File size: 18,737 Bytes
842c324
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
23ecb95
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
842c324
 
 
 
 
23ecb95
842c324
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
---
library_name: sklearn
tags:
- sklearn
- skops
- tabular-classification
model_format: pickle
model_file: model.pkl
widget:
- structuredData:
    found_in_search_area:
    - true
    - true
    - false
---

# Model description

[More Information Needed]

## Intended uses & limitations

[More Information Needed]

## Training Procedure

[More Information Needed]

### Hyperparameters

<details>
<summary> Click to expand </summary>

| Hyperparameter                                          | Value                                                                                                                   |
|---------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------|
| memory                                                  |                                                                                                                         |
| steps                                                   | [('columntransformer', ColumnTransformer(transformers=[('standardscaler', StandardScaler(),<br />                                 ['location_found_elevation']),<br />                                ('onehotencoder', OneHotEncoder(),<br />                                 ['situation'])])), ('randomforestclassifier', RandomForestClassifier(class_weight={False: 1.9217032967032968,<br />                                     True: 0.6758454106280193},<br />                       random_state=42))]                                                                                                                         |
| verbose                                                 | False                                                                                                                   |
| columntransformer                                       | ColumnTransformer(transformers=[('standardscaler', StandardScaler(),<br />                                 ['location_found_elevation']),<br />                                ('onehotencoder', OneHotEncoder(),<br />                                 ['situation'])])                                                                                                                         |
| randomforestclassifier                                  | RandomForestClassifier(class_weight={False: 1.9217032967032968,<br />                                     True: 0.6758454106280193},<br />                       random_state=42)                                                                                                                         |
| columntransformer__n_jobs                               |                                                                                                                         |
| columntransformer__remainder                            | drop                                                                                                                    |
| columntransformer__sparse_threshold                     | 0.3                                                                                                                     |
| columntransformer__transformer_weights                  |                                                                                                                         |
| columntransformer__transformers                         | [('standardscaler', StandardScaler(), ['location_found_elevation']), ('onehotencoder', OneHotEncoder(), ['situation'])] |
| columntransformer__verbose                              | False                                                                                                                   |
| columntransformer__verbose_feature_names_out            | True                                                                                                                    |
| columntransformer__standardscaler                       | StandardScaler()                                                                                                        |
| columntransformer__onehotencoder                        | OneHotEncoder()                                                                                                         |
| columntransformer__standardscaler__copy                 | True                                                                                                                    |
| columntransformer__standardscaler__with_mean            | True                                                                                                                    |
| columntransformer__standardscaler__with_std             | True                                                                                                                    |
| columntransformer__onehotencoder__categories            | auto                                                                                                                    |
| columntransformer__onehotencoder__drop                  |                                                                                                                         |
| columntransformer__onehotencoder__dtype                 | <class 'numpy.float64'>                                                                                                 |
| columntransformer__onehotencoder__feature_name_combiner | concat                                                                                                                  |
| columntransformer__onehotencoder__handle_unknown        | error                                                                                                                   |
| columntransformer__onehotencoder__max_categories        |                                                                                                                         |
| columntransformer__onehotencoder__min_frequency         |                                                                                                                         |
| columntransformer__onehotencoder__sparse                | deprecated                                                                                                              |
| columntransformer__onehotencoder__sparse_output         | True                                                                                                                    |
| randomforestclassifier__bootstrap                       | True                                                                                                                    |
| randomforestclassifier__ccp_alpha                       | 0.0                                                                                                                     |
| randomforestclassifier__class_weight                    | {False: 1.9217032967032968, True: 0.6758454106280193}                                                                   |
| randomforestclassifier__criterion                       | gini                                                                                                                    |
| randomforestclassifier__max_depth                       |                                                                                                                         |
| randomforestclassifier__max_features                    | sqrt                                                                                                                    |
| randomforestclassifier__max_leaf_nodes                  |                                                                                                                         |
| randomforestclassifier__max_samples                     |                                                                                                                         |
| randomforestclassifier__min_impurity_decrease           | 0.0                                                                                                                     |
| randomforestclassifier__min_samples_leaf                | 1                                                                                                                       |
| randomforestclassifier__min_samples_split               | 2                                                                                                                       |
| randomforestclassifier__min_weight_fraction_leaf        | 0.0                                                                                                                     |
| randomforestclassifier__n_estimators                    | 100                                                                                                                     |
| randomforestclassifier__n_jobs                          |                                                                                                                         |
| randomforestclassifier__oob_score                       | False                                                                                                                   |
| randomforestclassifier__random_state                    | 42                                                                                                                      |
| randomforestclassifier__verbose                         | 0                                                                                                                       |
| randomforestclassifier__warm_start                      | False                                                                                                                   |

</details>

### Model Plot

<style>#sk-container-id-1 {color: black;}#sk-container-id-1 pre{padding: 0;}#sk-container-id-1 div.sk-toggleable {background-color: white;}#sk-container-id-1 label.sk-toggleable__label {cursor: pointer;display: block;width: 100%;margin-bottom: 0;padding: 0.3em;box-sizing: border-box;text-align: center;}#sk-container-id-1 label.sk-toggleable__label-arrow:before {content: "▸";float: left;margin-right: 0.25em;color: #696969;}#sk-container-id-1 label.sk-toggleable__label-arrow:hover:before {color: black;}#sk-container-id-1 div.sk-estimator:hover label.sk-toggleable__label-arrow:before {color: black;}#sk-container-id-1 div.sk-toggleable__content {max-height: 0;max-width: 0;overflow: hidden;text-align: left;background-color: #f0f8ff;}#sk-container-id-1 div.sk-toggleable__content pre {margin: 0.2em;color: black;border-radius: 0.25em;background-color: #f0f8ff;}#sk-container-id-1 input.sk-toggleable__control:checked~div.sk-toggleable__content {max-height: 200px;max-width: 100%;overflow: auto;}#sk-container-id-1 input.sk-toggleable__control:checked~label.sk-toggleable__label-arrow:before {content: "▾";}#sk-container-id-1 div.sk-estimator input.sk-toggleable__control:checked~label.sk-toggleable__label {background-color: #d4ebff;}#sk-container-id-1 div.sk-label input.sk-toggleable__control:checked~label.sk-toggleable__label {background-color: #d4ebff;}#sk-container-id-1 input.sk-hidden--visually {border: 0;clip: rect(1px 1px 1px 1px);clip: rect(1px, 1px, 1px, 1px);height: 1px;margin: -1px;overflow: hidden;padding: 0;position: absolute;width: 1px;}#sk-container-id-1 div.sk-estimator {font-family: monospace;background-color: #f0f8ff;border: 1px dotted black;border-radius: 0.25em;box-sizing: border-box;margin-bottom: 0.5em;}#sk-container-id-1 div.sk-estimator:hover {background-color: #d4ebff;}#sk-container-id-1 div.sk-parallel-item::after {content: "";width: 100%;border-bottom: 1px solid gray;flex-grow: 1;}#sk-container-id-1 div.sk-label:hover label.sk-toggleable__label {background-color: #d4ebff;}#sk-container-id-1 div.sk-serial::before {content: "";position: absolute;border-left: 1px solid gray;box-sizing: border-box;top: 0;bottom: 0;left: 50%;z-index: 0;}#sk-container-id-1 div.sk-serial {display: flex;flex-direction: column;align-items: center;background-color: white;padding-right: 0.2em;padding-left: 0.2em;position: relative;}#sk-container-id-1 div.sk-item {position: relative;z-index: 1;}#sk-container-id-1 div.sk-parallel {display: flex;align-items: stretch;justify-content: center;background-color: white;position: relative;}#sk-container-id-1 div.sk-item::before, #sk-container-id-1 div.sk-parallel-item::before {content: "";position: absolute;border-left: 1px solid gray;box-sizing: border-box;top: 0;bottom: 0;left: 50%;z-index: -1;}#sk-container-id-1 div.sk-parallel-item {display: flex;flex-direction: column;z-index: 1;position: relative;background-color: white;}#sk-container-id-1 div.sk-parallel-item:first-child::after {align-self: flex-end;width: 50%;}#sk-container-id-1 div.sk-parallel-item:last-child::after {align-self: flex-start;width: 50%;}#sk-container-id-1 div.sk-parallel-item:only-child::after {width: 0;}#sk-container-id-1 div.sk-dashed-wrapped {border: 1px dashed gray;margin: 0 0.4em 0.5em 0.4em;box-sizing: border-box;padding-bottom: 0.4em;background-color: white;}#sk-container-id-1 div.sk-label label {font-family: monospace;font-weight: bold;display: inline-block;line-height: 1.2em;}#sk-container-id-1 div.sk-label-container {text-align: center;}#sk-container-id-1 div.sk-container {/* jupyter's `normalize.less` sets `[hidden] { display: none; }` but bootstrap.min.css set `[hidden] { display: none !important; }` so we also need the `!important` here to be able to override the default hidden behavior on the sphinx rendered scikit-learn.org. See: https://github.com/scikit-learn/scikit-learn/issues/21755 */display: inline-block !important;position: relative;}#sk-container-id-1 div.sk-text-repr-fallback {display: none;}</style><div id="sk-container-id-1" class="sk-top-container" style="overflow: auto;"><div class="sk-text-repr-fallback"><pre>Pipeline(steps=[(&#x27;columntransformer&#x27;,ColumnTransformer(transformers=[(&#x27;standardscaler&#x27;,StandardScaler(),[&#x27;location_found_elevation&#x27;]),(&#x27;onehotencoder&#x27;,OneHotEncoder(),[&#x27;situation&#x27;])])),(&#x27;randomforestclassifier&#x27;,RandomForestClassifier(class_weight={False: 1.9217032967032968,True: 0.6758454106280193},random_state=42))])</pre><b>In a Jupyter environment, please rerun this cell to show the HTML representation or trust the notebook. <br />On GitHub, the HTML representation is unable to render, please try loading this page with nbviewer.org.</b></div><div class="sk-container" hidden><div class="sk-item sk-dashed-wrapped"><div class="sk-label-container"><div class="sk-label sk-toggleable"><input class="sk-toggleable__control sk-hidden--visually" id="sk-estimator-id-1" type="checkbox" ><label for="sk-estimator-id-1" class="sk-toggleable__label sk-toggleable__label-arrow">Pipeline</label><div class="sk-toggleable__content"><pre>Pipeline(steps=[(&#x27;columntransformer&#x27;,ColumnTransformer(transformers=[(&#x27;standardscaler&#x27;,StandardScaler(),[&#x27;location_found_elevation&#x27;]),(&#x27;onehotencoder&#x27;,OneHotEncoder(),[&#x27;situation&#x27;])])),(&#x27;randomforestclassifier&#x27;,RandomForestClassifier(class_weight={False: 1.9217032967032968,True: 0.6758454106280193},random_state=42))])</pre></div></div></div><div class="sk-serial"><div class="sk-item sk-dashed-wrapped"><div class="sk-label-container"><div class="sk-label sk-toggleable"><input class="sk-toggleable__control sk-hidden--visually" id="sk-estimator-id-2" type="checkbox" ><label for="sk-estimator-id-2" class="sk-toggleable__label sk-toggleable__label-arrow">columntransformer: ColumnTransformer</label><div class="sk-toggleable__content"><pre>ColumnTransformer(transformers=[(&#x27;standardscaler&#x27;, StandardScaler(),[&#x27;location_found_elevation&#x27;]),(&#x27;onehotencoder&#x27;, OneHotEncoder(),[&#x27;situation&#x27;])])</pre></div></div></div><div class="sk-parallel"><div class="sk-parallel-item"><div class="sk-item"><div class="sk-label-container"><div class="sk-label sk-toggleable"><input class="sk-toggleable__control sk-hidden--visually" id="sk-estimator-id-3" type="checkbox" ><label for="sk-estimator-id-3" class="sk-toggleable__label sk-toggleable__label-arrow">standardscaler</label><div class="sk-toggleable__content"><pre>[&#x27;location_found_elevation&#x27;]</pre></div></div></div><div class="sk-serial"><div class="sk-item"><div class="sk-estimator sk-toggleable"><input class="sk-toggleable__control sk-hidden--visually" id="sk-estimator-id-4" type="checkbox" ><label for="sk-estimator-id-4" class="sk-toggleable__label sk-toggleable__label-arrow">StandardScaler</label><div class="sk-toggleable__content"><pre>StandardScaler()</pre></div></div></div></div></div></div><div class="sk-parallel-item"><div class="sk-item"><div class="sk-label-container"><div class="sk-label sk-toggleable"><input class="sk-toggleable__control sk-hidden--visually" id="sk-estimator-id-5" type="checkbox" ><label for="sk-estimator-id-5" class="sk-toggleable__label sk-toggleable__label-arrow">onehotencoder</label><div class="sk-toggleable__content"><pre>[&#x27;situation&#x27;]</pre></div></div></div><div class="sk-serial"><div class="sk-item"><div class="sk-estimator sk-toggleable"><input class="sk-toggleable__control sk-hidden--visually" id="sk-estimator-id-6" type="checkbox" ><label for="sk-estimator-id-6" class="sk-toggleable__label sk-toggleable__label-arrow">OneHotEncoder</label><div class="sk-toggleable__content"><pre>OneHotEncoder()</pre></div></div></div></div></div></div></div></div><div class="sk-item"><div class="sk-estimator sk-toggleable"><input class="sk-toggleable__control sk-hidden--visually" id="sk-estimator-id-7" type="checkbox" ><label for="sk-estimator-id-7" class="sk-toggleable__label sk-toggleable__label-arrow">RandomForestClassifier</label><div class="sk-toggleable__content"><pre>RandomForestClassifier(class_weight={False: 1.9217032967032968,True: 0.6758454106280193},random_state=42)</pre></div></div></div></div></div></div></div>

## Evaluation Results

| Metric   |    Value |
|----------|----------|
| accuracy | 0.698333 |
| f1_score | 0.698018 |

# How to Get Started with the Model

[More Information Needed]

# Model Card Authors

This model card is written by following authors:

[More Information Needed]

# Model Card Contact

You can contact the model card authors through following channels:
[More Information Needed]

# Citation

Below you can find information related to citation.

**BibTeX:**
```
[More Information Needed]
```

# model_description

RandomForestClassifier model for tabular classification.

# eval_method

Evaluated using test split.

# confusion_matrix

![confusion_matrix](AI4SAR-model/confusion_matrix.png)