Model save
Browse files
README.md
CHANGED
@@ -24,16 +24,16 @@ model-index:
|
|
24 |
metrics:
|
25 |
- name: Precision
|
26 |
type: precision
|
27 |
-
value: 0.
|
28 |
- name: Recall
|
29 |
type: recall
|
30 |
-
value: 0.
|
31 |
- name: F1
|
32 |
type: f1
|
33 |
-
value: 0.
|
34 |
- name: Accuracy
|
35 |
type: accuracy
|
36 |
-
value: 0.
|
37 |
---
|
38 |
|
39 |
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
|
@@ -43,11 +43,11 @@ should probably proofread and complete it, then remove this comment. -->
|
|
43 |
|
44 |
This model is a fine-tuned version of [DeepPavlov/bert-base-bg-cs-pl-ru-cased](https://huggingface.co/DeepPavlov/bert-base-bg-cs-pl-ru-cased) on the cnec dataset.
|
45 |
It achieves the following results on the evaluation set:
|
46 |
-
- Loss: 0.
|
47 |
-
- Precision: 0.
|
48 |
-
- Recall: 0.
|
49 |
-
- F1: 0.
|
50 |
-
- Accuracy: 0.
|
51 |
|
52 |
## Model description
|
53 |
|
@@ -78,23 +78,23 @@ The following hyperparameters were used during training:
|
|
78 |
|
79 |
| Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy |
|
80 |
|:-------------:|:-----:|:-----:|:---------------:|:---------:|:------:|:------:|:--------:|
|
81 |
-
| 0.
|
82 |
-
| 0.
|
83 |
-
| 0.
|
84 |
-
| 0.
|
85 |
-
| 0.
|
86 |
-
| 0.
|
87 |
-
| 0.
|
88 |
-
| 0.
|
89 |
-
| 0.
|
90 |
-
| 0.
|
91 |
-
| 0.
|
92 |
-
| 0.
|
93 |
-
| 0.
|
94 |
-
| 0.
|
95 |
-
| 0.
|
96 |
-
| 0.
|
97 |
-
| 0.
|
98 |
|
99 |
|
100 |
### Framework versions
|
|
|
24 |
metrics:
|
25 |
- name: Precision
|
26 |
type: precision
|
27 |
+
value: 0.8513220632856524
|
28 |
- name: Recall
|
29 |
type: recall
|
30 |
+
value: 0.8671081677704194
|
31 |
- name: F1
|
32 |
type: f1
|
33 |
+
value: 0.8591426071741033
|
34 |
- name: Accuracy
|
35 |
type: accuracy
|
36 |
+
value: 0.9509352959214965
|
37 |
---
|
38 |
|
39 |
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
|
|
|
43 |
|
44 |
This model is a fine-tuned version of [DeepPavlov/bert-base-bg-cs-pl-ru-cased](https://huggingface.co/DeepPavlov/bert-base-bg-cs-pl-ru-cased) on the cnec dataset.
|
45 |
It achieves the following results on the evaluation set:
|
46 |
+
- Loss: 0.3720
|
47 |
+
- Precision: 0.8513
|
48 |
+
- Recall: 0.8671
|
49 |
+
- F1: 0.8591
|
50 |
+
- Accuracy: 0.9509
|
51 |
|
52 |
## Model description
|
53 |
|
|
|
78 |
|
79 |
| Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy |
|
80 |
|:-------------:|:-----:|:-----:|:---------------:|:---------:|:------:|:------:|:--------:|
|
81 |
+
| 0.3658 | 0.85 | 1000 | 0.2671 | 0.8101 | 0.8172 | 0.8136 | 0.9366 |
|
82 |
+
| 0.227 | 1.7 | 2000 | 0.2624 | 0.8190 | 0.8172 | 0.8181 | 0.9380 |
|
83 |
+
| 0.141 | 2.56 | 3000 | 0.2474 | 0.8317 | 0.8424 | 0.8370 | 0.9448 |
|
84 |
+
| 0.092 | 3.41 | 4000 | 0.2498 | 0.8412 | 0.8534 | 0.8472 | 0.9460 |
|
85 |
+
| 0.0839 | 4.26 | 5000 | 0.2689 | 0.8438 | 0.8583 | 0.8510 | 0.9489 |
|
86 |
+
| 0.0698 | 5.11 | 6000 | 0.2830 | 0.8420 | 0.8539 | 0.8479 | 0.9473 |
|
87 |
+
| 0.0507 | 5.96 | 7000 | 0.2902 | 0.8359 | 0.8503 | 0.8431 | 0.9468 |
|
88 |
+
| 0.0344 | 6.81 | 8000 | 0.3221 | 0.8310 | 0.8512 | 0.8410 | 0.9478 |
|
89 |
+
| 0.0249 | 7.67 | 9000 | 0.3262 | 0.8444 | 0.8508 | 0.8476 | 0.9478 |
|
90 |
+
| 0.0185 | 8.52 | 10000 | 0.3214 | 0.8458 | 0.8525 | 0.8492 | 0.9502 |
|
91 |
+
| 0.0151 | 9.37 | 11000 | 0.3399 | 0.8382 | 0.8578 | 0.8479 | 0.9499 |
|
92 |
+
| 0.01 | 10.22 | 12000 | 0.3348 | 0.8385 | 0.8574 | 0.8478 | 0.9492 |
|
93 |
+
| 0.0086 | 11.07 | 13000 | 0.3636 | 0.8395 | 0.8543 | 0.8468 | 0.9479 |
|
94 |
+
| 0.0092 | 11.93 | 14000 | 0.3644 | 0.8419 | 0.8578 | 0.8498 | 0.9485 |
|
95 |
+
| 0.0058 | 12.78 | 15000 | 0.3624 | 0.8450 | 0.8618 | 0.8533 | 0.9503 |
|
96 |
+
| 0.0032 | 13.63 | 16000 | 0.3703 | 0.8483 | 0.8614 | 0.8548 | 0.9507 |
|
97 |
+
| 0.003 | 14.48 | 17000 | 0.3720 | 0.8513 | 0.8671 | 0.8591 | 0.9509 |
|
98 |
|
99 |
|
100 |
### Framework versions
|