update README
Browse files
README.md
CHANGED
@@ -1,3 +1,59 @@
|
|
1 |
---
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
2 |
license: apache-2.0
|
3 |
---
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
---
|
2 |
+
language: ja
|
3 |
+
thumbnail: https://github.com/studio-ousia/luke/raw/master/resources/luke_logo.png
|
4 |
+
tags:
|
5 |
+
- luke
|
6 |
+
- named entity recognition
|
7 |
+
- entity typing
|
8 |
+
- relation classification
|
9 |
+
- question answering
|
10 |
license: apache-2.0
|
11 |
---
|
12 |
+
|
13 |
+
## luke-japanese-large
|
14 |
+
|
15 |
+
**luke-japanese** is the Japanese version of **LUKE** (**L**anguage
|
16 |
+
**U**nderstanding with **K**nowledge-based **E**mbeddings), a pre-trained
|
17 |
+
_knowledge-enhanced_ contextualized representation of words and entities. LUKE
|
18 |
+
treats words and entities in a given text as independent tokens, and outputs
|
19 |
+
contextualized representations of them. Please refer to our
|
20 |
+
[GitHub repository](https://github.com/studio-ousia/luke) for more details and
|
21 |
+
updates.
|
22 |
+
|
23 |
+
This model contains Wikipedia entity embeddings which are not used in general
|
24 |
+
NLP tasks. Please use the
|
25 |
+
[lite version](https://huggingface.co/studio-ousia/luke-japanese-large-lite/)
|
26 |
+
for tasks that do not use Wikipedia entities as inputs.
|
27 |
+
|
28 |
+
**luke-japanese**は、単語とエンティティの知識拡張型訓練済み Transformer モデル**LUKE**の日本語版です。LUKE は単語とエンティティを独立したトークンとして扱い、これらの文脈を考慮した表現を出力します。詳細については、[GitHub リポジトリ](https://github.com/studio-ousia/luke)を参照してください。
|
29 |
+
|
30 |
+
このモデルは、通常の NLP タスクでは使われない Wikipedia エンティティのエンベディングを含んでいます。単語の入力のみを使うタスクには、[lite version](https://huggingface.co/studio-ousia/luke-japanese-large-lite/)を使用してください。
|
31 |
+
|
32 |
+
### Experimental results on JGLUE
|
33 |
+
|
34 |
+
The experimental results evaluated on the dev set of
|
35 |
+
[JGLUE](https://github.com/yahoojapan/JGLUE) is shown as follows:
|
36 |
+
|
37 |
+
| Model | MARC-ja | JSTS | JNLI | JCommonsenseQA |
|
38 |
+
| ----------------------------- | --------- | ------------------- | --------- | -------------- |
|
39 |
+
| | acc | Pearson/Spearman | acc | acc |
|
40 |
+
| **LUKE Japanese large** | **0.965** | **0.932**/**0.902** | **0.927** | 0.893 |
|
41 |
+
| _Baselines:_ | |
|
42 |
+
| Tohoku BERT large | 0.955 | 0.913/0.872 | 0.900 | 0.816 |
|
43 |
+
| Waseda RoBERTa large (seq128) | 0.954 | 0.930/0.896 | 0.924 | **0.907** |
|
44 |
+
| Waseda RoBERTa large (seq512) | 0.961 | 0.926/0.892 | 0.926 | 0.891 |
|
45 |
+
| XLM RoBERTa large | 0.964 | 0.918/0.884 | 0.919 | 0.840 |
|
46 |
+
|
47 |
+
The baseline scores are obtained from
|
48 |
+
[here](https://github.com/yahoojapan/JGLUE/blob/a6832af23895d6faec8ecf39ec925f1a91601d62/README.md).
|
49 |
+
|
50 |
+
### Citation
|
51 |
+
|
52 |
+
```latex
|
53 |
+
@inproceedings{yamada2020luke,
|
54 |
+
title={LUKE: Deep Contextualized Entity Representations with Entity-aware Self-attention},
|
55 |
+
author={Ikuya Yamada and Akari Asai and Hiroyuki Shindo and Hideaki Takeda and Yuji Matsumoto},
|
56 |
+
booktitle={EMNLP},
|
57 |
+
year={2020}
|
58 |
+
}
|
59 |
+
```
|