
model = PeftModel.from_pretrained(base_model, adapter_id)
# Text generation pipeline
pipe = pipeline(
"text-generation",
model=model,
tokenizer=tokenizer,
device_map="auto",
)
messages = [
{"role": "system", "content": "You are a friendly assistant named FastLlama."},
{"role": "user", "content": "Who are you?"},
]
outputs = pipe(
messages,
max_new_tokens=256,
)
print(outputs[0]["generated_text"][-1])
```
**Dataset:**
Dataset: MetaMathQA-50k
The MetaMathQA-50k subset of HuggingFaceTB/smoltalk was selected for fine-tuning due to its focus on mathematical reasoning, multi-step problem-solving, and logical inference. The dataset includes:
Algebraic problems
Geometric reasoning tasks
Statistical and probabilistic questions
Logical deduction problems
**Model Fine-Tuning:**
Fine-tuning was conducted using the following configuration:
Learning Rate: 2e-4
Epochs: 1
Optimizer: AdamW
Framework: Unsloth
**License:**
This model is licensed under the Apache 2.0 License. See the LICENSE file for details. |