strickvl commited on
Commit
2b5fc8f
β€’
1 Parent(s): 12db542

Add new SentenceTransformer model.

Browse files
1_Pooling/config.json ADDED
@@ -0,0 +1,10 @@
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "word_embedding_dimension": 384,
3
+ "pooling_mode_cls_token": false,
4
+ "pooling_mode_mean_tokens": true,
5
+ "pooling_mode_max_tokens": false,
6
+ "pooling_mode_mean_sqrt_len_tokens": false,
7
+ "pooling_mode_weightedmean_tokens": false,
8
+ "pooling_mode_lasttoken": false,
9
+ "include_prompt": true
10
+ }
README.md ADDED
@@ -0,0 +1,1699 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ base_model: sentence-transformers/all-MiniLM-L6-v2
3
+ datasets: []
4
+ language:
5
+ - en
6
+ library_name: sentence-transformers
7
+ license: apache-2.0
8
+ metrics:
9
+ - cosine_accuracy@1
10
+ - cosine_accuracy@3
11
+ - cosine_accuracy@5
12
+ - cosine_accuracy@10
13
+ - cosine_precision@1
14
+ - cosine_precision@3
15
+ - cosine_precision@5
16
+ - cosine_precision@10
17
+ - cosine_recall@1
18
+ - cosine_recall@3
19
+ - cosine_recall@5
20
+ - cosine_recall@10
21
+ - cosine_ndcg@10
22
+ - cosine_mrr@10
23
+ - cosine_map@100
24
+ pipeline_tag: sentence-similarity
25
+ tags:
26
+ - sentence-transformers
27
+ - sentence-similarity
28
+ - feature-extraction
29
+ - generated_from_trainer
30
+ - dataset_size:1490
31
+ - loss:MatryoshkaLoss
32
+ - loss:MultipleNegativesRankingLoss
33
+ widget:
34
+ - source_sentence: How can I configure the orchestrator settings for each cloud provider
35
+ in ZenML?
36
+ sentences:
37
+ - '. If not set, the cluster will not be autostopped.down: Tear down the cluster
38
+ after all jobs finish (successfully or abnormally). If idle_minutes_to_autostop
39
+ is also set, the cluster will be torn down after the specified idle time. Note
40
+ that if errors occur during provisioning/data syncing/setting up, the cluster
41
+ will not be torn down for debugging purposes.
42
+
43
+
44
+ stream_logs: If True, show the logs in the terminal as they are generated while
45
+ the cluster is running.
46
+
47
+
48
+ docker_run_args: Additional arguments to pass to the docker run command. For example,
49
+ [''--gpus=all''] to use all GPUs available on the VM.
50
+
51
+
52
+ The following code snippets show how to configure the orchestrator settings for
53
+ each cloud provider:
54
+
55
+
56
+ Code Example:
57
+
58
+
59
+ from zenml.integrations.skypilot_aws.flavors.skypilot_orchestrator_aws_vm_flavor
60
+ import SkypilotAWSOrchestratorSettings
61
+
62
+
63
+ skypilot_settings = SkypilotAWSOrchestratorSettings(
64
+
65
+
66
+ cpus="2",
67
+
68
+
69
+ memory="16",
70
+
71
+
72
+ accelerators="V100:2",
73
+
74
+
75
+ accelerator_args={"tpu_vm": True, "runtime_version": "tpu-vm-base"},
76
+
77
+
78
+ use_spot=True,
79
+
80
+
81
+ spot_recovery="recovery_strategy",
82
+
83
+
84
+ region="us-west-1",
85
+
86
+
87
+ zone="us-west1-a",
88
+
89
+
90
+ image_id="ami-1234567890abcdef0",
91
+
92
+
93
+ disk_size=100,
94
+
95
+
96
+ disk_tier="high",
97
+
98
+
99
+ cluster_name="my_cluster",
100
+
101
+
102
+ retry_until_up=True,
103
+
104
+
105
+ idle_minutes_to_autostop=60,
106
+
107
+
108
+ down=True,
109
+
110
+
111
+ stream_logs=True
112
+
113
+
114
+ docker_run_args=["--gpus=all"]
115
+
116
+
117
+ @pipeline(
118
+
119
+
120
+ settings={
121
+
122
+
123
+ "orchestrator.vm_aws": skypilot_settings
124
+
125
+
126
+ Code Example:
127
+
128
+
129
+ from zenml.integrations.skypilot_gcp.flavors.skypilot_orchestrator_gcp_vm_flavor
130
+ import SkypilotGCPOrchestratorSettings
131
+
132
+
133
+ skypilot_settings = SkypilotGCPOrchestratorSettings(
134
+
135
+
136
+ cpus="2",
137
+
138
+
139
+ memory="16",
140
+
141
+
142
+ accelerators="V100:2",
143
+
144
+
145
+ accelerator_args={"tpu_vm": True, "runtime_version": "tpu-vm-base"},
146
+
147
+
148
+ use_spot=True,
149
+
150
+
151
+ spot_recovery="recovery_strategy",
152
+
153
+
154
+ region="us-west1",
155
+
156
+
157
+ zone="us-west1-a",
158
+
159
+
160
+ image_id="ubuntu-pro-2004-focal-v20231101",
161
+
162
+
163
+ disk_size=100,
164
+
165
+
166
+ disk_tier="high",
167
+
168
+
169
+ cluster_name="my_cluster",
170
+
171
+
172
+ retry_until_up=True,
173
+
174
+
175
+ idle_minutes_to_autostop=60,
176
+
177
+
178
+ down=True,
179
+
180
+
181
+ stream_logs=True
182
+
183
+
184
+ @pipeline(
185
+
186
+
187
+ settings={
188
+
189
+
190
+ "orchestrator.vm_gcp": skypilot_settings'
191
+ - 'he Post-execution workflow has changed as follows:The get_pipelines and get_pipeline
192
+ methods have been moved out of the Repository (i.e. the new Client ) class and
193
+ lie directly in the post_execution module now. To use the user has to do:
194
+
195
+
196
+ from zenml.post_execution import get_pipelines, get_pipeline
197
+
198
+
199
+ New methods to directly get a run have been introduced: get_run and get_unlisted_runs
200
+ method has been introduced to get unlisted runs.
201
+
202
+
203
+ Usage remains largely similar. Please read the new docs for post-execution to
204
+ inform yourself of what further has changed.
205
+
206
+
207
+ How to migrate: Replace all post-execution workflows from the paradigm of Repository.get_pipelines
208
+ or Repository.get_pipeline_run to the corresponding post_execution methods.
209
+
210
+
211
+ πŸ“‘Future Changes
212
+
213
+
214
+ While this rehaul is big and will break previous releases, we do have some more
215
+ work left to do. However we also expect this to be the last big rehaul of ZenML
216
+ before our 1.0.0 release, and no other release will be so hard breaking as this
217
+ one. Currently planned future breaking changes are:
218
+
219
+
220
+ Following the metadata store, the secrets manager stack component might move out
221
+ of the stack.
222
+
223
+
224
+ ZenML StepContext might be deprecated.
225
+
226
+
227
+ 🐞 Reporting Bugs
228
+
229
+
230
+ While we have tried our best to document everything that has changed, we realize
231
+ that mistakes can be made and smaller changes overlooked. If this is the case,
232
+ or you encounter a bug at any time, the ZenML core team and community are available
233
+ around the clock on the growing Slack community.
234
+
235
+
236
+ For bug reports, please also consider submitting a GitHub Issue.
237
+
238
+
239
+ Lastly, if the new changes have left you desiring a feature, then consider adding
240
+ it to our public feature voting board. Before doing so, do check what is already
241
+ on there and consider upvoting the features you desire the most.
242
+
243
+
244
+ PreviousMigration guide
245
+
246
+
247
+ NextMigration guide 0.23.0 β†’ 0.30.0
248
+
249
+
250
+ Last updated 12 days ago'
251
+ - 'nML, namely an orchestrator and an artifact store.Keep in mind, that each one
252
+ of these components is built on top of base abstractions and is completely extensible.
253
+
254
+
255
+ Orchestrator
256
+
257
+
258
+ An Orchestrator is a workhorse that coordinates all the steps to run in a pipeline.
259
+ Since pipelines can be set up with complex combinations of steps with various
260
+ asynchronous dependencies between them, the orchestrator acts as the component
261
+ that decides what steps to run and when to run them.
262
+
263
+
264
+ ZenML comes with a default local orchestrator designed to run on your local machine.
265
+ This is useful, especially during the exploration phase of your project. You don''t
266
+ have to rent a cloud instance just to try out basic things.
267
+
268
+
269
+ Artifact Store
270
+
271
+
272
+ An Artifact Store is a component that houses all data that pass through the pipeline
273
+ as inputs and outputs. Each artifact that gets stored in the artifact store is
274
+ tracked and versioned and this allows for extremely useful features like data
275
+ caching which speeds up your workflows.
276
+
277
+
278
+ Similar to the orchestrator, ZenML comes with a default local artifact store designed
279
+ to run on your local machine. This is useful, especially during the exploration
280
+ phase of your project. You don''t have to set up a cloud storage system to try
281
+ out basic things.
282
+
283
+
284
+ Flavor
285
+
286
+
287
+ ZenML provides a dedicated base abstraction for each stack component type. These
288
+ abstractions are used to develop solutions, called Flavors, tailored to specific
289
+ use cases/tools. With ZenML installed, you get access to a variety of built-in
290
+ and integrated Flavors for each component type, but users can also leverage the
291
+ base abstractions to create their own custom flavors.
292
+
293
+
294
+ Stack Switching
295
+
296
+
297
+ When it comes to production-grade solutions, it is rarely enough to just run your
298
+ workflow locally without including any cloud infrastructure.'
299
+ - source_sentence: How can I fetch artifacts from other pipelines within a step using
300
+ ZenML?
301
+ sentences:
302
+ - ' ┃┠──────────────────┼──────────────────────────────────────────────────────────────────────────┨
303
+
304
+
305
+ ┃ EXPIRES IN β”‚ N/A ┃
306
+
307
+
308
+ ┠──────────────────┼──────────────────────────────────────────────────────────────────────────┨
309
+
310
+
311
+ ┃ OWNER β”‚ default ┃
312
+
313
+
314
+ ┠──────────────────┼──────────────────────────────────────────────────────────────────────────┨
315
+
316
+
317
+ ┃ WORKSPACE β”‚ default ┃
318
+
319
+
320
+ ┠──────────────────┼──────────────────────────────────────────────────────────────────────────┨
321
+
322
+
323
+ ┃ SHARED β”‚ βž– ┃
324
+
325
+
326
+ ┠──────────────────┼──────────────────────────────────────────────────────────────────────────┨
327
+
328
+
329
+ ┃ CREATED_AT β”‚ 2023-05-19 09:15:12.882929 ┃
330
+
331
+
332
+ ┠──────────────────┼──────────────────────────────────────────────────────────────────────────┨
333
+
334
+
335
+ ┃ UPDATED_AT β”‚ 2023-05-19 09:15:12.882930 ┃
336
+
337
+
338
+ ┗━━━━━━━━━━━━━━━━━━┷━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━┛
339
+
340
+
341
+ Configuration
342
+
343
+
344
+ ┏━━━━━━━━━━━━━━━━━━━┯━━━━━━━━━━━━┓
345
+
346
+
347
+ ┃ PROPERTY β”‚ VALUE ┃
348
+
349
+
350
+ ┠───────────────────┼────────────┨
351
+
352
+
353
+ ┃ project_id β”‚ zenml-core ┃
354
+
355
+
356
+ ┠───────────────────┼────────────┨
357
+
358
+
359
+ ┃ user_account_json β”‚ [HIDDEN] ┃
360
+
361
+
362
+ ┗━━━━━━━━━━━━━━━━━━━┷━━━━━━━━━━━━┛
363
+
364
+
365
+ Local client provisioning
366
+
367
+
368
+ The local gcloud CLI, the Kubernetes kubectl CLI and the Docker CLI can be configured
369
+ with credentials extracted from or generated by a compatible GCP Service Connector.
370
+ Please note that unlike the configuration made possible through the GCP CLI, the
371
+ Kubernetes and Docker credentials issued by the GCP Service Connector have a short
372
+ lifetime and will need to be regularly refreshed. This is a byproduct of implementing
373
+ a high-security profile.'
374
+ - 'gmax(prediction.numpy())
375
+
376
+
377
+ return classes[maxindex]The custom predict function should get the model and the
378
+ input data as arguments and return the model predictions. ZenML will automatically
379
+ take care of loading the model into memory and starting the seldon-core-microservice
380
+ that will be responsible for serving the model and running the predict function.
381
+
382
+
383
+ After defining your custom predict function in code, you can use the seldon_custom_model_deployer_step
384
+ to automatically build your function into a Docker image and deploy it as a model
385
+ server by setting the predict_function argument to the path of your custom_predict
386
+ function:
387
+
388
+
389
+ from zenml.integrations.seldon.steps import seldon_custom_model_deployer_step
390
+
391
+
392
+ from zenml.integrations.seldon.services import SeldonDeploymentConfig
393
+
394
+
395
+ from zenml import pipeline
396
+
397
+
398
+ @pipeline
399
+
400
+
401
+ def seldon_deployment_pipeline():
402
+
403
+
404
+ model = ...
405
+
406
+
407
+ seldon_custom_model_deployer_step(
408
+
409
+
410
+ model=model,
411
+
412
+
413
+ predict_function="<PATH.TO.custom_predict>", # TODO: path to custom code
414
+
415
+
416
+ service_config=SeldonDeploymentConfig(
417
+
418
+
419
+ model_name="<MODEL_NAME>", # TODO: name of the deployed model
420
+
421
+
422
+ replicas=1,
423
+
424
+
425
+ implementation="custom",
426
+
427
+
428
+ resources=SeldonResourceRequirements(
429
+
430
+
431
+ limits={"cpu": "200m", "memory": "250Mi"}
432
+
433
+
434
+ ),
435
+
436
+
437
+ serviceAccountName="kubernetes-service-account",
438
+
439
+
440
+ ),
441
+
442
+
443
+ Advanced Custom Code Deployment with Seldon Core Integration
444
+
445
+
446
+ Before creating your custom model class, you should take a look at the custom
447
+ Python model section of the Seldon Core documentation.
448
+
449
+
450
+ The built-in Seldon Core custom deployment step is a good starting point for deploying
451
+ your custom models. However, if you want to deploy more than the trained model,
452
+ you can create your own custom class and a custom step to achieve this.
453
+
454
+
455
+ See the ZenML custom Seldon model class as a reference.
456
+
457
+
458
+ PreviousMLflow
459
+
460
+
461
+ NextBentoML
462
+
463
+
464
+ Last updated 15 days ago'
465
+ - 'Get arbitrary artifacts in a step
466
+
467
+
468
+ Not all artifacts need to come through the step interface from direct upstream
469
+ steps.
470
+
471
+
472
+ As described in the metadata guide, the metadata can be fetched with the client,
473
+ and this is how you would use it to fetch it within a step. This allows you to
474
+ fetch artifacts from other upstream steps or even completely different pipelines.
475
+
476
+
477
+ from zenml.client import Client
478
+
479
+
480
+ from zenml import step
481
+
482
+
483
+ @step
484
+
485
+
486
+ def my_step():
487
+
488
+
489
+ client = Client()
490
+
491
+
492
+ # Directly fetch an artifact
493
+
494
+
495
+ output = client.get_artifact_version("my_dataset", "my_version")
496
+
497
+
498
+ output.run_metadata["accuracy"].value
499
+
500
+
501
+ This is one of the ways you can access artifacts that have already been created
502
+ and stored in the artifact store. This can be useful when you want to use artifacts
503
+ from other pipelines or steps that are not directly upstream.
504
+
505
+
506
+ See Also
507
+
508
+
509
+ Managing artifacts - learn about the ExternalArtifact type and how to pass artifacts
510
+ between steps.
511
+
512
+
513
+ PreviousOrganize data with tags
514
+
515
+
516
+ NextHandle custom data types
517
+
518
+
519
+ Last updated 15 days ago'
520
+ - source_sentence: Where can I find more information about using Feast in ZenML?
521
+ sentences:
522
+ - 'hat''s described on the feast page: How to use it?.PreviousDevelop a Custom Model
523
+ Registry
524
+
525
+
526
+ NextFeast
527
+
528
+
529
+ Last updated 1 year ago'
530
+ - 'other remote stack components also running in AWS.This method uses the implicit
531
+ AWS authentication available in the environment where the ZenML code is running.
532
+ On your local machine, this is the quickest way to configure an S3 Artifact Store.
533
+ You don''t need to supply credentials explicitly when you register the S3 Artifact
534
+ Store, as it leverages the local credentials and configuration that the AWS CLI
535
+ stores on your local machine. However, you will need to install and set up the
536
+ AWS CLI on your machine as a prerequisite, as covered in the AWS CLI documentation,
537
+ before you register the S3 Artifact Store.
538
+
539
+
540
+ Certain dashboard functionality, such as visualizing or deleting artifacts, is
541
+ not available when using an implicitly authenticated artifact store together with
542
+ a deployed ZenML server because the ZenML server will not have permission to access
543
+ the filesystem.
544
+
545
+
546
+ The implicit authentication method also needs to be coordinated with other stack
547
+ components that are highly dependent on the Artifact Store and need to interact
548
+ with it directly to work. If these components are not running on your machine,
549
+ they do not have access to the local AWS CLI configuration and will encounter
550
+ authentication failures while trying to access the S3 Artifact Store:
551
+
552
+
553
+ Orchestrators need to access the Artifact Store to manage pipeline artifacts
554
+
555
+
556
+ Step Operators need to access the Artifact Store to manage step-level artifacts
557
+
558
+
559
+ Model Deployers need to access the Artifact Store to load served models
560
+
561
+
562
+ To enable these use-cases, it is recommended to use an AWS Service Connector to
563
+ link your S3 Artifact Store to the remote S3 bucket.
564
+
565
+
566
+ To set up the S3 Artifact Store to authenticate to AWS and access an S3 bucket,
567
+ it is recommended to leverage the many features provided by the AWS Service Connector
568
+ such as auto-configuration, best security practices regarding long-lived credentials
569
+ and fine-grained access control and reusing the same credentials across multiple
570
+ stack components.'
571
+ - ' us know!
572
+
573
+
574
+ Configuration at pipeline or step levelWhen running your ZenML pipeline with the
575
+ Sagemaker orchestrator, the configuration set when configuring the orchestrator
576
+ as a ZenML component will be used by default. However, it is possible to provide
577
+ additional configuration at the pipeline or step level. This allows you to run
578
+ whole pipelines or individual steps with alternative configurations. For example,
579
+ this allows you to run the training process with a heavier, GPU-enabled instance
580
+ type, while running other steps with lighter instances.
581
+
582
+
583
+ Additional configuration for the Sagemaker orchestrator can be passed via SagemakerOrchestratorSettings.
584
+ Here, it is possible to configure processor_args, which is a dictionary of arguments
585
+ for the Processor. For available arguments, see the Sagemaker documentation .
586
+ Currently, it is not possible to provide custom configuration for the following
587
+ attributes:
588
+
589
+
590
+ image_uri
591
+
592
+
593
+ instance_count
594
+
595
+
596
+ sagemaker_session
597
+
598
+
599
+ entrypoint
600
+
601
+
602
+ base_job_name
603
+
604
+
605
+ env
606
+
607
+
608
+ For example, settings can be provided in the following way:
609
+
610
+
611
+ sagemaker_orchestrator_settings = SagemakerOrchestratorSettings(
612
+
613
+
614
+ processor_args={
615
+
616
+
617
+ "instance_type": "ml.t3.medium",
618
+
619
+
620
+ "volume_size_in_gb": 30
621
+
622
+
623
+ They can then be applied to a step as follows:
624
+
625
+
626
+ @step(settings={"orchestrator.sagemaker": sagemaker_orchestrator_settings})
627
+
628
+
629
+ For example, if your ZenML component is configured to use ml.c5.xlarge with 400GB
630
+ additional storage by default, all steps will use it except for the step above,
631
+ which will use ml.t3.medium with 30GB additional storage.
632
+
633
+
634
+ Check out this docs page for more information on how to specify settings in general.
635
+
636
+
637
+ For more information and a full list of configurable attributes of the Sagemaker
638
+ orchestrator, check out the SDK Docs .
639
+
640
+
641
+ S3 data access in ZenML steps'
642
+ - source_sentence: How is the AWS region specified in the configuration for ZenML?
643
+ sentences:
644
+ - 'ge or if the ZenML version doesn''t change at all).a backup file or database
645
+ is created before every database migration attempt (i.e. during every Helm upgrade).
646
+ If a backup already exists (i.e. persisted in a persistent volume or backup database),
647
+ it is overwritten.
648
+
649
+
650
+ the persistent backup file or database is cleaned up after the migration is completed
651
+ successfully or if the database doesn''t need to undergo a migration. This includes
652
+ backups created by previous failed migration attempts.
653
+
654
+
655
+ the persistent backup file or database is NOT cleaned up after a failed migration.
656
+ This allows the user to manually inspect and/or apply the backup if the automatic
657
+ recovery fails.
658
+
659
+
660
+ The following example shows how to configure the ZenML server to use a persistent
661
+ volume to store the database dump file:
662
+
663
+
664
+ zenml:
665
+
666
+
667
+ # ...
668
+
669
+
670
+ database:
671
+
672
+
673
+ url: "mysql://admin:[email protected]:3306/zenml"
674
+
675
+
676
+ # Configure the database backup strategy
677
+
678
+
679
+ backupStrategy: dump-file
680
+
681
+
682
+ backupPVStorageSize: 1Gi
683
+
684
+
685
+ podSecurityContext:
686
+
687
+
688
+ fsGroup: 1000 # if you''re using a PVC for backup, this should necessarily be
689
+ set.
690
+
691
+
692
+ PreviousDeploy with Docker
693
+
694
+
695
+ NextDeploy using HuggingFace Spaces
696
+
697
+
698
+ Last updated 15 days ago'
699
+ - '🌲Control logging
700
+
701
+
702
+ Configuring ZenML''s default logging behavior
703
+
704
+
705
+ ZenML produces various kinds of logs:
706
+
707
+
708
+ The ZenML Server produces server logs (like any FastAPI server).
709
+
710
+
711
+ The Client or Runner environment produces logs, for example after running a pipeline.
712
+ These are steps that are typically before, after, and during the creation of a
713
+ pipeline run.
714
+
715
+
716
+ The Execution environment (on the orchestrator level) produces logs when it executes
717
+ each step of a pipeline. These are logs that are typically written in your steps
718
+ using the python logging module.
719
+
720
+
721
+ This section talks about how users can control logging behavior in these various
722
+ environments.
723
+
724
+
725
+ PreviousTrain with GPUs
726
+
727
+
728
+ NextView logs on the dashboard
729
+
730
+
731
+ Last updated 19 days ago'
732
+ - ' ┃┠──────────────────┼─────────────────────────────────────────────────────────────────────┨
733
+
734
+
735
+ ┃ SHARED β”‚ βž– ┃
736
+
737
+
738
+ ┠──────────────────┼─────────────────────────────────────────────────────────────────────┨
739
+
740
+
741
+ ┃ CREATED_AT β”‚ 2023-06-19 18:12:42.066053 ┃
742
+
743
+
744
+ ┠──────────────────┼─────────────────────────────────────────────────────────────────────┨
745
+
746
+
747
+ ┃ UPDATED_AT β”‚ 2023-06-19 18:12:42.066055 ┃
748
+
749
+
750
+ ┗━━━━━━━━━━━━━━━━━━┷━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━┛
751
+
752
+
753
+ Configuration
754
+
755
+
756
+ ┏━━━━━━━━━━━━━━━━━━━━━━━┯━━━━━━━━━━━┓
757
+
758
+
759
+ ┃ PROPERTY β”‚ VALUE ┃
760
+
761
+
762
+ ┠───────────────────────┼───────────┨
763
+
764
+
765
+ ┃ region β”‚ us-east-1 ┃
766
+
767
+
768
+ ┠───────────────────────┼───────────┨
769
+
770
+
771
+ ┃ aws_access_key_id β”‚ [HIDDEN] ┃
772
+
773
+
774
+ ┠───────────────────────┼───────────┨
775
+
776
+
777
+ ┃ aws_secret_access_key β”‚ [HIDDEN] ┃
778
+
779
+
780
+ ┗━━━━━━━━━━━━━━━━━━━━━━━┷━━━━━━━━━━━┛
781
+
782
+
783
+ AWS Secret Key
784
+
785
+
786
+ Long-lived AWS credentials consisting of an AWS access key ID and secret access
787
+ key associated with an AWS IAM user or AWS account root user (not recommended).
788
+
789
+
790
+ This method is preferred during development and testing due to its simplicity
791
+ and ease of use. It is not recommended as a direct authentication method for production
792
+ use cases because the clients have direct access to long-lived credentials and
793
+ are granted the full set of permissions of the IAM user or AWS account root user
794
+ associated with the credentials. For production, it is recommended to use the
795
+ AWS IAM Role, AWS Session Token, or AWS Federation Token authentication method
796
+ instead.
797
+
798
+
799
+ An AWS region is required and the connector may only be used to access AWS resources
800
+ in the specified region.
801
+
802
+
803
+ If you already have the local AWS CLI set up with these credentials, they will
804
+ be automatically picked up when auto-configuration is used (see the example below).'
805
+ - source_sentence: Can you explain how the `query_similar_docs` function handles document
806
+ reranking?
807
+ sentences:
808
+ - 'ry_similar_docs(
809
+
810
+
811
+ question: str,
812
+
813
+
814
+ url_ending: str,use_reranking: bool = False,
815
+
816
+
817
+ returned_sample_size: int = 5,
818
+
819
+
820
+ ) -> Tuple[str, str, List[str]]:
821
+
822
+
823
+ """Query similar documents for a given question and URL ending."""
824
+
825
+
826
+ embedded_question = get_embeddings(question)
827
+
828
+
829
+ db_conn = get_db_conn()
830
+
831
+
832
+ num_docs = 20 if use_reranking else returned_sample_size
833
+
834
+
835
+ # get (content, url) tuples for the top n similar documents
836
+
837
+
838
+ top_similar_docs = get_topn_similar_docs(
839
+
840
+
841
+ embedded_question, db_conn, n=num_docs, include_metadata=True
842
+
843
+
844
+ if use_reranking:
845
+
846
+
847
+ reranked_docs_and_urls = rerank_documents(question, top_similar_docs)[
848
+
849
+
850
+ :returned_sample_size
851
+
852
+
853
+ urls = [doc[1] for doc in reranked_docs_and_urls]
854
+
855
+
856
+ else:
857
+
858
+
859
+ urls = [doc[1] for doc in top_similar_docs] # Unpacking URLs
860
+
861
+
862
+ return (question, url_ending, urls)
863
+
864
+
865
+ We get the embeddings for the question being passed into the function and connect
866
+ to our PostgreSQL database. If we''re using reranking, we get the top 20 documents
867
+ similar to our query and rerank them using the rerank_documents helper function.
868
+ We then extract the URLs from the reranked documents and return them. Note that
869
+ we only return 5 URLs, but in the case of reranking we get a larger number of
870
+ documents and URLs back from the database to pass to our reranker, but in the
871
+ end we always choose the top five reranked documents to return.
872
+
873
+
874
+ Now that we''ve added reranking to our pipeline, we can evaluate the performance
875
+ of our reranker and see how it affects the quality of the retrieved documents.
876
+
877
+
878
+ Code Example
879
+
880
+
881
+ To explore the full code, visit the Complete Guide repository and for this section,
882
+ particularly the eval_retrieval.py file.
883
+
884
+
885
+ PreviousUnderstanding reranking
886
+
887
+
888
+ NextEvaluating reranking performance
889
+
890
+
891
+ Last updated 15 days ago'
892
+ - 'uter vision that expect a single dataset as input.model drift checks require
893
+ two datasets and a mandatory model as input. This list includes a subset of the
894
+ model evaluation checks provided by Deepchecks for tabular data and for computer
895
+ vision that expect two datasets as input: target and reference.
896
+
897
+
898
+ This structure is directly reflected in how Deepchecks can be used with ZenML:
899
+ there are four different Deepchecks standard steps and four different ZenML enums
900
+ for Deepchecks checks . The Deepchecks Data Validator API is also modeled to reflect
901
+ this same structure.
902
+
903
+
904
+ A notable characteristic of Deepchecks is that you don''t need to customize the
905
+ set of Deepchecks tests that are part of a test suite. Both ZenML and Deepchecks
906
+ provide sane defaults that will run all available Deepchecks tests in a given
907
+ category with their default conditions if a custom list of tests and conditions
908
+ are not provided.
909
+
910
+
911
+ There are three ways you can use Deepchecks in your ZenML pipelines that allow
912
+ different levels of flexibility:
913
+
914
+
915
+ instantiate, configure and insert one or more of the standard Deepchecks steps
916
+ shipped with ZenML into your pipelines. This is the easiest way and the recommended
917
+ approach, but can only be customized through the supported step configuration
918
+ parameters.
919
+
920
+
921
+ call the data validation methods provided by the Deepchecks Data Validator in
922
+ your custom step implementation. This method allows for more flexibility concerning
923
+ what can happen in the pipeline step, but you are still limited to the functionality
924
+ implemented in the Data Validator.
925
+
926
+
927
+ use the Deepchecks library directly in your custom step implementation. This gives
928
+ you complete freedom in how you are using Deepchecks'' features.
929
+
930
+
931
+ You can visualize Deepchecks results in Jupyter notebooks or view them directly
932
+ in the ZenML dashboard.
933
+
934
+
935
+ Warning! Usage in remote orchestrators'
936
+ - ' use for the database connection.
937
+
938
+ database_ssl_ca:# The path to the client SSL certificate to use for the database
939
+ connection.
940
+
941
+ database_ssl_cert:
942
+
943
+
944
+ # The path to the client SSL key to use for the database connection.
945
+
946
+ database_ssl_key:
947
+
948
+
949
+ # Whether to verify the database server SSL certificate.
950
+
951
+ database_ssl_verify_server_cert:
952
+
953
+
954
+ Run the deploy command and pass the config file above to it.Copyzenml deploy --config=/PATH/TO/FILENote
955
+ To be able to run the deploy command, you should have your cloud provider''s CLI
956
+ configured locally with permissions to create resources like MySQL databases and
957
+ networks.
958
+
959
+
960
+ Configuration file templates
961
+
962
+
963
+ Base configuration file
964
+
965
+
966
+ Below is the general structure of a config file. Use this as a base and then add
967
+ any cloud-specific parameters from the sections below.
968
+
969
+
970
+ # Name of the server deployment.
971
+
972
+
973
+ name:
974
+
975
+
976
+ # The server provider type, one of aws, gcp or azure.
977
+
978
+
979
+ provider:
980
+
981
+
982
+ # The path to the kubectl config file to use for deployment.
983
+
984
+
985
+ kubectl_config_path:
986
+
987
+
988
+ # The Kubernetes namespace to deploy the ZenML server to.
989
+
990
+
991
+ namespace: zenmlserver
992
+
993
+
994
+ # The path to the ZenML server helm chart to use for deployment.
995
+
996
+
997
+ helm_chart:
998
+
999
+
1000
+ # The repository and tag to use for the ZenML server Docker image.
1001
+
1002
+
1003
+ zenmlserver_image_repo: zenmldocker/zenml
1004
+
1005
+
1006
+ zenmlserver_image_tag: latest
1007
+
1008
+
1009
+ # Whether to deploy an nginx ingress controller as part of the deployment.
1010
+
1011
+
1012
+ create_ingress_controller: true
1013
+
1014
+
1015
+ # Whether to use TLS for the ingress.
1016
+
1017
+
1018
+ ingress_tls: true
1019
+
1020
+
1021
+ # Whether to generate self-signed TLS certificates for the ingress.
1022
+
1023
+
1024
+ ingress_tls_generate_certs: true
1025
+
1026
+
1027
+ # The name of the Kubernetes secret to use for the ingress.
1028
+
1029
+
1030
+ ingress_tls_secret_name: zenml-tls-certs
1031
+
1032
+
1033
+ # The ingress controller''s IP address. The ZenML server will be exposed on a
1034
+ subdomain of this IP. For AWS, if you have a hostname instead, use the following
1035
+ command to get the IP address: `dig +short <hostname>`.
1036
+
1037
+
1038
+ ingress_controller_ip:
1039
+
1040
+
1041
+ # Whether to create a SQL database service as part of the recipe.
1042
+
1043
+
1044
+ deploy_db: true
1045
+
1046
+
1047
+ # The username and password for the database.'
1048
+ model-index:
1049
+ - name: strickvl/finetuned-all-MiniLM-L6-v2
1050
+ results:
1051
+ - task:
1052
+ type: information-retrieval
1053
+ name: Information Retrieval
1054
+ dataset:
1055
+ name: dim 384
1056
+ type: dim_384
1057
+ metrics:
1058
+ - type: cosine_accuracy@1
1059
+ value: 0.30120481927710846
1060
+ name: Cosine Accuracy@1
1061
+ - type: cosine_accuracy@3
1062
+ value: 0.5421686746987951
1063
+ name: Cosine Accuracy@3
1064
+ - type: cosine_accuracy@5
1065
+ value: 0.6746987951807228
1066
+ name: Cosine Accuracy@5
1067
+ - type: cosine_accuracy@10
1068
+ value: 0.7409638554216867
1069
+ name: Cosine Accuracy@10
1070
+ - type: cosine_precision@1
1071
+ value: 0.30120481927710846
1072
+ name: Cosine Precision@1
1073
+ - type: cosine_precision@3
1074
+ value: 0.18072289156626503
1075
+ name: Cosine Precision@3
1076
+ - type: cosine_precision@5
1077
+ value: 0.13493975903614455
1078
+ name: Cosine Precision@5
1079
+ - type: cosine_precision@10
1080
+ value: 0.07409638554216866
1081
+ name: Cosine Precision@10
1082
+ - type: cosine_recall@1
1083
+ value: 0.30120481927710846
1084
+ name: Cosine Recall@1
1085
+ - type: cosine_recall@3
1086
+ value: 0.5421686746987951
1087
+ name: Cosine Recall@3
1088
+ - type: cosine_recall@5
1089
+ value: 0.6746987951807228
1090
+ name: Cosine Recall@5
1091
+ - type: cosine_recall@10
1092
+ value: 0.7409638554216867
1093
+ name: Cosine Recall@10
1094
+ - type: cosine_ndcg@10
1095
+ value: 0.5191955019858888
1096
+ name: Cosine Ndcg@10
1097
+ - type: cosine_mrr@10
1098
+ value: 0.44787244214955063
1099
+ name: Cosine Mrr@10
1100
+ - type: cosine_map@100
1101
+ value: 0.4579267717676669
1102
+ name: Cosine Map@100
1103
+ - task:
1104
+ type: information-retrieval
1105
+ name: Information Retrieval
1106
+ dataset:
1107
+ name: dim 256
1108
+ type: dim_256
1109
+ metrics:
1110
+ - type: cosine_accuracy@1
1111
+ value: 0.29518072289156627
1112
+ name: Cosine Accuracy@1
1113
+ - type: cosine_accuracy@3
1114
+ value: 0.5301204819277109
1115
+ name: Cosine Accuracy@3
1116
+ - type: cosine_accuracy@5
1117
+ value: 0.6325301204819277
1118
+ name: Cosine Accuracy@5
1119
+ - type: cosine_accuracy@10
1120
+ value: 0.7349397590361446
1121
+ name: Cosine Accuracy@10
1122
+ - type: cosine_precision@1
1123
+ value: 0.29518072289156627
1124
+ name: Cosine Precision@1
1125
+ - type: cosine_precision@3
1126
+ value: 0.17670682730923695
1127
+ name: Cosine Precision@3
1128
+ - type: cosine_precision@5
1129
+ value: 0.12650602409638553
1130
+ name: Cosine Precision@5
1131
+ - type: cosine_precision@10
1132
+ value: 0.07349397590361445
1133
+ name: Cosine Precision@10
1134
+ - type: cosine_recall@1
1135
+ value: 0.29518072289156627
1136
+ name: Cosine Recall@1
1137
+ - type: cosine_recall@3
1138
+ value: 0.5301204819277109
1139
+ name: Cosine Recall@3
1140
+ - type: cosine_recall@5
1141
+ value: 0.6325301204819277
1142
+ name: Cosine Recall@5
1143
+ - type: cosine_recall@10
1144
+ value: 0.7349397590361446
1145
+ name: Cosine Recall@10
1146
+ - type: cosine_ndcg@10
1147
+ value: 0.5118888198675068
1148
+ name: Cosine Ndcg@10
1149
+ - type: cosine_mrr@10
1150
+ value: 0.4409805890227577
1151
+ name: Cosine Mrr@10
1152
+ - type: cosine_map@100
1153
+ value: 0.45029464689656734
1154
+ name: Cosine Map@100
1155
+ - task:
1156
+ type: information-retrieval
1157
+ name: Information Retrieval
1158
+ dataset:
1159
+ name: dim 128
1160
+ type: dim_128
1161
+ metrics:
1162
+ - type: cosine_accuracy@1
1163
+ value: 0.2710843373493976
1164
+ name: Cosine Accuracy@1
1165
+ - type: cosine_accuracy@3
1166
+ value: 0.5120481927710844
1167
+ name: Cosine Accuracy@3
1168
+ - type: cosine_accuracy@5
1169
+ value: 0.6144578313253012
1170
+ name: Cosine Accuracy@5
1171
+ - type: cosine_accuracy@10
1172
+ value: 0.6987951807228916
1173
+ name: Cosine Accuracy@10
1174
+ - type: cosine_precision@1
1175
+ value: 0.2710843373493976
1176
+ name: Cosine Precision@1
1177
+ - type: cosine_precision@3
1178
+ value: 0.1706827309236948
1179
+ name: Cosine Precision@3
1180
+ - type: cosine_precision@5
1181
+ value: 0.12289156626506023
1182
+ name: Cosine Precision@5
1183
+ - type: cosine_precision@10
1184
+ value: 0.06987951807228915
1185
+ name: Cosine Precision@10
1186
+ - type: cosine_recall@1
1187
+ value: 0.2710843373493976
1188
+ name: Cosine Recall@1
1189
+ - type: cosine_recall@3
1190
+ value: 0.5120481927710844
1191
+ name: Cosine Recall@3
1192
+ - type: cosine_recall@5
1193
+ value: 0.6144578313253012
1194
+ name: Cosine Recall@5
1195
+ - type: cosine_recall@10
1196
+ value: 0.6987951807228916
1197
+ name: Cosine Recall@10
1198
+ - type: cosine_ndcg@10
1199
+ value: 0.4883715088201252
1200
+ name: Cosine Ndcg@10
1201
+ - type: cosine_mrr@10
1202
+ value: 0.4208237712755786
1203
+ name: Cosine Mrr@10
1204
+ - type: cosine_map@100
1205
+ value: 0.4307910346351659
1206
+ name: Cosine Map@100
1207
+ - task:
1208
+ type: information-retrieval
1209
+ name: Information Retrieval
1210
+ dataset:
1211
+ name: dim 64
1212
+ type: dim_64
1213
+ metrics:
1214
+ - type: cosine_accuracy@1
1215
+ value: 0.25301204819277107
1216
+ name: Cosine Accuracy@1
1217
+ - type: cosine_accuracy@3
1218
+ value: 0.4578313253012048
1219
+ name: Cosine Accuracy@3
1220
+ - type: cosine_accuracy@5
1221
+ value: 0.5542168674698795
1222
+ name: Cosine Accuracy@5
1223
+ - type: cosine_accuracy@10
1224
+ value: 0.6566265060240963
1225
+ name: Cosine Accuracy@10
1226
+ - type: cosine_precision@1
1227
+ value: 0.25301204819277107
1228
+ name: Cosine Precision@1
1229
+ - type: cosine_precision@3
1230
+ value: 0.15261044176706828
1231
+ name: Cosine Precision@3
1232
+ - type: cosine_precision@5
1233
+ value: 0.1108433734939759
1234
+ name: Cosine Precision@5
1235
+ - type: cosine_precision@10
1236
+ value: 0.06566265060240963
1237
+ name: Cosine Precision@10
1238
+ - type: cosine_recall@1
1239
+ value: 0.25301204819277107
1240
+ name: Cosine Recall@1
1241
+ - type: cosine_recall@3
1242
+ value: 0.4578313253012048
1243
+ name: Cosine Recall@3
1244
+ - type: cosine_recall@5
1245
+ value: 0.5542168674698795
1246
+ name: Cosine Recall@5
1247
+ - type: cosine_recall@10
1248
+ value: 0.6566265060240963
1249
+ name: Cosine Recall@10
1250
+ - type: cosine_ndcg@10
1251
+ value: 0.4465853836525359
1252
+ name: Cosine Ndcg@10
1253
+ - type: cosine_mrr@10
1254
+ value: 0.380495792694588
1255
+ name: Cosine Mrr@10
1256
+ - type: cosine_map@100
1257
+ value: 0.39060460620612997
1258
+ name: Cosine Map@100
1259
+ ---
1260
+
1261
+ # strickvl/finetuned-all-MiniLM-L6-v2
1262
+
1263
+ This is a [sentence-transformers](https://www.SBERT.net) model finetuned from [sentence-transformers/all-MiniLM-L6-v2](https://huggingface.co/sentence-transformers/all-MiniLM-L6-v2). It maps sentences & paragraphs to a 384-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
1264
+
1265
+ ## Model Details
1266
+
1267
+ ### Model Description
1268
+ - **Model Type:** Sentence Transformer
1269
+ - **Base model:** [sentence-transformers/all-MiniLM-L6-v2](https://huggingface.co/sentence-transformers/all-MiniLM-L6-v2) <!-- at revision 8b3219a92973c328a8e22fadcfa821b5dc75636a -->
1270
+ - **Maximum Sequence Length:** 256 tokens
1271
+ - **Output Dimensionality:** 384 tokens
1272
+ - **Similarity Function:** Cosine Similarity
1273
+ <!-- - **Training Dataset:** Unknown -->
1274
+ - **Language:** en
1275
+ - **License:** apache-2.0
1276
+
1277
+ ### Model Sources
1278
+
1279
+ - **Documentation:** [Sentence Transformers Documentation](https://sbert.net)
1280
+ - **Repository:** [Sentence Transformers on GitHub](https://github.com/UKPLab/sentence-transformers)
1281
+ - **Hugging Face:** [Sentence Transformers on Hugging Face](https://huggingface.co/models?library=sentence-transformers)
1282
+
1283
+ ### Full Model Architecture
1284
+
1285
+ ```
1286
+ SentenceTransformer(
1287
+ (0): Transformer({'max_seq_length': 256, 'do_lower_case': False}) with Transformer model: BertModel
1288
+ (1): Pooling({'word_embedding_dimension': 384, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
1289
+ (2): Normalize()
1290
+ )
1291
+ ```
1292
+
1293
+ ## Usage
1294
+
1295
+ ### Direct Usage (Sentence Transformers)
1296
+
1297
+ First install the Sentence Transformers library:
1298
+
1299
+ ```bash
1300
+ pip install -U sentence-transformers
1301
+ ```
1302
+
1303
+ Then you can load this model and run inference.
1304
+ ```python
1305
+ from sentence_transformers import SentenceTransformer
1306
+
1307
+ # Download from the πŸ€— Hub
1308
+ model = SentenceTransformer("strickvl/finetuned-all-MiniLM-L6-v2")
1309
+ # Run inference
1310
+ sentences = [
1311
+ 'Can you explain how the `query_similar_docs` function handles document reranking?',
1312
+ 'ry_similar_docs(\n\nquestion: str,\n\nurl_ending: str,use_reranking: bool = False,\n\nreturned_sample_size: int = 5,\n\n) -> Tuple[str, str, List[str]]:\n\n"""Query similar documents for a given question and URL ending."""\n\nembedded_question = get_embeddings(question)\n\ndb_conn = get_db_conn()\n\nnum_docs = 20 if use_reranking else returned_sample_size\n\n# get (content, url) tuples for the top n similar documents\n\ntop_similar_docs = get_topn_similar_docs(\n\nembedded_question, db_conn, n=num_docs, include_metadata=True\n\nif use_reranking:\n\nreranked_docs_and_urls = rerank_documents(question, top_similar_docs)[\n\n:returned_sample_size\n\nurls = [doc[1] for doc in reranked_docs_and_urls]\n\nelse:\n\nurls = [doc[1] for doc in top_similar_docs] # Unpacking URLs\n\nreturn (question, url_ending, urls)\n\nWe get the embeddings for the question being passed into the function and connect to our PostgreSQL database. If we\'re using reranking, we get the top 20 documents similar to our query and rerank them using the rerank_documents helper function. We then extract the URLs from the reranked documents and return them. Note that we only return 5 URLs, but in the case of reranking we get a larger number of documents and URLs back from the database to pass to our reranker, but in the end we always choose the top five reranked documents to return.\n\nNow that we\'ve added reranking to our pipeline, we can evaluate the performance of our reranker and see how it affects the quality of the retrieved documents.\n\nCode Example\n\nTo explore the full code, visit the Complete Guide repository and for this section, particularly the eval_retrieval.py file.\n\nPreviousUnderstanding reranking\n\nNextEvaluating reranking performance\n\nLast updated 15 days ago',
1313
+ " use for the database connection.\ndatabase_ssl_ca:# The path to the client SSL certificate to use for the database connection.\ndatabase_ssl_cert:\n\n# The path to the client SSL key to use for the database connection.\ndatabase_ssl_key:\n\n# Whether to verify the database server SSL certificate.\ndatabase_ssl_verify_server_cert:\n\nRun the deploy command and pass the config file above to it.Copyzenml deploy --config=/PATH/TO/FILENote To be able to run the deploy command, you should have your cloud provider's CLI configured locally with permissions to create resources like MySQL databases and networks.\n\nConfiguration file templates\n\nBase configuration file\n\nBelow is the general structure of a config file. Use this as a base and then add any cloud-specific parameters from the sections below.\n\n# Name of the server deployment.\n\nname:\n\n# The server provider type, one of aws, gcp or azure.\n\nprovider:\n\n# The path to the kubectl config file to use for deployment.\n\nkubectl_config_path:\n\n# The Kubernetes namespace to deploy the ZenML server to.\n\nnamespace: zenmlserver\n\n# The path to the ZenML server helm chart to use for deployment.\n\nhelm_chart:\n\n# The repository and tag to use for the ZenML server Docker image.\n\nzenmlserver_image_repo: zenmldocker/zenml\n\nzenmlserver_image_tag: latest\n\n# Whether to deploy an nginx ingress controller as part of the deployment.\n\ncreate_ingress_controller: true\n\n# Whether to use TLS for the ingress.\n\ningress_tls: true\n\n# Whether to generate self-signed TLS certificates for the ingress.\n\ningress_tls_generate_certs: true\n\n# The name of the Kubernetes secret to use for the ingress.\n\ningress_tls_secret_name: zenml-tls-certs\n\n# The ingress controller's IP address. The ZenML server will be exposed on a subdomain of this IP. For AWS, if you have a hostname instead, use the following command to get the IP address: `dig +short <hostname>`.\n\ningress_controller_ip:\n\n# Whether to create a SQL database service as part of the recipe.\n\ndeploy_db: true\n\n# The username and password for the database.",
1314
+ ]
1315
+ embeddings = model.encode(sentences)
1316
+ print(embeddings.shape)
1317
+ # [3, 384]
1318
+
1319
+ # Get the similarity scores for the embeddings
1320
+ similarities = model.similarity(embeddings, embeddings)
1321
+ print(similarities.shape)
1322
+ # [3, 3]
1323
+ ```
1324
+
1325
+ <!--
1326
+ ### Direct Usage (Transformers)
1327
+
1328
+ <details><summary>Click to see the direct usage in Transformers</summary>
1329
+
1330
+ </details>
1331
+ -->
1332
+
1333
+ <!--
1334
+ ### Downstream Usage (Sentence Transformers)
1335
+
1336
+ You can finetune this model on your own dataset.
1337
+
1338
+ <details><summary>Click to expand</summary>
1339
+
1340
+ </details>
1341
+ -->
1342
+
1343
+ <!--
1344
+ ### Out-of-Scope Use
1345
+
1346
+ *List how the model may foreseeably be misused and address what users ought not to do with the model.*
1347
+ -->
1348
+
1349
+ ## Evaluation
1350
+
1351
+ ### Metrics
1352
+
1353
+ #### Information Retrieval
1354
+ * Dataset: `dim_384`
1355
+ * Evaluated with [<code>InformationRetrievalEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.InformationRetrievalEvaluator)
1356
+
1357
+ | Metric | Value |
1358
+ |:--------------------|:-----------|
1359
+ | cosine_accuracy@1 | 0.3012 |
1360
+ | cosine_accuracy@3 | 0.5422 |
1361
+ | cosine_accuracy@5 | 0.6747 |
1362
+ | cosine_accuracy@10 | 0.741 |
1363
+ | cosine_precision@1 | 0.3012 |
1364
+ | cosine_precision@3 | 0.1807 |
1365
+ | cosine_precision@5 | 0.1349 |
1366
+ | cosine_precision@10 | 0.0741 |
1367
+ | cosine_recall@1 | 0.3012 |
1368
+ | cosine_recall@3 | 0.5422 |
1369
+ | cosine_recall@5 | 0.6747 |
1370
+ | cosine_recall@10 | 0.741 |
1371
+ | cosine_ndcg@10 | 0.5192 |
1372
+ | cosine_mrr@10 | 0.4479 |
1373
+ | **cosine_map@100** | **0.4579** |
1374
+
1375
+ #### Information Retrieval
1376
+ * Dataset: `dim_256`
1377
+ * Evaluated with [<code>InformationRetrievalEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.InformationRetrievalEvaluator)
1378
+
1379
+ | Metric | Value |
1380
+ |:--------------------|:-----------|
1381
+ | cosine_accuracy@1 | 0.2952 |
1382
+ | cosine_accuracy@3 | 0.5301 |
1383
+ | cosine_accuracy@5 | 0.6325 |
1384
+ | cosine_accuracy@10 | 0.7349 |
1385
+ | cosine_precision@1 | 0.2952 |
1386
+ | cosine_precision@3 | 0.1767 |
1387
+ | cosine_precision@5 | 0.1265 |
1388
+ | cosine_precision@10 | 0.0735 |
1389
+ | cosine_recall@1 | 0.2952 |
1390
+ | cosine_recall@3 | 0.5301 |
1391
+ | cosine_recall@5 | 0.6325 |
1392
+ | cosine_recall@10 | 0.7349 |
1393
+ | cosine_ndcg@10 | 0.5119 |
1394
+ | cosine_mrr@10 | 0.441 |
1395
+ | **cosine_map@100** | **0.4503** |
1396
+
1397
+ #### Information Retrieval
1398
+ * Dataset: `dim_128`
1399
+ * Evaluated with [<code>InformationRetrievalEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.InformationRetrievalEvaluator)
1400
+
1401
+ | Metric | Value |
1402
+ |:--------------------|:-----------|
1403
+ | cosine_accuracy@1 | 0.2711 |
1404
+ | cosine_accuracy@3 | 0.512 |
1405
+ | cosine_accuracy@5 | 0.6145 |
1406
+ | cosine_accuracy@10 | 0.6988 |
1407
+ | cosine_precision@1 | 0.2711 |
1408
+ | cosine_precision@3 | 0.1707 |
1409
+ | cosine_precision@5 | 0.1229 |
1410
+ | cosine_precision@10 | 0.0699 |
1411
+ | cosine_recall@1 | 0.2711 |
1412
+ | cosine_recall@3 | 0.512 |
1413
+ | cosine_recall@5 | 0.6145 |
1414
+ | cosine_recall@10 | 0.6988 |
1415
+ | cosine_ndcg@10 | 0.4884 |
1416
+ | cosine_mrr@10 | 0.4208 |
1417
+ | **cosine_map@100** | **0.4308** |
1418
+
1419
+ #### Information Retrieval
1420
+ * Dataset: `dim_64`
1421
+ * Evaluated with [<code>InformationRetrievalEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.InformationRetrievalEvaluator)
1422
+
1423
+ | Metric | Value |
1424
+ |:--------------------|:-----------|
1425
+ | cosine_accuracy@1 | 0.253 |
1426
+ | cosine_accuracy@3 | 0.4578 |
1427
+ | cosine_accuracy@5 | 0.5542 |
1428
+ | cosine_accuracy@10 | 0.6566 |
1429
+ | cosine_precision@1 | 0.253 |
1430
+ | cosine_precision@3 | 0.1526 |
1431
+ | cosine_precision@5 | 0.1108 |
1432
+ | cosine_precision@10 | 0.0657 |
1433
+ | cosine_recall@1 | 0.253 |
1434
+ | cosine_recall@3 | 0.4578 |
1435
+ | cosine_recall@5 | 0.5542 |
1436
+ | cosine_recall@10 | 0.6566 |
1437
+ | cosine_ndcg@10 | 0.4466 |
1438
+ | cosine_mrr@10 | 0.3805 |
1439
+ | **cosine_map@100** | **0.3906** |
1440
+
1441
+ <!--
1442
+ ## Bias, Risks and Limitations
1443
+
1444
+ *What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.*
1445
+ -->
1446
+
1447
+ <!--
1448
+ ### Recommendations
1449
+
1450
+ *What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.*
1451
+ -->
1452
+
1453
+ ## Training Details
1454
+
1455
+ ### Training Dataset
1456
+
1457
+ #### Unnamed Dataset
1458
+
1459
+
1460
+ * Size: 1,490 training samples
1461
+ * Columns: <code>positive</code> and <code>anchor</code>
1462
+ * Approximate statistics based on the first 1000 samples:
1463
+ | | positive | anchor |
1464
+ |:--------|:----------------------------------------------------------------------------------|:-------------------------------------------------------------------------------------|
1465
+ | type | string | string |
1466
+ | details | <ul><li>min: 9 tokens</li><li>mean: 21.12 tokens</li><li>max: 49 tokens</li></ul> | <ul><li>min: 21 tokens</li><li>mean: 240.72 tokens</li><li>max: 256 tokens</li></ul> |
1467
+ * Samples:
1468
+ | positive | anchor |
1469
+ |:---------------------------------------------------------------------------------------------------------------------------|:------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
1470
+ | <code>Can you provide the details for the Azure service principal with the ID 273d2812-2643-4446-82e6-6098b8ccdaa4?</code> | <code> ┃┠──────────────────┼────────────────────────────────────────────────────────────────────────────────┨<br><br>┃ ID β”‚ 273d2812-2643-4446-82e6-6098b8ccdaa4 ┃<br><br>┠──────────────────┼────────────────────────────────────────────────────────────────────────────────┨<br><br>┃ NAME β”‚ azure-service-principal ┃<br><br>┠──────────────────┼────────────────────────────────────────────────────────────────────────────────┨<br><br>┃ TYPE β”‚ πŸ‡¦ azure ┃<br><br>┠──────────────────┼────────────────────────────────────────────────────────────────────────────────┨<br><br>┃ AUTH METHOD β”‚ service-principal ┃<br><br>┠──────────────────┼────────────────────────────────────────────────────────────────────────────────┨<br><br>┃ RESOURCE TYPES β”‚ πŸ‡¦ azure-generic, πŸ“¦ blob-container, πŸŒ€ kubernetes-cluster, 🐳 docker-registry ┃<br><br>┠──────────────────┼──────────────────────────────────────────────────��─────────────────────────────┨<br><br>┃ RESOURCE NAME β”‚ <multiple> ┃<br><br>┠──────────────────┼────────────────────────────────────────────────────────────────────────────────┨<br><br>┃ SECRET ID β”‚ 50d9f230-c4ea-400e-b2d7-6b52ba2a6f90 ┃<br><br>┠──────────────────┼────────────────────────────────────────────────────────────────────────────────┨<br><br>┃ SESSION DURATION β”‚ N/A ┃<br><br>┠──────────────────┼────────────────────────────────────────────────────────────────────────────────┨<br><br>┃ EXPIRES IN β”‚ N/A ┃<br><br>┠──────────────────┼────────────────────────────────────────────────────────────────────────────────┨</code> |
1471
+ | <code>What are the new features introduced in ZenML 0.20.0 regarding the Metadata Store?</code> | <code>ed to update the way they are registered in ZenML.the updated ZenML server provides a new and improved collaborative experience. When connected to a ZenML server, you can now share your ZenML Stacks and Stack Components with other users. If you were previously using the ZenML Profiles or the ZenML server to share your ZenML Stacks, you should switch to the new ZenML server and Dashboard and update your existing workflows to reflect the new features.<br><br>ZenML takes over the Metadata Store role<br><br>ZenML can now run as a server that can be accessed via a REST API and also comes with a visual user interface (called the ZenML Dashboard). This server can be deployed in arbitrary environments (local, on-prem, via Docker, on AWS, GCP, Azure etc.) and supports user management, workspace scoping, and more.<br><br>The release introduces a series of commands to facilitate managing the lifecycle of the ZenML server and to access the pipeline and pipeline run information:<br><br>zenml connect / disconnect / down / up / logs / status can be used to configure your client to connect to a ZenML server, to start a local ZenML Dashboard or to deploy a ZenML server to a cloud environment. For more information on how to use these commands, see the ZenML deployment documentation.<br><br>zenml pipeline list / runs / delete can be used to display information and about and manage your pipelines and pipeline runs.<br><br>In ZenML 0.13.2 and earlier versions, information about pipelines and pipeline runs used to be stored in a separate stack component called the Metadata Store. Starting with 0.20.0, the role of the Metadata Store is now taken over by ZenML itself. This means that the Metadata Store is no longer a separate component in the ZenML architecture, but rather a part of the ZenML core, located wherever ZenML is deployed: locally on your machine or running remotely as a server.</code> |
1472
+ | <code>Which environment variables should I set to use the Azure Service Connector authentication method in ZenML?</code> | <code>-client-id","client_secret": "my-client-secret"}).Note: The remaining configuration options are deprecated and may be removed in a future release. Instead, you should set the ZENML_SECRETS_STORE_AUTH_METHOD and ZENML_SECRETS_STORE_AUTH_CONFIG variables to use the Azure Service Connector authentication method.<br><br>ZENML_SECRETS_STORE_AZURE_CLIENT_ID: The Azure application service principal client ID to use to authenticate with the Azure Key Vault API. If you are running the ZenML server hosted in Azure and are using a managed identity to access the Azure Key Vault service, you can omit this variable.<br><br>ZENML_SECRETS_STORE_AZURE_CLIENT_SECRET: The Azure application service principal client secret to use to authenticate with the Azure Key Vault API. If you are running the ZenML server hosted in Azure and are using a managed identity to access the Azure Key Vault service, you can omit this variable.<br><br>ZENML_SECRETS_STORE_AZURE_TENANT_ID: The Azure application service principal tenant ID to use to authenticate with the Azure Key Vault API. If you are running the ZenML server hosted in Azure and are using a managed identity to access the Azure Key Vault service, you can omit this variable.<br><br>These configuration options are only relevant if you're using Hashicorp Vault as the secrets store backend.<br><br>ZENML_SECRETS_STORE_TYPE: Set this to hashicorp in order to set this type of secret store.<br><br>ZENML_SECRETS_STORE_VAULT_ADDR: The URL of the HashiCorp Vault server to connect to. NOTE: this is the same as setting the VAULT_ADDR environment variable.<br><br>ZENML_SECRETS_STORE_VAULT_TOKEN: The token to use to authenticate with the HashiCorp Vault server. NOTE: this is the same as setting the VAULT_TOKEN environment variable.<br><br>ZENML_SECRETS_STORE_VAULT_NAMESPACE: The Vault Enterprise namespace. Not required for Vault OSS. NOTE: this is the same as setting the VAULT_NAMESPACE environment variable.</code> |
1473
+ * Loss: [<code>MatryoshkaLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#matryoshkaloss) with these parameters:
1474
+ ```json
1475
+ {
1476
+ "loss": "MultipleNegativesRankingLoss",
1477
+ "matryoshka_dims": [
1478
+ 384,
1479
+ 256,
1480
+ 128,
1481
+ 64
1482
+ ],
1483
+ "matryoshka_weights": [
1484
+ 1,
1485
+ 1,
1486
+ 1,
1487
+ 1
1488
+ ],
1489
+ "n_dims_per_step": -1
1490
+ }
1491
+ ```
1492
+
1493
+ ### Training Hyperparameters
1494
+ #### Non-Default Hyperparameters
1495
+
1496
+ - `eval_strategy`: epoch
1497
+ - `per_device_train_batch_size`: 32
1498
+ - `per_device_eval_batch_size`: 16
1499
+ - `gradient_accumulation_steps`: 16
1500
+ - `learning_rate`: 2e-05
1501
+ - `num_train_epochs`: 4
1502
+ - `lr_scheduler_type`: cosine
1503
+ - `warmup_ratio`: 0.1
1504
+ - `bf16`: True
1505
+ - `tf32`: True
1506
+ - `load_best_model_at_end`: True
1507
+ - `optim`: adamw_torch_fused
1508
+ - `batch_sampler`: no_duplicates
1509
+
1510
+ #### All Hyperparameters
1511
+ <details><summary>Click to expand</summary>
1512
+
1513
+ - `overwrite_output_dir`: False
1514
+ - `do_predict`: False
1515
+ - `eval_strategy`: epoch
1516
+ - `prediction_loss_only`: True
1517
+ - `per_device_train_batch_size`: 32
1518
+ - `per_device_eval_batch_size`: 16
1519
+ - `per_gpu_train_batch_size`: None
1520
+ - `per_gpu_eval_batch_size`: None
1521
+ - `gradient_accumulation_steps`: 16
1522
+ - `eval_accumulation_steps`: None
1523
+ - `learning_rate`: 2e-05
1524
+ - `weight_decay`: 0.0
1525
+ - `adam_beta1`: 0.9
1526
+ - `adam_beta2`: 0.999
1527
+ - `adam_epsilon`: 1e-08
1528
+ - `max_grad_norm`: 1.0
1529
+ - `num_train_epochs`: 4
1530
+ - `max_steps`: -1
1531
+ - `lr_scheduler_type`: cosine
1532
+ - `lr_scheduler_kwargs`: {}
1533
+ - `warmup_ratio`: 0.1
1534
+ - `warmup_steps`: 0
1535
+ - `log_level`: passive
1536
+ - `log_level_replica`: warning
1537
+ - `log_on_each_node`: True
1538
+ - `logging_nan_inf_filter`: True
1539
+ - `save_safetensors`: True
1540
+ - `save_on_each_node`: False
1541
+ - `save_only_model`: False
1542
+ - `restore_callback_states_from_checkpoint`: False
1543
+ - `no_cuda`: False
1544
+ - `use_cpu`: False
1545
+ - `use_mps_device`: False
1546
+ - `seed`: 42
1547
+ - `data_seed`: None
1548
+ - `jit_mode_eval`: False
1549
+ - `use_ipex`: False
1550
+ - `bf16`: True
1551
+ - `fp16`: False
1552
+ - `fp16_opt_level`: O1
1553
+ - `half_precision_backend`: auto
1554
+ - `bf16_full_eval`: False
1555
+ - `fp16_full_eval`: False
1556
+ - `tf32`: True
1557
+ - `local_rank`: 0
1558
+ - `ddp_backend`: None
1559
+ - `tpu_num_cores`: None
1560
+ - `tpu_metrics_debug`: False
1561
+ - `debug`: []
1562
+ - `dataloader_drop_last`: False
1563
+ - `dataloader_num_workers`: 0
1564
+ - `dataloader_prefetch_factor`: None
1565
+ - `past_index`: -1
1566
+ - `disable_tqdm`: True
1567
+ - `remove_unused_columns`: True
1568
+ - `label_names`: None
1569
+ - `load_best_model_at_end`: True
1570
+ - `ignore_data_skip`: False
1571
+ - `fsdp`: []
1572
+ - `fsdp_min_num_params`: 0
1573
+ - `fsdp_config`: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}
1574
+ - `fsdp_transformer_layer_cls_to_wrap`: None
1575
+ - `accelerator_config`: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}
1576
+ - `deepspeed`: None
1577
+ - `label_smoothing_factor`: 0.0
1578
+ - `optim`: adamw_torch_fused
1579
+ - `optim_args`: None
1580
+ - `adafactor`: False
1581
+ - `group_by_length`: False
1582
+ - `length_column_name`: length
1583
+ - `ddp_find_unused_parameters`: None
1584
+ - `ddp_bucket_cap_mb`: None
1585
+ - `ddp_broadcast_buffers`: False
1586
+ - `dataloader_pin_memory`: True
1587
+ - `dataloader_persistent_workers`: False
1588
+ - `skip_memory_metrics`: True
1589
+ - `use_legacy_prediction_loop`: False
1590
+ - `push_to_hub`: False
1591
+ - `resume_from_checkpoint`: None
1592
+ - `hub_model_id`: None
1593
+ - `hub_strategy`: every_save
1594
+ - `hub_private_repo`: False
1595
+ - `hub_always_push`: False
1596
+ - `gradient_checkpointing`: False
1597
+ - `gradient_checkpointing_kwargs`: None
1598
+ - `include_inputs_for_metrics`: False
1599
+ - `eval_do_concat_batches`: True
1600
+ - `fp16_backend`: auto
1601
+ - `push_to_hub_model_id`: None
1602
+ - `push_to_hub_organization`: None
1603
+ - `mp_parameters`:
1604
+ - `auto_find_batch_size`: False
1605
+ - `full_determinism`: False
1606
+ - `torchdynamo`: None
1607
+ - `ray_scope`: last
1608
+ - `ddp_timeout`: 1800
1609
+ - `torch_compile`: False
1610
+ - `torch_compile_backend`: None
1611
+ - `torch_compile_mode`: None
1612
+ - `dispatch_batches`: None
1613
+ - `split_batches`: None
1614
+ - `include_tokens_per_second`: False
1615
+ - `include_num_input_tokens_seen`: False
1616
+ - `neftune_noise_alpha`: None
1617
+ - `optim_target_modules`: None
1618
+ - `batch_eval_metrics`: False
1619
+ - `batch_sampler`: no_duplicates
1620
+ - `multi_dataset_batch_sampler`: proportional
1621
+
1622
+ </details>
1623
+
1624
+ ### Training Logs
1625
+ | Epoch | Step | dim_128_cosine_map@100 | dim_256_cosine_map@100 | dim_384_cosine_map@100 | dim_64_cosine_map@100 |
1626
+ |:----------:|:-----:|:----------------------:|:----------------------:|:----------------------:|:---------------------:|
1627
+ | 0.6667 | 1 | 0.3800 | 0.3986 | 0.4149 | 0.3471 |
1628
+ | 2.0 | 3 | 0.4194 | 0.4473 | 0.4557 | 0.3762 |
1629
+ | **2.6667** | **4** | **0.4308** | **0.4503** | **0.4579** | **0.3906** |
1630
+
1631
+ * The bold row denotes the saved checkpoint.
1632
+
1633
+ ### Framework Versions
1634
+ - Python: 3.10.14
1635
+ - Sentence Transformers: 3.0.1
1636
+ - Transformers: 4.41.2
1637
+ - PyTorch: 2.3.1+cu121
1638
+ - Accelerate: 0.31.0
1639
+ - Datasets: 2.19.1
1640
+ - Tokenizers: 0.19.1
1641
+
1642
+ ## Citation
1643
+
1644
+ ### BibTeX
1645
+
1646
+ #### Sentence Transformers
1647
+ ```bibtex
1648
+ @inproceedings{reimers-2019-sentence-bert,
1649
+ title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
1650
+ author = "Reimers, Nils and Gurevych, Iryna",
1651
+ booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
1652
+ month = "11",
1653
+ year = "2019",
1654
+ publisher = "Association for Computational Linguistics",
1655
+ url = "https://arxiv.org/abs/1908.10084",
1656
+ }
1657
+ ```
1658
+
1659
+ #### MatryoshkaLoss
1660
+ ```bibtex
1661
+ @misc{kusupati2024matryoshka,
1662
+ title={Matryoshka Representation Learning},
1663
+ author={Aditya Kusupati and Gantavya Bhatt and Aniket Rege and Matthew Wallingford and Aditya Sinha and Vivek Ramanujan and William Howard-Snyder and Kaifeng Chen and Sham Kakade and Prateek Jain and Ali Farhadi},
1664
+ year={2024},
1665
+ eprint={2205.13147},
1666
+ archivePrefix={arXiv},
1667
+ primaryClass={cs.LG}
1668
+ }
1669
+ ```
1670
+
1671
+ #### MultipleNegativesRankingLoss
1672
+ ```bibtex
1673
+ @misc{henderson2017efficient,
1674
+ title={Efficient Natural Language Response Suggestion for Smart Reply},
1675
+ author={Matthew Henderson and Rami Al-Rfou and Brian Strope and Yun-hsuan Sung and Laszlo Lukacs and Ruiqi Guo and Sanjiv Kumar and Balint Miklos and Ray Kurzweil},
1676
+ year={2017},
1677
+ eprint={1705.00652},
1678
+ archivePrefix={arXiv},
1679
+ primaryClass={cs.CL}
1680
+ }
1681
+ ```
1682
+
1683
+ <!--
1684
+ ## Glossary
1685
+
1686
+ *Clearly define terms in order to be accessible across audiences.*
1687
+ -->
1688
+
1689
+ <!--
1690
+ ## Model Card Authors
1691
+
1692
+ *Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.*
1693
+ -->
1694
+
1695
+ <!--
1696
+ ## Model Card Contact
1697
+
1698
+ *Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.*
1699
+ -->
config.json ADDED
@@ -0,0 +1,26 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "_name_or_path": "sentence-transformers/all-MiniLM-L6-v2",
3
+ "architectures": [
4
+ "BertModel"
5
+ ],
6
+ "attention_probs_dropout_prob": 0.1,
7
+ "classifier_dropout": null,
8
+ "gradient_checkpointing": false,
9
+ "hidden_act": "gelu",
10
+ "hidden_dropout_prob": 0.1,
11
+ "hidden_size": 384,
12
+ "initializer_range": 0.02,
13
+ "intermediate_size": 1536,
14
+ "layer_norm_eps": 1e-12,
15
+ "max_position_embeddings": 512,
16
+ "model_type": "bert",
17
+ "num_attention_heads": 12,
18
+ "num_hidden_layers": 6,
19
+ "pad_token_id": 0,
20
+ "position_embedding_type": "absolute",
21
+ "torch_dtype": "float32",
22
+ "transformers_version": "4.41.2",
23
+ "type_vocab_size": 2,
24
+ "use_cache": true,
25
+ "vocab_size": 30522
26
+ }
config_sentence_transformers.json ADDED
@@ -0,0 +1,10 @@
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "__version__": {
3
+ "sentence_transformers": "3.0.1",
4
+ "transformers": "4.41.2",
5
+ "pytorch": "2.3.1+cu121"
6
+ },
7
+ "prompts": {},
8
+ "default_prompt_name": null,
9
+ "similarity_fn_name": null
10
+ }
model.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:2b69360420ddd14d5b25012577ac8378d38c238784d20d6fda18cf2d1756bb3d
3
+ size 90864192
modules.json ADDED
@@ -0,0 +1,20 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ [
2
+ {
3
+ "idx": 0,
4
+ "name": "0",
5
+ "path": "",
6
+ "type": "sentence_transformers.models.Transformer"
7
+ },
8
+ {
9
+ "idx": 1,
10
+ "name": "1",
11
+ "path": "1_Pooling",
12
+ "type": "sentence_transformers.models.Pooling"
13
+ },
14
+ {
15
+ "idx": 2,
16
+ "name": "2",
17
+ "path": "2_Normalize",
18
+ "type": "sentence_transformers.models.Normalize"
19
+ }
20
+ ]
sentence_bert_config.json ADDED
@@ -0,0 +1,4 @@
 
 
 
 
 
1
+ {
2
+ "max_seq_length": 256,
3
+ "do_lower_case": false
4
+ }
special_tokens_map.json ADDED
@@ -0,0 +1,37 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "cls_token": {
3
+ "content": "[CLS]",
4
+ "lstrip": false,
5
+ "normalized": false,
6
+ "rstrip": false,
7
+ "single_word": false
8
+ },
9
+ "mask_token": {
10
+ "content": "[MASK]",
11
+ "lstrip": false,
12
+ "normalized": false,
13
+ "rstrip": false,
14
+ "single_word": false
15
+ },
16
+ "pad_token": {
17
+ "content": "[PAD]",
18
+ "lstrip": false,
19
+ "normalized": false,
20
+ "rstrip": false,
21
+ "single_word": false
22
+ },
23
+ "sep_token": {
24
+ "content": "[SEP]",
25
+ "lstrip": false,
26
+ "normalized": false,
27
+ "rstrip": false,
28
+ "single_word": false
29
+ },
30
+ "unk_token": {
31
+ "content": "[UNK]",
32
+ "lstrip": false,
33
+ "normalized": false,
34
+ "rstrip": false,
35
+ "single_word": false
36
+ }
37
+ }
tokenizer.json ADDED
The diff for this file is too large to render. See raw diff
 
tokenizer_config.json ADDED
@@ -0,0 +1,64 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "added_tokens_decoder": {
3
+ "0": {
4
+ "content": "[PAD]",
5
+ "lstrip": false,
6
+ "normalized": false,
7
+ "rstrip": false,
8
+ "single_word": false,
9
+ "special": true
10
+ },
11
+ "100": {
12
+ "content": "[UNK]",
13
+ "lstrip": false,
14
+ "normalized": false,
15
+ "rstrip": false,
16
+ "single_word": false,
17
+ "special": true
18
+ },
19
+ "101": {
20
+ "content": "[CLS]",
21
+ "lstrip": false,
22
+ "normalized": false,
23
+ "rstrip": false,
24
+ "single_word": false,
25
+ "special": true
26
+ },
27
+ "102": {
28
+ "content": "[SEP]",
29
+ "lstrip": false,
30
+ "normalized": false,
31
+ "rstrip": false,
32
+ "single_word": false,
33
+ "special": true
34
+ },
35
+ "103": {
36
+ "content": "[MASK]",
37
+ "lstrip": false,
38
+ "normalized": false,
39
+ "rstrip": false,
40
+ "single_word": false,
41
+ "special": true
42
+ }
43
+ },
44
+ "clean_up_tokenization_spaces": true,
45
+ "cls_token": "[CLS]",
46
+ "do_basic_tokenize": true,
47
+ "do_lower_case": true,
48
+ "mask_token": "[MASK]",
49
+ "max_length": 128,
50
+ "model_max_length": 256,
51
+ "never_split": null,
52
+ "pad_to_multiple_of": null,
53
+ "pad_token": "[PAD]",
54
+ "pad_token_type_id": 0,
55
+ "padding_side": "right",
56
+ "sep_token": "[SEP]",
57
+ "stride": 0,
58
+ "strip_accents": null,
59
+ "tokenize_chinese_chars": true,
60
+ "tokenizer_class": "BertTokenizer",
61
+ "truncation_side": "right",
62
+ "truncation_strategy": "longest_first",
63
+ "unk_token": "[UNK]"
64
+ }
vocab.txt ADDED
The diff for this file is too large to render. See raw diff