strangetcy commited on
Commit
a95d31b
·
1 Parent(s): 22de5ad

This is a simple PPO agent trained and evaluated for a free DRL course

Browse files
.gitattributes CHANGED
@@ -25,3 +25,4 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
25
  *.zip filter=lfs diff=lfs merge=lfs -text
26
  *.zstandard filter=lfs diff=lfs merge=lfs -text
27
  *tfevents* filter=lfs diff=lfs merge=lfs -text
 
 
25
  *.zip filter=lfs diff=lfs merge=lfs -text
26
  *.zstandard filter=lfs diff=lfs merge=lfs -text
27
  *tfevents* filter=lfs diff=lfs merge=lfs -text
28
+ *.mp4 filter=lfs diff=lfs merge=lfs -text
README.md ADDED
@@ -0,0 +1,28 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ library_name: stable-baselines3
3
+ tags:
4
+ - LunarLander-v2
5
+ - deep-reinforcement-learning
6
+ - reinforcement-learning
7
+ - stable-baselines3
8
+ model-index:
9
+ - name: PPO
10
+ results:
11
+ - metrics:
12
+ - type: mean_reward
13
+ value: 264.12 +/- 20.46
14
+ name: mean_reward
15
+ task:
16
+ type: reinforcement-learning
17
+ name: reinforcement-learning
18
+ dataset:
19
+ name: LunarLander-v2
20
+ type: LunarLander-v2
21
+ ---
22
+
23
+ # **PPO** Agent playing **LunarLander-v2**
24
+ This is a trained model of a **PPO** agent playing **LunarLander-v2** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
25
+
26
+ ## Usage (with Stable-baselines3)
27
+ TODO: Add your code
28
+
config.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param sde_net_arch: Network architecture for extracting features\n when using gSDE. If None, the latent features from the policy will be used.\n Pass an empty list to use the states as features.\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7f1793b27dd0>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f1793b27e60>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f1793b27ef0>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f1793b27f80>", "_build": "<function ActorCriticPolicy._build at 0x7f1793b2e050>", "forward": "<function ActorCriticPolicy.forward at 0x7f1793b2e0e0>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f1793b2e170>", "_predict": "<function ActorCriticPolicy._predict at 0x7f1793b2e200>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f1793b2e290>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f1793b2e320>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7f1793b2e3b0>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc_data object at 0x7f1793b7b570>"}, "verbose": 1, "policy_kwargs": {}, "observation_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAf5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAAAAAAAAAAAlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu", "dtype": "float32", "_shape": [8], "low": "[-inf -inf -inf -inf -inf -inf -inf -inf]", "high": "[inf inf inf inf inf inf inf inf]", "bounded_below": "[False False False False False False False False]", "bounded_above": "[False False False False False False False False]", "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.discrete.Discrete'>", ":serialized:": "gAWVggAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu", "n": 4, "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 16, "num_timesteps": 1015808, "_total_timesteps": 1000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1652358661.4864929, "learning_rate": 0.0003, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVvwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAUsBSxNDBIgAUwCUToWUKYwBX5SFlIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5RLgEMCAAGUjAN2YWyUhZQpdJRSlH2UKIwLX19wYWNrYWdlX1+UjBhzdGFibGVfYmFzZWxpbmVzMy5jb21tb26UjAhfX25hbWVfX5SMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi51dGlsc5SMCF9fZmlsZV9flIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaCB9lH2UKGgXaA6MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgYjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAI20t7068Lo/9uKrvrtSXL7xk6O9Fn5RvgAAAAAAAAAAE2lLPsDFXz+th8k8VPihvgMY+T2eYfq9AAAAAAAAAACaGVi9rJ7gPLbGyjzBaVW+rx6wvCUvsD0AAAAAAAAAAA0Vy71X+nU/nMMNvjp4or62FaO94QEYvQAAAAAAAAAAsqyTvqM7Nz+25/C8hvGLvtMzHr4/Da49AAAAAAAAAABNSbc9XLsRuiiuVbzUjoy5kjqIO+I5ATkAAIA/AACAP81irbxceCG8DoiuO3IFg722dBU7ewfpOwAAgD8AAIA/sxdOvcg5mD3rwcY9gvZXvjDz77ylw0C9AAAAAAAAAADNILW9H0X3ubbbvzzkbhO1JZwqO3aLBbQAAIA/AACAP80EyLspKBm6wCQSuA/8mLK3Z8Q6/NYnNwAAgD8AAIA/zZxVvRQEgrqIoEg58243NODJiLpDP2q4AACAPwAAgD+zu/K9Z9UqP0pyMb0Um62+CquSvdah8rwAAAAAAAAAAACJYL3DQTa60oMVOyEfcrn7faM6IggkugAAgD8AAIA/M9IOPpzPeD64MX++SfaUvjTEIr2mQXC8AAAAAAAAAACaBlC9XLMrug7KmjnrG7k0cvh1Okc2trgAAIA/AACAP01pAT4fy7o6kk8nvuO+Rb4NuTu8wkN5vAAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.015808000000000044, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVgBAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIpkI8Em/SckCUhpRSlIwBbJRNXwGMAXSUR0CPMqYKIBRydX2UKGgGaAloD0MIVd0jm6ubcECUhpRSlGgVTUYCaBZHQI8+Itz0Yj11fZQoaAZoCWgPQwiV1XQ90ZlxQJSGlFKUaBVL+mgWR0CPQOj9n9NvdX2UKGgGaAloD0MI/wkuVlSdckCUhpRSlGgVTeABaBZHQI9A64UeuFJ1fZQoaAZoCWgPQwgPYfw0rs9xQJSGlFKUaBVNQgJoFkdAj0IJ5NXYDnV9lChoBmgJaA9DCOdz7nY91HBAlIaUUpRoFU2hAmgWR0CPQqcAiml7dX2UKGgGaAloD0MIEK/rF2zOckCUhpRSlGgVTawBaBZHQI9CposZpBZ1fZQoaAZoCWgPQwj0T3CxIj5vQJSGlFKUaBVNmwFoFkdAj0ToXCTEBXV9lChoBmgJaA9DCE0vMZYpX3JAlIaUUpRoFU2RAWgWR0CPRP3iaRZEdX2UKGgGaAloD0MIMiHmkqpJcECUhpRSlGgVTVEBaBZHQI9GE4aP0Zp1fZQoaAZoCWgPQwjE7GXbaZxwQJSGlFKUaBVNeQFoFkdAj0jaQvHtGHV9lChoBmgJaA9DCBU2A1wQEG9AlIaUUpRoFU2mAWgWR0CPSQrf+CK8dX2UKGgGaAloD0MI4Ep2bMSGcECUhpRSlGgVTU0BaBZHQI9JXphWo3t1fZQoaAZoCWgPQwiUbHU55a1wQJSGlFKUaBVNwAFoFkdAj0rr8iwB53V9lChoBmgJaA9DCP4ORYE+6G9AlIaUUpRoFU1pAWgWR0CPTJ003wTedX2UKGgGaAloD0MINCvbh/ywcUCUhpRSlGgVTSUBaBZHQI9SI+EAYHh1fZQoaAZoCWgPQwgeiCzSRI5wQJSGlFKUaBVNFAFoFkdAj1MMh5gPVnV9lChoBmgJaA9DCHeeeM6W725AlIaUUpRoFU0tAWgWR0CPVdYjB2wFdX2UKGgGaAloD0MI0lPkEHFrb0CUhpRSlGgVTScBaBZHQI9V8lw97nh1fZQoaAZoCWgPQwi4dTdPNepxQJSGlFKUaBVN9wFoFkdAj1ZLRSgoPXV9lChoBmgJaA9DCMPvplv2pnBAlIaUUpRoFU0LAWgWR0CPWnAE+xGEdX2UKGgGaAloD0MIcOmY84wzbkCUhpRSlGgVTUYBaBZHQI9alzdUKiR1fZQoaAZoCWgPQwhRpWYPtKZuQJSGlFKUaBVNQAFoFkdAj1tbD/EOy3V9lChoBmgJaA9DCOymlNfKKnJAlIaUUpRoFU0rAWgWR0CPgVvSc9W7dX2UKGgGaAloD0MIbagY5289bkCUhpRSlGgVTUABaBZHQI+FW3MINVl1fZQoaAZoCWgPQwjWjAxy1xhyQJSGlFKUaBVNKQNoFkdAj4pTo2XLNnV9lChoBmgJaA9DCEz9vKmIl3FAlIaUUpRoFU1qAWgWR0CPix7sOXmedX2UKGgGaAloD0MId0tywG6ScUCUhpRSlGgVTbQBaBZHQI+MeMOwxFl1fZQoaAZoCWgPQwiw4lRrYTFuQJSGlFKUaBVNNwJoFkdAj42/tpmEoXV9lChoBmgJaA9DCM8Tz9lCCXJAlIaUUpRoFU05AWgWR0CPj2riEQGwdX2UKGgGaAloD0MITIxl+iXOcECUhpRSlGgVTRoBaBZHQI+QTf+CK791fZQoaAZoCWgPQwj1geSdw3dvQJSGlFKUaBVNNAFoFkdAj5GyY5T6znV9lChoBmgJaA9DCGhcOBDS0nFAlIaUUpRoFU0nAWgWR0CPlOkZ75VPdX2UKGgGaAloD0MIigJ9Ik96b0CUhpRSlGgVTXQCaBZHQI+VeEkB0ZF1fZQoaAZoCWgPQwjU0XE1MlRwQJSGlFKUaBVNIgFoFkdAj5b63AmAsnV9lChoBmgJaA9DCKn6lc4Hl25AlIaUUpRoFU1iAWgWR0CPmeCSRr8BdX2UKGgGaAloD0MIPIOG/glacECUhpRSlGgVTbABaBZHQI+af0kGA091fZQoaAZoCWgPQwjc2OxINf9yQJSGlFKUaBVNPQFoFkdAj5ywbEP1+XV9lChoBmgJaA9DCITXLm24j2xAlIaUUpRoFU0wAmgWR0CPn8TfzjFRdX2UKGgGaAloD0MIJnLBGbzYckCUhpRSlGgVTTEBaBZHQI+gPWBjFyd1fZQoaAZoCWgPQwgN424QLe1sQJSGlFKUaBVN4gFoFkdAj6IXxe9i+nV9lChoBmgJaA9DCBE4Emjwo3FAlIaUUpRoFU1YAWgWR0CPo5jABT4tdX2UKGgGaAloD0MI9zx/2ijrbkCUhpRSlGgVTUgBaBZHQI+jlXvH93t1fZQoaAZoCWgPQwijIeNRqmluQJSGlFKUaBVNRgFoFkdAj6R6d1+y7nV9lChoBmgJaA9DCEbrqGoCXG5AlIaUUpRoFU0+AWgWR0CPpVP9DQZ5dX2UKGgGaAloD0MIeEFEalq3b0CUhpRSlGgVTVIBaBZHQI+oxGrjo6l1fZQoaAZoCWgPQwg9npYfuCRxQJSGlFKUaBVNTgFoFkdAj6xgZsKsuHV9lChoBmgJaA9DCB2rlJ5pF2RAlIaUUpRoFU3oA2gWR0CPrSdxyXD4dX2UKGgGaAloD0MI+vGXFrU5cECUhpRSlGgVTdwBaBZHQI+xs6RyOrB1fZQoaAZoCWgPQwgfEOhMml9xQJSGlFKUaBVNWwFoFkdAj7JLQHAymHV9lChoBmgJaA9DCDLohNCBE3FAlIaUUpRoFU1eAWgWR0CPsynSfDk3dX2UKGgGaAloD0MI5rFmZFB7ckCUhpRSlGgVTWQBaBZHQI+5uLiuMdd1fZQoaAZoCWgPQwiU+NwJNhFwQJSGlFKUaBVNxQFoFkdAj760DMeOn3V9lChoBmgJaA9DCFxWYTNAAXFAlIaUUpRoFU2lAWgWR0CPwHfR/mT1dX2UKGgGaAloD0MI74y2KokAb0CUhpRSlGgVTXgBaBZHQI/DYUnG8291fZQoaAZoCWgPQwgW3uUivppwQJSGlFKUaBVNrQFoFkdAj8OpaiblR3V9lChoBmgJaA9DCCQqVDfXL3JAlIaUUpRoFU2NAWgWR0CPw/l5GBnSdX2UKGgGaAloD0MIlQ9B1ejBbkCUhpRSlGgVTbcBaBZHQI/GHLxI8Qt1fZQoaAZoCWgPQwhJL2r3a+VwQJSGlFKUaBVNSwFoFkdAj8fjmCAc1nV9lChoBmgJaA9DCHCVJxB2RW5AlIaUUpRoFU2rAmgWR0CPyKgmqo60dX2UKGgGaAloD0MI2nOZmoSsb0CUhpRSlGgVTQ4BaBZHQI/I7Ikqto11fZQoaAZoCWgPQwhh/3VuWvdxQJSGlFKUaBVNEgJoFkdAj/EyYPXkHXV9lChoBmgJaA9DCGkbf6JyFXBAlIaUUpRoFU0DAWgWR0CP85qAz544dX2UKGgGaAloD0MIcAuW6kLVcECUhpRSlGgVTe0BaBZHQI/0wPPLPld1fZQoaAZoCWgPQwg5JSAmoT5wQJSGlFKUaBVNgAFoFkdAj/VOtW+49XV9lChoBmgJaA9DCFeXUwKiRXJAlIaUUpRoFU0uAWgWR0CP+qt8NQTFdX2UKGgGaAloD0MIgeofRLI3cUCUhpRSlGgVTbkBaBZHQI/65yQxN7B1fZQoaAZoCWgPQwh2wktwqvJxQJSGlFKUaBVNUAJoFkdAkACJTdcjaHV9lChoBmgJaA9DCBH8byU7Z29AlIaUUpRoFU1qAWgWR0CQAJTspobodX2UKGgGaAloD0MIQQx07YtXb0CUhpRSlGgVTVEBaBZHQJAA2wV0tAd1fZQoaAZoCWgPQwh/EwoRsHBwQJSGlFKUaBVNKAFoFkdAkAGCquKXOXV9lChoBmgJaA9DCN6Th4VaomFAlIaUUpRoFU3oA2gWR0CQBDN2TxG2dX2UKGgGaAloD0MIxCKGHUYsb0CUhpRSlGgVTRcBaBZHQJAFsU0vXbx1fZQoaAZoCWgPQwg5fNKJhE5tQJSGlFKUaBVNMgFoFkdAkAY9fXwsoXV9lChoBmgJaA9DCEHvjSFAKHBAlIaUUpRoFU2QAWgWR0CQBsVvddmhdX2UKGgGaAloD0MI6Etvf+45cECUhpRSlGgVTQcCaBZHQJAI7/rB0p51fZQoaAZoCWgPQwguO8Q/bEJuQJSGlFKUaBVNLAFoFkdAkApfW6K+BnV9lChoBmgJaA9DCEd1OpC1dHFAlIaUUpRoFU09AmgWR0CQC4Ij4YaYdX2UKGgGaAloD0MIlIjwLwJScUCUhpRSlGgVTRoCaBZHQJAMusuFpPB1fZQoaAZoCWgPQwhrK/aX3ZFvQJSGlFKUaBVNBwFoFkdAkA0yCvovBnV9lChoBmgJaA9DCCgMyjTasHBAlIaUUpRoFU0sAWgWR0CQDg48EFGHdX2UKGgGaAloD0MIjzaOWAseckCUhpRSlGgVTYUCaBZHQJAP6HEdeY51fZQoaAZoCWgPQwi78e7IWGZxQJSGlFKUaBVNFQJoFkdAkBFLrLQokXV9lChoBmgJaA9DCFPNrKUATHJAlIaUUpRoFU23AWgWR0CQE+zqbBoFdX2UKGgGaAloD0MI1Jy8yATbcUCUhpRSlGgVTT4BaBZHQJAUbljmSyN1fZQoaAZoCWgPQwjQ7/s3r/lwQJSGlFKUaBVNMgJoFkdAkBYTLns9jnV9lChoBmgJaA9DCPYjRWTY7XFAlIaUUpRoFU1gAWgWR0CQFoJ5VwPzdX2UKGgGaAloD0MI8db5t0vScUCUhpRSlGgVTToBaBZHQJAXB94NZvF1fZQoaAZoCWgPQwgAPKJC9WFuQJSGlFKUaBVNugFoFkdAkBlrNW2gF3V9lChoBmgJaA9DCE9bI4IxDHFAlIaUUpRoFU0/AWgWR0CQGcLfUF0QdX2UKGgGaAloD0MINNWT+cftckCUhpRSlGgVTWwBaBZHQJAahFc6eXl1fZQoaAZoCWgPQwhtrMQ8ayZzQJSGlFKUaBVNOgFoFkdAkBqQaaTfSHV9lChoBmgJaA9DCCJwJNBgAm9AlIaUUpRoFU0fAWgWR0CQGr5n13+udX2UKGgGaAloD0MIcY3PZH/wbECUhpRSlGgVTQ0BaBZHQJAbkBNmDlJ1fZQoaAZoCWgPQwif5A6byHRtQJSGlFKUaBVNgQJoFkdAkBxNOh0yQHV9lChoBmgJaA9DCHTqymd5LWtAlIaUUpRoFU0RAWgWR0CQHxpztCzDdX2UKGgGaAloD0MIB0MdVrjPcECUhpRSlGgVTSYBaBZHQJAfePOpsGh1fZQoaAZoCWgPQwiBWgweppxxQJSGlFKUaBVNewFoFkdAkCCDmSyMUHV9lChoBmgJaA9DCE6zQLvDxXBAlIaUUpRoFU2rAmgWR0CQIMv/BFd+dX2UKGgGaAloD0MI/l915MhnZkCUhpRSlGgVTegDaBZHQJAhwnb7CSB1ZS4="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 248, "n_steps": 1024, "gamma": 0.999, "gae_lambda": 0.98, "ent_coef": 0.01, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 4, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVvwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAUsBSxNDBIgAUwCUToWUKYwBX5SFlIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5RLgEMCAAGUjAN2YWyUhZQpdJRSlH2UKIwLX19wYWNrYWdlX1+UjBhzdGFibGVfYmFzZWxpbmVzMy5jb21tb26UjAhfX25hbWVfX5SMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi51dGlsc5SMCF9fZmlsZV9flIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaCB9lH2UKGgXaA6MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgYjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "system_info": {"OS": "Linux-5.4.188+-x86_64-with-Ubuntu-18.04-bionic #1 SMP Sun Apr 24 10:03:06 PDT 2022", "Python": "3.7.13", "Stable-Baselines3": "1.5.0", "PyTorch": "1.11.0+cu113", "GPU Enabled": "True", "Numpy": "1.21.6", "Gym": "0.21.0"}}
ppo-LunarLander-v2.zip ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:80253ca931b0c42208da3cbc6c8581bf545eb29ee3b6a0ee0a4e8132409c6b0a
3
+ size 144050
ppo-LunarLander-v2/_stable_baselines3_version ADDED
@@ -0,0 +1 @@
 
 
1
+ 1.5.0
ppo-LunarLander-v2/data ADDED
@@ -0,0 +1,94 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "policy_class": {
3
+ ":type:": "<class 'abc.ABCMeta'>",
4
+ ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
5
+ "__module__": "stable_baselines3.common.policies",
6
+ "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param sde_net_arch: Network architecture for extracting features\n when using gSDE. If None, the latent features from the policy will be used.\n Pass an empty list to use the states as features.\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
7
+ "__init__": "<function ActorCriticPolicy.__init__ at 0x7f1793b27dd0>",
8
+ "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f1793b27e60>",
9
+ "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f1793b27ef0>",
10
+ "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f1793b27f80>",
11
+ "_build": "<function ActorCriticPolicy._build at 0x7f1793b2e050>",
12
+ "forward": "<function ActorCriticPolicy.forward at 0x7f1793b2e0e0>",
13
+ "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f1793b2e170>",
14
+ "_predict": "<function ActorCriticPolicy._predict at 0x7f1793b2e200>",
15
+ "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f1793b2e290>",
16
+ "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f1793b2e320>",
17
+ "predict_values": "<function ActorCriticPolicy.predict_values at 0x7f1793b2e3b0>",
18
+ "__abstractmethods__": "frozenset()",
19
+ "_abc_impl": "<_abc_data object at 0x7f1793b7b570>"
20
+ },
21
+ "verbose": 1,
22
+ "policy_kwargs": {},
23
+ "observation_space": {
24
+ ":type:": "<class 'gym.spaces.box.Box'>",
25
+ ":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAf5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAAAAAAAAAAAlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu",
26
+ "dtype": "float32",
27
+ "_shape": [
28
+ 8
29
+ ],
30
+ "low": "[-inf -inf -inf -inf -inf -inf -inf -inf]",
31
+ "high": "[inf inf inf inf inf inf inf inf]",
32
+ "bounded_below": "[False False False False False False False False]",
33
+ "bounded_above": "[False False False False False False False False]",
34
+ "_np_random": null
35
+ },
36
+ "action_space": {
37
+ ":type:": "<class 'gym.spaces.discrete.Discrete'>",
38
+ ":serialized:": "gAWVggAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu",
39
+ "n": 4,
40
+ "_shape": [],
41
+ "dtype": "int64",
42
+ "_np_random": null
43
+ },
44
+ "n_envs": 16,
45
+ "num_timesteps": 1015808,
46
+ "_total_timesteps": 1000000,
47
+ "_num_timesteps_at_start": 0,
48
+ "seed": null,
49
+ "action_noise": null,
50
+ "start_time": 1652358661.4864929,
51
+ "learning_rate": 0.0003,
52
+ "tensorboard_log": null,
53
+ "lr_schedule": {
54
+ ":type:": "<class 'function'>",
55
+ ":serialized:": "gAWVvwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAUsBSxNDBIgAUwCUToWUKYwBX5SFlIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5RLgEMCAAGUjAN2YWyUhZQpdJRSlH2UKIwLX19wYWNrYWdlX1+UjBhzdGFibGVfYmFzZWxpbmVzMy5jb21tb26UjAhfX25hbWVfX5SMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi51dGlsc5SMCF9fZmlsZV9flIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaCB9lH2UKGgXaA6MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgYjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"
56
+ },
57
+ "_last_obs": {
58
+ ":type:": "<class 'numpy.ndarray'>",
59
+ ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAI20t7068Lo/9uKrvrtSXL7xk6O9Fn5RvgAAAAAAAAAAE2lLPsDFXz+th8k8VPihvgMY+T2eYfq9AAAAAAAAAACaGVi9rJ7gPLbGyjzBaVW+rx6wvCUvsD0AAAAAAAAAAA0Vy71X+nU/nMMNvjp4or62FaO94QEYvQAAAAAAAAAAsqyTvqM7Nz+25/C8hvGLvtMzHr4/Da49AAAAAAAAAABNSbc9XLsRuiiuVbzUjoy5kjqIO+I5ATkAAIA/AACAP81irbxceCG8DoiuO3IFg722dBU7ewfpOwAAgD8AAIA/sxdOvcg5mD3rwcY9gvZXvjDz77ylw0C9AAAAAAAAAADNILW9H0X3ubbbvzzkbhO1JZwqO3aLBbQAAIA/AACAP80EyLspKBm6wCQSuA/8mLK3Z8Q6/NYnNwAAgD8AAIA/zZxVvRQEgrqIoEg58243NODJiLpDP2q4AACAPwAAgD+zu/K9Z9UqP0pyMb0Um62+CquSvdah8rwAAAAAAAAAAACJYL3DQTa60oMVOyEfcrn7faM6IggkugAAgD8AAIA/M9IOPpzPeD64MX++SfaUvjTEIr2mQXC8AAAAAAAAAACaBlC9XLMrug7KmjnrG7k0cvh1Okc2trgAAIA/AACAP01pAT4fy7o6kk8nvuO+Rb4NuTu8wkN5vAAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="
60
+ },
61
+ "_last_episode_starts": {
62
+ ":type:": "<class 'numpy.ndarray'>",
63
+ ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="
64
+ },
65
+ "_last_original_obs": null,
66
+ "_episode_num": 0,
67
+ "use_sde": false,
68
+ "sde_sample_freq": -1,
69
+ "_current_progress_remaining": -0.015808000000000044,
70
+ "ep_info_buffer": {
71
+ ":type:": "<class 'collections.deque'>",
72
+ ":serialized:": "gAWVgBAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIpkI8Em/SckCUhpRSlIwBbJRNXwGMAXSUR0CPMqYKIBRydX2UKGgGaAloD0MIVd0jm6ubcECUhpRSlGgVTUYCaBZHQI8+Itz0Yj11fZQoaAZoCWgPQwiV1XQ90ZlxQJSGlFKUaBVL+mgWR0CPQOj9n9NvdX2UKGgGaAloD0MI/wkuVlSdckCUhpRSlGgVTeABaBZHQI9A64UeuFJ1fZQoaAZoCWgPQwgPYfw0rs9xQJSGlFKUaBVNQgJoFkdAj0IJ5NXYDnV9lChoBmgJaA9DCOdz7nY91HBAlIaUUpRoFU2hAmgWR0CPQqcAiml7dX2UKGgGaAloD0MIEK/rF2zOckCUhpRSlGgVTawBaBZHQI9CposZpBZ1fZQoaAZoCWgPQwj0T3CxIj5vQJSGlFKUaBVNmwFoFkdAj0ToXCTEBXV9lChoBmgJaA9DCE0vMZYpX3JAlIaUUpRoFU2RAWgWR0CPRP3iaRZEdX2UKGgGaAloD0MIMiHmkqpJcECUhpRSlGgVTVEBaBZHQI9GE4aP0Zp1fZQoaAZoCWgPQwjE7GXbaZxwQJSGlFKUaBVNeQFoFkdAj0jaQvHtGHV9lChoBmgJaA9DCBU2A1wQEG9AlIaUUpRoFU2mAWgWR0CPSQrf+CK8dX2UKGgGaAloD0MI4Ep2bMSGcECUhpRSlGgVTU0BaBZHQI9JXphWo3t1fZQoaAZoCWgPQwiUbHU55a1wQJSGlFKUaBVNwAFoFkdAj0rr8iwB53V9lChoBmgJaA9DCP4ORYE+6G9AlIaUUpRoFU1pAWgWR0CPTJ003wTedX2UKGgGaAloD0MINCvbh/ywcUCUhpRSlGgVTSUBaBZHQI9SI+EAYHh1fZQoaAZoCWgPQwgeiCzSRI5wQJSGlFKUaBVNFAFoFkdAj1MMh5gPVnV9lChoBmgJaA9DCHeeeM6W725AlIaUUpRoFU0tAWgWR0CPVdYjB2wFdX2UKGgGaAloD0MI0lPkEHFrb0CUhpRSlGgVTScBaBZHQI9V8lw97nh1fZQoaAZoCWgPQwi4dTdPNepxQJSGlFKUaBVN9wFoFkdAj1ZLRSgoPXV9lChoBmgJaA9DCMPvplv2pnBAlIaUUpRoFU0LAWgWR0CPWnAE+xGEdX2UKGgGaAloD0MIcOmY84wzbkCUhpRSlGgVTUYBaBZHQI9alzdUKiR1fZQoaAZoCWgPQwhRpWYPtKZuQJSGlFKUaBVNQAFoFkdAj1tbD/EOy3V9lChoBmgJaA9DCOymlNfKKnJAlIaUUpRoFU0rAWgWR0CPgVvSc9W7dX2UKGgGaAloD0MIbagY5289bkCUhpRSlGgVTUABaBZHQI+FW3MINVl1fZQoaAZoCWgPQwjWjAxy1xhyQJSGlFKUaBVNKQNoFkdAj4pTo2XLNnV9lChoBmgJaA9DCEz9vKmIl3FAlIaUUpRoFU1qAWgWR0CPix7sOXmedX2UKGgGaAloD0MId0tywG6ScUCUhpRSlGgVTbQBaBZHQI+MeMOwxFl1fZQoaAZoCWgPQwiw4lRrYTFuQJSGlFKUaBVNNwJoFkdAj42/tpmEoXV9lChoBmgJaA9DCM8Tz9lCCXJAlIaUUpRoFU05AWgWR0CPj2riEQGwdX2UKGgGaAloD0MITIxl+iXOcECUhpRSlGgVTRoBaBZHQI+QTf+CK791fZQoaAZoCWgPQwj1geSdw3dvQJSGlFKUaBVNNAFoFkdAj5GyY5T6znV9lChoBmgJaA9DCGhcOBDS0nFAlIaUUpRoFU0nAWgWR0CPlOkZ75VPdX2UKGgGaAloD0MIigJ9Ik96b0CUhpRSlGgVTXQCaBZHQI+VeEkB0ZF1fZQoaAZoCWgPQwjU0XE1MlRwQJSGlFKUaBVNIgFoFkdAj5b63AmAsnV9lChoBmgJaA9DCKn6lc4Hl25AlIaUUpRoFU1iAWgWR0CPmeCSRr8BdX2UKGgGaAloD0MIPIOG/glacECUhpRSlGgVTbABaBZHQI+af0kGA091fZQoaAZoCWgPQwjc2OxINf9yQJSGlFKUaBVNPQFoFkdAj5ywbEP1+XV9lChoBmgJaA9DCITXLm24j2xAlIaUUpRoFU0wAmgWR0CPn8TfzjFRdX2UKGgGaAloD0MIJnLBGbzYckCUhpRSlGgVTTEBaBZHQI+gPWBjFyd1fZQoaAZoCWgPQwgN424QLe1sQJSGlFKUaBVN4gFoFkdAj6IXxe9i+nV9lChoBmgJaA9DCBE4Emjwo3FAlIaUUpRoFU1YAWgWR0CPo5jABT4tdX2UKGgGaAloD0MI9zx/2ijrbkCUhpRSlGgVTUgBaBZHQI+jlXvH93t1fZQoaAZoCWgPQwijIeNRqmluQJSGlFKUaBVNRgFoFkdAj6R6d1+y7nV9lChoBmgJaA9DCEbrqGoCXG5AlIaUUpRoFU0+AWgWR0CPpVP9DQZ5dX2UKGgGaAloD0MIeEFEalq3b0CUhpRSlGgVTVIBaBZHQI+oxGrjo6l1fZQoaAZoCWgPQwg9npYfuCRxQJSGlFKUaBVNTgFoFkdAj6xgZsKsuHV9lChoBmgJaA9DCB2rlJ5pF2RAlIaUUpRoFU3oA2gWR0CPrSdxyXD4dX2UKGgGaAloD0MI+vGXFrU5cECUhpRSlGgVTdwBaBZHQI+xs6RyOrB1fZQoaAZoCWgPQwgfEOhMml9xQJSGlFKUaBVNWwFoFkdAj7JLQHAymHV9lChoBmgJaA9DCDLohNCBE3FAlIaUUpRoFU1eAWgWR0CPsynSfDk3dX2UKGgGaAloD0MI5rFmZFB7ckCUhpRSlGgVTWQBaBZHQI+5uLiuMdd1fZQoaAZoCWgPQwiU+NwJNhFwQJSGlFKUaBVNxQFoFkdAj760DMeOn3V9lChoBmgJaA9DCFxWYTNAAXFAlIaUUpRoFU2lAWgWR0CPwHfR/mT1dX2UKGgGaAloD0MI74y2KokAb0CUhpRSlGgVTXgBaBZHQI/DYUnG8291fZQoaAZoCWgPQwgW3uUivppwQJSGlFKUaBVNrQFoFkdAj8OpaiblR3V9lChoBmgJaA9DCCQqVDfXL3JAlIaUUpRoFU2NAWgWR0CPw/l5GBnSdX2UKGgGaAloD0MIlQ9B1ejBbkCUhpRSlGgVTbcBaBZHQI/GHLxI8Qt1fZQoaAZoCWgPQwhJL2r3a+VwQJSGlFKUaBVNSwFoFkdAj8fjmCAc1nV9lChoBmgJaA9DCHCVJxB2RW5AlIaUUpRoFU2rAmgWR0CPyKgmqo60dX2UKGgGaAloD0MI2nOZmoSsb0CUhpRSlGgVTQ4BaBZHQI/I7Ikqto11fZQoaAZoCWgPQwhh/3VuWvdxQJSGlFKUaBVNEgJoFkdAj/EyYPXkHXV9lChoBmgJaA9DCGkbf6JyFXBAlIaUUpRoFU0DAWgWR0CP85qAz544dX2UKGgGaAloD0MIcAuW6kLVcECUhpRSlGgVTe0BaBZHQI/0wPPLPld1fZQoaAZoCWgPQwg5JSAmoT5wQJSGlFKUaBVNgAFoFkdAj/VOtW+49XV9lChoBmgJaA9DCFeXUwKiRXJAlIaUUpRoFU0uAWgWR0CP+qt8NQTFdX2UKGgGaAloD0MIgeofRLI3cUCUhpRSlGgVTbkBaBZHQI/65yQxN7B1fZQoaAZoCWgPQwh2wktwqvJxQJSGlFKUaBVNUAJoFkdAkACJTdcjaHV9lChoBmgJaA9DCBH8byU7Z29AlIaUUpRoFU1qAWgWR0CQAJTspobodX2UKGgGaAloD0MIQQx07YtXb0CUhpRSlGgVTVEBaBZHQJAA2wV0tAd1fZQoaAZoCWgPQwh/EwoRsHBwQJSGlFKUaBVNKAFoFkdAkAGCquKXOXV9lChoBmgJaA9DCN6Th4VaomFAlIaUUpRoFU3oA2gWR0CQBDN2TxG2dX2UKGgGaAloD0MIxCKGHUYsb0CUhpRSlGgVTRcBaBZHQJAFsU0vXbx1fZQoaAZoCWgPQwg5fNKJhE5tQJSGlFKUaBVNMgFoFkdAkAY9fXwsoXV9lChoBmgJaA9DCEHvjSFAKHBAlIaUUpRoFU2QAWgWR0CQBsVvddmhdX2UKGgGaAloD0MI6Etvf+45cECUhpRSlGgVTQcCaBZHQJAI7/rB0p51fZQoaAZoCWgPQwguO8Q/bEJuQJSGlFKUaBVNLAFoFkdAkApfW6K+BnV9lChoBmgJaA9DCEd1OpC1dHFAlIaUUpRoFU09AmgWR0CQC4Ij4YaYdX2UKGgGaAloD0MIlIjwLwJScUCUhpRSlGgVTRoCaBZHQJAMusuFpPB1fZQoaAZoCWgPQwhrK/aX3ZFvQJSGlFKUaBVNBwFoFkdAkA0yCvovBnV9lChoBmgJaA9DCCgMyjTasHBAlIaUUpRoFU0sAWgWR0CQDg48EFGHdX2UKGgGaAloD0MIjzaOWAseckCUhpRSlGgVTYUCaBZHQJAP6HEdeY51fZQoaAZoCWgPQwi78e7IWGZxQJSGlFKUaBVNFQJoFkdAkBFLrLQokXV9lChoBmgJaA9DCFPNrKUATHJAlIaUUpRoFU23AWgWR0CQE+zqbBoFdX2UKGgGaAloD0MI1Jy8yATbcUCUhpRSlGgVTT4BaBZHQJAUbljmSyN1fZQoaAZoCWgPQwjQ7/s3r/lwQJSGlFKUaBVNMgJoFkdAkBYTLns9jnV9lChoBmgJaA9DCPYjRWTY7XFAlIaUUpRoFU1gAWgWR0CQFoJ5VwPzdX2UKGgGaAloD0MI8db5t0vScUCUhpRSlGgVTToBaBZHQJAXB94NZvF1fZQoaAZoCWgPQwgAPKJC9WFuQJSGlFKUaBVNugFoFkdAkBlrNW2gF3V9lChoBmgJaA9DCE9bI4IxDHFAlIaUUpRoFU0/AWgWR0CQGcLfUF0QdX2UKGgGaAloD0MINNWT+cftckCUhpRSlGgVTWwBaBZHQJAahFc6eXl1fZQoaAZoCWgPQwhtrMQ8ayZzQJSGlFKUaBVNOgFoFkdAkBqQaaTfSHV9lChoBmgJaA9DCCJwJNBgAm9AlIaUUpRoFU0fAWgWR0CQGr5n13+udX2UKGgGaAloD0MIcY3PZH/wbECUhpRSlGgVTQ0BaBZHQJAbkBNmDlJ1fZQoaAZoCWgPQwif5A6byHRtQJSGlFKUaBVNgQJoFkdAkBxNOh0yQHV9lChoBmgJaA9DCHTqymd5LWtAlIaUUpRoFU0RAWgWR0CQHxpztCzDdX2UKGgGaAloD0MIB0MdVrjPcECUhpRSlGgVTSYBaBZHQJAfePOpsGh1fZQoaAZoCWgPQwiBWgweppxxQJSGlFKUaBVNewFoFkdAkCCDmSyMUHV9lChoBmgJaA9DCE6zQLvDxXBAlIaUUpRoFU2rAmgWR0CQIMv/BFd+dX2UKGgGaAloD0MI/l915MhnZkCUhpRSlGgVTegDaBZHQJAhwnb7CSB1ZS4="
73
+ },
74
+ "ep_success_buffer": {
75
+ ":type:": "<class 'collections.deque'>",
76
+ ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
77
+ },
78
+ "_n_updates": 248,
79
+ "n_steps": 1024,
80
+ "gamma": 0.999,
81
+ "gae_lambda": 0.98,
82
+ "ent_coef": 0.01,
83
+ "vf_coef": 0.5,
84
+ "max_grad_norm": 0.5,
85
+ "batch_size": 64,
86
+ "n_epochs": 4,
87
+ "clip_range": {
88
+ ":type:": "<class 'function'>",
89
+ ":serialized:": "gAWVvwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAUsBSxNDBIgAUwCUToWUKYwBX5SFlIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5RLgEMCAAGUjAN2YWyUhZQpdJRSlH2UKIwLX19wYWNrYWdlX1+UjBhzdGFibGVfYmFzZWxpbmVzMy5jb21tb26UjAhfX25hbWVfX5SMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi51dGlsc5SMCF9fZmlsZV9flIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaCB9lH2UKGgXaA6MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgYjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"
90
+ },
91
+ "clip_range_vf": null,
92
+ "normalize_advantage": true,
93
+ "target_kl": null
94
+ }
ppo-LunarLander-v2/policy.optimizer.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:0e4084933d40e78f8b5e8c4c143f9c2a0552c482f2390588794897edf2ae6f10
3
+ size 84829
ppo-LunarLander-v2/policy.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:f67bf7ead269cd0bdb4a505b31db94a9e4ed555e4c60a82e5a3aef34a215014f
3
+ size 43201
ppo-LunarLander-v2/pytorch_variables.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:d030ad8db708280fcae77d87e973102039acd23a11bdecc3db8eb6c0ac940ee1
3
+ size 431
ppo-LunarLander-v2/system_info.txt ADDED
@@ -0,0 +1,7 @@
 
 
 
 
 
 
 
 
1
+ OS: Linux-5.4.188+-x86_64-with-Ubuntu-18.04-bionic #1 SMP Sun Apr 24 10:03:06 PDT 2022
2
+ Python: 3.7.13
3
+ Stable-Baselines3: 1.5.0
4
+ PyTorch: 1.11.0+cu113
5
+ GPU Enabled: True
6
+ Numpy: 1.21.6
7
+ Gym: 0.21.0
replay.mp4 ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:1a80ac46ae0727b0212ead3fb209e459cab25d2df7992c6fe4dceb5be7c5811e
3
+ size 217640
results.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"mean_reward": 264.1170068871596, "std_reward": 20.459064206473382, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2022-05-12T12:50:49.869815"}