Model save
Browse files
README.md
CHANGED
@@ -24,16 +24,16 @@ model-index:
|
|
24 |
metrics:
|
25 |
- name: Precision
|
26 |
type: precision
|
27 |
-
value: 0.
|
28 |
- name: Recall
|
29 |
type: recall
|
30 |
-
value: 0.
|
31 |
- name: F1
|
32 |
type: f1
|
33 |
-
value: 0.
|
34 |
- name: Accuracy
|
35 |
type: accuracy
|
36 |
-
value: 0.
|
37 |
---
|
38 |
|
39 |
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
|
@@ -43,11 +43,11 @@ should probably proofread and complete it, then remove this comment. -->
|
|
43 |
|
44 |
This model is a fine-tuned version of [DeepPavlov/bert-base-bg-cs-pl-ru-cased](https://huggingface.co/DeepPavlov/bert-base-bg-cs-pl-ru-cased) on the cnec dataset.
|
45 |
It achieves the following results on the evaluation set:
|
46 |
-
- Loss: 0.
|
47 |
-
- Precision: 0.
|
48 |
-
- Recall: 0.
|
49 |
-
- F1: 0.
|
50 |
-
- Accuracy: 0.
|
51 |
|
52 |
## Model description
|
53 |
|
@@ -67,8 +67,8 @@ More information needed
|
|
67 |
|
68 |
The following hyperparameters were used during training:
|
69 |
- learning_rate: 2e-05
|
70 |
-
- train_batch_size:
|
71 |
-
- eval_batch_size:
|
72 |
- seed: 42
|
73 |
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
|
74 |
- lr_scheduler_type: linear
|
@@ -78,19 +78,19 @@ The following hyperparameters were used during training:
|
|
78 |
|
79 |
| Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy |
|
80 |
|:-------------:|:-----:|:-----:|:---------------:|:---------:|:------:|:------:|:--------:|
|
81 |
-
| 0.
|
82 |
-
| 0.
|
83 |
-
| 0.
|
84 |
-
| 0.
|
85 |
-
| 0.
|
86 |
-
| 0.
|
87 |
-
| 0.
|
88 |
-
| 0.
|
89 |
-
| 0.
|
90 |
-
| 0.
|
91 |
-
| 0.
|
92 |
-
| 0.
|
93 |
-
| 0.
|
94 |
|
95 |
|
96 |
### Framework versions
|
|
|
24 |
metrics:
|
25 |
- name: Precision
|
26 |
type: precision
|
27 |
+
value: 0.8427043808209728
|
28 |
- name: Recall
|
29 |
type: recall
|
30 |
+
value: 0.8737482117310443
|
31 |
- name: F1
|
32 |
type: f1
|
33 |
+
value: 0.8579455662862159
|
34 |
- name: Accuracy
|
35 |
type: accuracy
|
36 |
+
value: 0.9552753162160115
|
37 |
---
|
38 |
|
39 |
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
|
|
|
43 |
|
44 |
This model is a fine-tuned version of [DeepPavlov/bert-base-bg-cs-pl-ru-cased](https://huggingface.co/DeepPavlov/bert-base-bg-cs-pl-ru-cased) on the cnec dataset.
|
45 |
It achieves the following results on the evaluation set:
|
46 |
+
- Loss: 0.3354
|
47 |
+
- Precision: 0.8427
|
48 |
+
- Recall: 0.8737
|
49 |
+
- F1: 0.8579
|
50 |
+
- Accuracy: 0.9553
|
51 |
|
52 |
## Model description
|
53 |
|
|
|
67 |
|
68 |
The following hyperparameters were used during training:
|
69 |
- learning_rate: 2e-05
|
70 |
+
- train_batch_size: 16
|
71 |
+
- eval_batch_size: 16
|
72 |
- seed: 42
|
73 |
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
|
74 |
- lr_scheduler_type: linear
|
|
|
78 |
|
79 |
| Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy |
|
80 |
|:-------------:|:-----:|:-----:|:---------------:|:---------:|:------:|:------:|:--------:|
|
81 |
+
| 0.288 | 2.22 | 1000 | 0.2461 | 0.7705 | 0.7926 | 0.7814 | 0.9413 |
|
82 |
+
| 0.1551 | 4.44 | 2000 | 0.2270 | 0.8116 | 0.8444 | 0.8277 | 0.9503 |
|
83 |
+
| 0.0963 | 6.67 | 3000 | 0.2220 | 0.8181 | 0.8623 | 0.8396 | 0.9533 |
|
84 |
+
| 0.0619 | 8.89 | 4000 | 0.2520 | 0.8202 | 0.8598 | 0.8395 | 0.9507 |
|
85 |
+
| 0.044 | 11.11 | 5000 | 0.2613 | 0.8332 | 0.8680 | 0.8502 | 0.9535 |
|
86 |
+
| 0.0283 | 13.33 | 6000 | 0.2734 | 0.8377 | 0.8673 | 0.8522 | 0.9546 |
|
87 |
+
| 0.0227 | 15.56 | 7000 | 0.2908 | 0.8390 | 0.8687 | 0.8536 | 0.9546 |
|
88 |
+
| 0.0173 | 17.78 | 8000 | 0.3083 | 0.8393 | 0.8670 | 0.8529 | 0.9528 |
|
89 |
+
| 0.013 | 20.0 | 9000 | 0.3238 | 0.8333 | 0.8673 | 0.8500 | 0.9522 |
|
90 |
+
| 0.0103 | 22.22 | 10000 | 0.3352 | 0.8325 | 0.8712 | 0.8515 | 0.9539 |
|
91 |
+
| 0.0091 | 24.44 | 11000 | 0.3299 | 0.8400 | 0.8655 | 0.8526 | 0.9542 |
|
92 |
+
| 0.0073 | 26.67 | 12000 | 0.3376 | 0.8387 | 0.8666 | 0.8524 | 0.9535 |
|
93 |
+
| 0.0065 | 28.89 | 13000 | 0.3354 | 0.8427 | 0.8737 | 0.8579 | 0.9553 |
|
94 |
|
95 |
|
96 |
### Framework versions
|