strangetcy
commited on
Commit
·
a95d31b
1
Parent(s):
22de5ad
This is a simple PPO agent trained and evaluated for a free DRL course
Browse files- .gitattributes +1 -0
- README.md +28 -0
- config.json +1 -0
- ppo-LunarLander-v2.zip +3 -0
- ppo-LunarLander-v2/_stable_baselines3_version +1 -0
- ppo-LunarLander-v2/data +94 -0
- ppo-LunarLander-v2/policy.optimizer.pth +3 -0
- ppo-LunarLander-v2/policy.pth +3 -0
- ppo-LunarLander-v2/pytorch_variables.pth +3 -0
- ppo-LunarLander-v2/system_info.txt +7 -0
- replay.mp4 +3 -0
- results.json +1 -0
.gitattributes
CHANGED
@@ -25,3 +25,4 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
|
|
25 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
26 |
*.zstandard filter=lfs diff=lfs merge=lfs -text
|
27 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
|
|
|
25 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
26 |
*.zstandard filter=lfs diff=lfs merge=lfs -text
|
27 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
28 |
+
*.mp4 filter=lfs diff=lfs merge=lfs -text
|
README.md
ADDED
@@ -0,0 +1,28 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
library_name: stable-baselines3
|
3 |
+
tags:
|
4 |
+
- LunarLander-v2
|
5 |
+
- deep-reinforcement-learning
|
6 |
+
- reinforcement-learning
|
7 |
+
- stable-baselines3
|
8 |
+
model-index:
|
9 |
+
- name: PPO
|
10 |
+
results:
|
11 |
+
- metrics:
|
12 |
+
- type: mean_reward
|
13 |
+
value: 264.12 +/- 20.46
|
14 |
+
name: mean_reward
|
15 |
+
task:
|
16 |
+
type: reinforcement-learning
|
17 |
+
name: reinforcement-learning
|
18 |
+
dataset:
|
19 |
+
name: LunarLander-v2
|
20 |
+
type: LunarLander-v2
|
21 |
+
---
|
22 |
+
|
23 |
+
# **PPO** Agent playing **LunarLander-v2**
|
24 |
+
This is a trained model of a **PPO** agent playing **LunarLander-v2** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
|
25 |
+
|
26 |
+
## Usage (with Stable-baselines3)
|
27 |
+
TODO: Add your code
|
28 |
+
|
config.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param sde_net_arch: Network architecture for extracting features\n when using gSDE. If None, the latent features from the policy will be used.\n Pass an empty list to use the states as features.\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7f1793b27dd0>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f1793b27e60>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f1793b27ef0>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f1793b27f80>", "_build": "<function ActorCriticPolicy._build at 0x7f1793b2e050>", "forward": "<function ActorCriticPolicy.forward at 0x7f1793b2e0e0>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f1793b2e170>", "_predict": "<function ActorCriticPolicy._predict at 0x7f1793b2e200>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f1793b2e290>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f1793b2e320>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7f1793b2e3b0>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc_data object at 0x7f1793b7b570>"}, "verbose": 1, "policy_kwargs": {}, "observation_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAf5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAAAAAAAAAAAlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu", "dtype": "float32", "_shape": [8], "low": "[-inf -inf -inf -inf -inf -inf -inf -inf]", "high": "[inf inf inf inf inf inf inf inf]", "bounded_below": "[False False False False False False False False]", "bounded_above": "[False False False False False False False False]", "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.discrete.Discrete'>", ":serialized:": "gAWVggAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu", "n": 4, "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 16, "num_timesteps": 1015808, "_total_timesteps": 1000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1652358661.4864929, "learning_rate": 0.0003, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVvwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAUsBSxNDBIgAUwCUToWUKYwBX5SFlIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5RLgEMCAAGUjAN2YWyUhZQpdJRSlH2UKIwLX19wYWNrYWdlX1+UjBhzdGFibGVfYmFzZWxpbmVzMy5jb21tb26UjAhfX25hbWVfX5SMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi51dGlsc5SMCF9fZmlsZV9flIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaCB9lH2UKGgXaA6MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgYjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAI20t7068Lo/9uKrvrtSXL7xk6O9Fn5RvgAAAAAAAAAAE2lLPsDFXz+th8k8VPihvgMY+T2eYfq9AAAAAAAAAACaGVi9rJ7gPLbGyjzBaVW+rx6wvCUvsD0AAAAAAAAAAA0Vy71X+nU/nMMNvjp4or62FaO94QEYvQAAAAAAAAAAsqyTvqM7Nz+25/C8hvGLvtMzHr4/Da49AAAAAAAAAABNSbc9XLsRuiiuVbzUjoy5kjqIO+I5ATkAAIA/AACAP81irbxceCG8DoiuO3IFg722dBU7ewfpOwAAgD8AAIA/sxdOvcg5mD3rwcY9gvZXvjDz77ylw0C9AAAAAAAAAADNILW9H0X3ubbbvzzkbhO1JZwqO3aLBbQAAIA/AACAP80EyLspKBm6wCQSuA/8mLK3Z8Q6/NYnNwAAgD8AAIA/zZxVvRQEgrqIoEg58243NODJiLpDP2q4AACAPwAAgD+zu/K9Z9UqP0pyMb0Um62+CquSvdah8rwAAAAAAAAAAACJYL3DQTa60oMVOyEfcrn7faM6IggkugAAgD8AAIA/M9IOPpzPeD64MX++SfaUvjTEIr2mQXC8AAAAAAAAAACaBlC9XLMrug7KmjnrG7k0cvh1Okc2trgAAIA/AACAP01pAT4fy7o6kk8nvuO+Rb4NuTu8wkN5vAAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.015808000000000044, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVgBAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIpkI8Em/SckCUhpRSlIwBbJRNXwGMAXSUR0CPMqYKIBRydX2UKGgGaAloD0MIVd0jm6ubcECUhpRSlGgVTUYCaBZHQI8+Itz0Yj11fZQoaAZoCWgPQwiV1XQ90ZlxQJSGlFKUaBVL+mgWR0CPQOj9n9NvdX2UKGgGaAloD0MI/wkuVlSdckCUhpRSlGgVTeABaBZHQI9A64UeuFJ1fZQoaAZoCWgPQwgPYfw0rs9xQJSGlFKUaBVNQgJoFkdAj0IJ5NXYDnV9lChoBmgJaA9DCOdz7nY91HBAlIaUUpRoFU2hAmgWR0CPQqcAiml7dX2UKGgGaAloD0MIEK/rF2zOckCUhpRSlGgVTawBaBZHQI9CposZpBZ1fZQoaAZoCWgPQwj0T3CxIj5vQJSGlFKUaBVNmwFoFkdAj0ToXCTEBXV9lChoBmgJaA9DCE0vMZYpX3JAlIaUUpRoFU2RAWgWR0CPRP3iaRZEdX2UKGgGaAloD0MIMiHmkqpJcECUhpRSlGgVTVEBaBZHQI9GE4aP0Zp1fZQoaAZoCWgPQwjE7GXbaZxwQJSGlFKUaBVNeQFoFkdAj0jaQvHtGHV9lChoBmgJaA9DCBU2A1wQEG9AlIaUUpRoFU2mAWgWR0CPSQrf+CK8dX2UKGgGaAloD0MI4Ep2bMSGcECUhpRSlGgVTU0BaBZHQI9JXphWo3t1fZQoaAZoCWgPQwiUbHU55a1wQJSGlFKUaBVNwAFoFkdAj0rr8iwB53V9lChoBmgJaA9DCP4ORYE+6G9AlIaUUpRoFU1pAWgWR0CPTJ003wTedX2UKGgGaAloD0MINCvbh/ywcUCUhpRSlGgVTSUBaBZHQI9SI+EAYHh1fZQoaAZoCWgPQwgeiCzSRI5wQJSGlFKUaBVNFAFoFkdAj1MMh5gPVnV9lChoBmgJaA9DCHeeeM6W725AlIaUUpRoFU0tAWgWR0CPVdYjB2wFdX2UKGgGaAloD0MI0lPkEHFrb0CUhpRSlGgVTScBaBZHQI9V8lw97nh1fZQoaAZoCWgPQwi4dTdPNepxQJSGlFKUaBVN9wFoFkdAj1ZLRSgoPXV9lChoBmgJaA9DCMPvplv2pnBAlIaUUpRoFU0LAWgWR0CPWnAE+xGEdX2UKGgGaAloD0MIcOmY84wzbkCUhpRSlGgVTUYBaBZHQI9alzdUKiR1fZQoaAZoCWgPQwhRpWYPtKZuQJSGlFKUaBVNQAFoFkdAj1tbD/EOy3V9lChoBmgJaA9DCOymlNfKKnJAlIaUUpRoFU0rAWgWR0CPgVvSc9W7dX2UKGgGaAloD0MIbagY5289bkCUhpRSlGgVTUABaBZHQI+FW3MINVl1fZQoaAZoCWgPQwjWjAxy1xhyQJSGlFKUaBVNKQNoFkdAj4pTo2XLNnV9lChoBmgJaA9DCEz9vKmIl3FAlIaUUpRoFU1qAWgWR0CPix7sOXmedX2UKGgGaAloD0MId0tywG6ScUCUhpRSlGgVTbQBaBZHQI+MeMOwxFl1fZQoaAZoCWgPQwiw4lRrYTFuQJSGlFKUaBVNNwJoFkdAj42/tpmEoXV9lChoBmgJaA9DCM8Tz9lCCXJAlIaUUpRoFU05AWgWR0CPj2riEQGwdX2UKGgGaAloD0MITIxl+iXOcECUhpRSlGgVTRoBaBZHQI+QTf+CK791fZQoaAZoCWgPQwj1geSdw3dvQJSGlFKUaBVNNAFoFkdAj5GyY5T6znV9lChoBmgJaA9DCGhcOBDS0nFAlIaUUpRoFU0nAWgWR0CPlOkZ75VPdX2UKGgGaAloD0MIigJ9Ik96b0CUhpRSlGgVTXQCaBZHQI+VeEkB0ZF1fZQoaAZoCWgPQwjU0XE1MlRwQJSGlFKUaBVNIgFoFkdAj5b63AmAsnV9lChoBmgJaA9DCKn6lc4Hl25AlIaUUpRoFU1iAWgWR0CPmeCSRr8BdX2UKGgGaAloD0MIPIOG/glacECUhpRSlGgVTbABaBZHQI+af0kGA091fZQoaAZoCWgPQwjc2OxINf9yQJSGlFKUaBVNPQFoFkdAj5ywbEP1+XV9lChoBmgJaA9DCITXLm24j2xAlIaUUpRoFU0wAmgWR0CPn8TfzjFRdX2UKGgGaAloD0MIJnLBGbzYckCUhpRSlGgVTTEBaBZHQI+gPWBjFyd1fZQoaAZoCWgPQwgN424QLe1sQJSGlFKUaBVN4gFoFkdAj6IXxe9i+nV9lChoBmgJaA9DCBE4Emjwo3FAlIaUUpRoFU1YAWgWR0CPo5jABT4tdX2UKGgGaAloD0MI9zx/2ijrbkCUhpRSlGgVTUgBaBZHQI+jlXvH93t1fZQoaAZoCWgPQwijIeNRqmluQJSGlFKUaBVNRgFoFkdAj6R6d1+y7nV9lChoBmgJaA9DCEbrqGoCXG5AlIaUUpRoFU0+AWgWR0CPpVP9DQZ5dX2UKGgGaAloD0MIeEFEalq3b0CUhpRSlGgVTVIBaBZHQI+oxGrjo6l1fZQoaAZoCWgPQwg9npYfuCRxQJSGlFKUaBVNTgFoFkdAj6xgZsKsuHV9lChoBmgJaA9DCB2rlJ5pF2RAlIaUUpRoFU3oA2gWR0CPrSdxyXD4dX2UKGgGaAloD0MI+vGXFrU5cECUhpRSlGgVTdwBaBZHQI+xs6RyOrB1fZQoaAZoCWgPQwgfEOhMml9xQJSGlFKUaBVNWwFoFkdAj7JLQHAymHV9lChoBmgJaA9DCDLohNCBE3FAlIaUUpRoFU1eAWgWR0CPsynSfDk3dX2UKGgGaAloD0MI5rFmZFB7ckCUhpRSlGgVTWQBaBZHQI+5uLiuMdd1fZQoaAZoCWgPQwiU+NwJNhFwQJSGlFKUaBVNxQFoFkdAj760DMeOn3V9lChoBmgJaA9DCFxWYTNAAXFAlIaUUpRoFU2lAWgWR0CPwHfR/mT1dX2UKGgGaAloD0MI74y2KokAb0CUhpRSlGgVTXgBaBZHQI/DYUnG8291fZQoaAZoCWgPQwgW3uUivppwQJSGlFKUaBVNrQFoFkdAj8OpaiblR3V9lChoBmgJaA9DCCQqVDfXL3JAlIaUUpRoFU2NAWgWR0CPw/l5GBnSdX2UKGgGaAloD0MIlQ9B1ejBbkCUhpRSlGgVTbcBaBZHQI/GHLxI8Qt1fZQoaAZoCWgPQwhJL2r3a+VwQJSGlFKUaBVNSwFoFkdAj8fjmCAc1nV9lChoBmgJaA9DCHCVJxB2RW5AlIaUUpRoFU2rAmgWR0CPyKgmqo60dX2UKGgGaAloD0MI2nOZmoSsb0CUhpRSlGgVTQ4BaBZHQI/I7Ikqto11fZQoaAZoCWgPQwhh/3VuWvdxQJSGlFKUaBVNEgJoFkdAj/EyYPXkHXV9lChoBmgJaA9DCGkbf6JyFXBAlIaUUpRoFU0DAWgWR0CP85qAz544dX2UKGgGaAloD0MIcAuW6kLVcECUhpRSlGgVTe0BaBZHQI/0wPPLPld1fZQoaAZoCWgPQwg5JSAmoT5wQJSGlFKUaBVNgAFoFkdAj/VOtW+49XV9lChoBmgJaA9DCFeXUwKiRXJAlIaUUpRoFU0uAWgWR0CP+qt8NQTFdX2UKGgGaAloD0MIgeofRLI3cUCUhpRSlGgVTbkBaBZHQI/65yQxN7B1fZQoaAZoCWgPQwh2wktwqvJxQJSGlFKUaBVNUAJoFkdAkACJTdcjaHV9lChoBmgJaA9DCBH8byU7Z29AlIaUUpRoFU1qAWgWR0CQAJTspobodX2UKGgGaAloD0MIQQx07YtXb0CUhpRSlGgVTVEBaBZHQJAA2wV0tAd1fZQoaAZoCWgPQwh/EwoRsHBwQJSGlFKUaBVNKAFoFkdAkAGCquKXOXV9lChoBmgJaA9DCN6Th4VaomFAlIaUUpRoFU3oA2gWR0CQBDN2TxG2dX2UKGgGaAloD0MIxCKGHUYsb0CUhpRSlGgVTRcBaBZHQJAFsU0vXbx1fZQoaAZoCWgPQwg5fNKJhE5tQJSGlFKUaBVNMgFoFkdAkAY9fXwsoXV9lChoBmgJaA9DCEHvjSFAKHBAlIaUUpRoFU2QAWgWR0CQBsVvddmhdX2UKGgGaAloD0MI6Etvf+45cECUhpRSlGgVTQcCaBZHQJAI7/rB0p51fZQoaAZoCWgPQwguO8Q/bEJuQJSGlFKUaBVNLAFoFkdAkApfW6K+BnV9lChoBmgJaA9DCEd1OpC1dHFAlIaUUpRoFU09AmgWR0CQC4Ij4YaYdX2UKGgGaAloD0MIlIjwLwJScUCUhpRSlGgVTRoCaBZHQJAMusuFpPB1fZQoaAZoCWgPQwhrK/aX3ZFvQJSGlFKUaBVNBwFoFkdAkA0yCvovBnV9lChoBmgJaA9DCCgMyjTasHBAlIaUUpRoFU0sAWgWR0CQDg48EFGHdX2UKGgGaAloD0MIjzaOWAseckCUhpRSlGgVTYUCaBZHQJAP6HEdeY51fZQoaAZoCWgPQwi78e7IWGZxQJSGlFKUaBVNFQJoFkdAkBFLrLQokXV9lChoBmgJaA9DCFPNrKUATHJAlIaUUpRoFU23AWgWR0CQE+zqbBoFdX2UKGgGaAloD0MI1Jy8yATbcUCUhpRSlGgVTT4BaBZHQJAUbljmSyN1fZQoaAZoCWgPQwjQ7/s3r/lwQJSGlFKUaBVNMgJoFkdAkBYTLns9jnV9lChoBmgJaA9DCPYjRWTY7XFAlIaUUpRoFU1gAWgWR0CQFoJ5VwPzdX2UKGgGaAloD0MI8db5t0vScUCUhpRSlGgVTToBaBZHQJAXB94NZvF1fZQoaAZoCWgPQwgAPKJC9WFuQJSGlFKUaBVNugFoFkdAkBlrNW2gF3V9lChoBmgJaA9DCE9bI4IxDHFAlIaUUpRoFU0/AWgWR0CQGcLfUF0QdX2UKGgGaAloD0MINNWT+cftckCUhpRSlGgVTWwBaBZHQJAahFc6eXl1fZQoaAZoCWgPQwhtrMQ8ayZzQJSGlFKUaBVNOgFoFkdAkBqQaaTfSHV9lChoBmgJaA9DCCJwJNBgAm9AlIaUUpRoFU0fAWgWR0CQGr5n13+udX2UKGgGaAloD0MIcY3PZH/wbECUhpRSlGgVTQ0BaBZHQJAbkBNmDlJ1fZQoaAZoCWgPQwif5A6byHRtQJSGlFKUaBVNgQJoFkdAkBxNOh0yQHV9lChoBmgJaA9DCHTqymd5LWtAlIaUUpRoFU0RAWgWR0CQHxpztCzDdX2UKGgGaAloD0MIB0MdVrjPcECUhpRSlGgVTSYBaBZHQJAfePOpsGh1fZQoaAZoCWgPQwiBWgweppxxQJSGlFKUaBVNewFoFkdAkCCDmSyMUHV9lChoBmgJaA9DCE6zQLvDxXBAlIaUUpRoFU2rAmgWR0CQIMv/BFd+dX2UKGgGaAloD0MI/l915MhnZkCUhpRSlGgVTegDaBZHQJAhwnb7CSB1ZS4="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 248, "n_steps": 1024, "gamma": 0.999, "gae_lambda": 0.98, "ent_coef": 0.01, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 4, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVvwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAUsBSxNDBIgAUwCUToWUKYwBX5SFlIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5RLgEMCAAGUjAN2YWyUhZQpdJRSlH2UKIwLX19wYWNrYWdlX1+UjBhzdGFibGVfYmFzZWxpbmVzMy5jb21tb26UjAhfX25hbWVfX5SMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi51dGlsc5SMCF9fZmlsZV9flIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaCB9lH2UKGgXaA6MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgYjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "system_info": {"OS": "Linux-5.4.188+-x86_64-with-Ubuntu-18.04-bionic #1 SMP Sun Apr 24 10:03:06 PDT 2022", "Python": "3.7.13", "Stable-Baselines3": "1.5.0", "PyTorch": "1.11.0+cu113", "GPU Enabled": "True", "Numpy": "1.21.6", "Gym": "0.21.0"}}
|
ppo-LunarLander-v2.zip
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:80253ca931b0c42208da3cbc6c8581bf545eb29ee3b6a0ee0a4e8132409c6b0a
|
3 |
+
size 144050
|
ppo-LunarLander-v2/_stable_baselines3_version
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
1.5.0
|
ppo-LunarLander-v2/data
ADDED
@@ -0,0 +1,94 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"policy_class": {
|
3 |
+
":type:": "<class 'abc.ABCMeta'>",
|
4 |
+
":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
|
5 |
+
"__module__": "stable_baselines3.common.policies",
|
6 |
+
"__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param sde_net_arch: Network architecture for extracting features\n when using gSDE. If None, the latent features from the policy will be used.\n Pass an empty list to use the states as features.\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
|
7 |
+
"__init__": "<function ActorCriticPolicy.__init__ at 0x7f1793b27dd0>",
|
8 |
+
"_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f1793b27e60>",
|
9 |
+
"reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f1793b27ef0>",
|
10 |
+
"_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f1793b27f80>",
|
11 |
+
"_build": "<function ActorCriticPolicy._build at 0x7f1793b2e050>",
|
12 |
+
"forward": "<function ActorCriticPolicy.forward at 0x7f1793b2e0e0>",
|
13 |
+
"_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f1793b2e170>",
|
14 |
+
"_predict": "<function ActorCriticPolicy._predict at 0x7f1793b2e200>",
|
15 |
+
"evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f1793b2e290>",
|
16 |
+
"get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f1793b2e320>",
|
17 |
+
"predict_values": "<function ActorCriticPolicy.predict_values at 0x7f1793b2e3b0>",
|
18 |
+
"__abstractmethods__": "frozenset()",
|
19 |
+
"_abc_impl": "<_abc_data object at 0x7f1793b7b570>"
|
20 |
+
},
|
21 |
+
"verbose": 1,
|
22 |
+
"policy_kwargs": {},
|
23 |
+
"observation_space": {
|
24 |
+
":type:": "<class 'gym.spaces.box.Box'>",
|
25 |
+
":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAf5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAAAAAAAAAAAlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu",
|
26 |
+
"dtype": "float32",
|
27 |
+
"_shape": [
|
28 |
+
8
|
29 |
+
],
|
30 |
+
"low": "[-inf -inf -inf -inf -inf -inf -inf -inf]",
|
31 |
+
"high": "[inf inf inf inf inf inf inf inf]",
|
32 |
+
"bounded_below": "[False False False False False False False False]",
|
33 |
+
"bounded_above": "[False False False False False False False False]",
|
34 |
+
"_np_random": null
|
35 |
+
},
|
36 |
+
"action_space": {
|
37 |
+
":type:": "<class 'gym.spaces.discrete.Discrete'>",
|
38 |
+
":serialized:": "gAWVggAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu",
|
39 |
+
"n": 4,
|
40 |
+
"_shape": [],
|
41 |
+
"dtype": "int64",
|
42 |
+
"_np_random": null
|
43 |
+
},
|
44 |
+
"n_envs": 16,
|
45 |
+
"num_timesteps": 1015808,
|
46 |
+
"_total_timesteps": 1000000,
|
47 |
+
"_num_timesteps_at_start": 0,
|
48 |
+
"seed": null,
|
49 |
+
"action_noise": null,
|
50 |
+
"start_time": 1652358661.4864929,
|
51 |
+
"learning_rate": 0.0003,
|
52 |
+
"tensorboard_log": null,
|
53 |
+
"lr_schedule": {
|
54 |
+
":type:": "<class 'function'>",
|
55 |
+
":serialized:": "gAWVvwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAUsBSxNDBIgAUwCUToWUKYwBX5SFlIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5RLgEMCAAGUjAN2YWyUhZQpdJRSlH2UKIwLX19wYWNrYWdlX1+UjBhzdGFibGVfYmFzZWxpbmVzMy5jb21tb26UjAhfX25hbWVfX5SMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi51dGlsc5SMCF9fZmlsZV9flIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaCB9lH2UKGgXaA6MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgYjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"
|
56 |
+
},
|
57 |
+
"_last_obs": {
|
58 |
+
":type:": "<class 'numpy.ndarray'>",
|
59 |
+
":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAI20t7068Lo/9uKrvrtSXL7xk6O9Fn5RvgAAAAAAAAAAE2lLPsDFXz+th8k8VPihvgMY+T2eYfq9AAAAAAAAAACaGVi9rJ7gPLbGyjzBaVW+rx6wvCUvsD0AAAAAAAAAAA0Vy71X+nU/nMMNvjp4or62FaO94QEYvQAAAAAAAAAAsqyTvqM7Nz+25/C8hvGLvtMzHr4/Da49AAAAAAAAAABNSbc9XLsRuiiuVbzUjoy5kjqIO+I5ATkAAIA/AACAP81irbxceCG8DoiuO3IFg722dBU7ewfpOwAAgD8AAIA/sxdOvcg5mD3rwcY9gvZXvjDz77ylw0C9AAAAAAAAAADNILW9H0X3ubbbvzzkbhO1JZwqO3aLBbQAAIA/AACAP80EyLspKBm6wCQSuA/8mLK3Z8Q6/NYnNwAAgD8AAIA/zZxVvRQEgrqIoEg58243NODJiLpDP2q4AACAPwAAgD+zu/K9Z9UqP0pyMb0Um62+CquSvdah8rwAAAAAAAAAAACJYL3DQTa60oMVOyEfcrn7faM6IggkugAAgD8AAIA/M9IOPpzPeD64MX++SfaUvjTEIr2mQXC8AAAAAAAAAACaBlC9XLMrug7KmjnrG7k0cvh1Okc2trgAAIA/AACAP01pAT4fy7o6kk8nvuO+Rb4NuTu8wkN5vAAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="
|
60 |
+
},
|
61 |
+
"_last_episode_starts": {
|
62 |
+
":type:": "<class 'numpy.ndarray'>",
|
63 |
+
":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="
|
64 |
+
},
|
65 |
+
"_last_original_obs": null,
|
66 |
+
"_episode_num": 0,
|
67 |
+
"use_sde": false,
|
68 |
+
"sde_sample_freq": -1,
|
69 |
+
"_current_progress_remaining": -0.015808000000000044,
|
70 |
+
"ep_info_buffer": {
|
71 |
+
":type:": "<class 'collections.deque'>",
|
72 |
+
":serialized:": "gAWVgBAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIpkI8Em/SckCUhpRSlIwBbJRNXwGMAXSUR0CPMqYKIBRydX2UKGgGaAloD0MIVd0jm6ubcECUhpRSlGgVTUYCaBZHQI8+Itz0Yj11fZQoaAZoCWgPQwiV1XQ90ZlxQJSGlFKUaBVL+mgWR0CPQOj9n9NvdX2UKGgGaAloD0MI/wkuVlSdckCUhpRSlGgVTeABaBZHQI9A64UeuFJ1fZQoaAZoCWgPQwgPYfw0rs9xQJSGlFKUaBVNQgJoFkdAj0IJ5NXYDnV9lChoBmgJaA9DCOdz7nY91HBAlIaUUpRoFU2hAmgWR0CPQqcAiml7dX2UKGgGaAloD0MIEK/rF2zOckCUhpRSlGgVTawBaBZHQI9CposZpBZ1fZQoaAZoCWgPQwj0T3CxIj5vQJSGlFKUaBVNmwFoFkdAj0ToXCTEBXV9lChoBmgJaA9DCE0vMZYpX3JAlIaUUpRoFU2RAWgWR0CPRP3iaRZEdX2UKGgGaAloD0MIMiHmkqpJcECUhpRSlGgVTVEBaBZHQI9GE4aP0Zp1fZQoaAZoCWgPQwjE7GXbaZxwQJSGlFKUaBVNeQFoFkdAj0jaQvHtGHV9lChoBmgJaA9DCBU2A1wQEG9AlIaUUpRoFU2mAWgWR0CPSQrf+CK8dX2UKGgGaAloD0MI4Ep2bMSGcECUhpRSlGgVTU0BaBZHQI9JXphWo3t1fZQoaAZoCWgPQwiUbHU55a1wQJSGlFKUaBVNwAFoFkdAj0rr8iwB53V9lChoBmgJaA9DCP4ORYE+6G9AlIaUUpRoFU1pAWgWR0CPTJ003wTedX2UKGgGaAloD0MINCvbh/ywcUCUhpRSlGgVTSUBaBZHQI9SI+EAYHh1fZQoaAZoCWgPQwgeiCzSRI5wQJSGlFKUaBVNFAFoFkdAj1MMh5gPVnV9lChoBmgJaA9DCHeeeM6W725AlIaUUpRoFU0tAWgWR0CPVdYjB2wFdX2UKGgGaAloD0MI0lPkEHFrb0CUhpRSlGgVTScBaBZHQI9V8lw97nh1fZQoaAZoCWgPQwi4dTdPNepxQJSGlFKUaBVN9wFoFkdAj1ZLRSgoPXV9lChoBmgJaA9DCMPvplv2pnBAlIaUUpRoFU0LAWgWR0CPWnAE+xGEdX2UKGgGaAloD0MIcOmY84wzbkCUhpRSlGgVTUYBaBZHQI9alzdUKiR1fZQoaAZoCWgPQwhRpWYPtKZuQJSGlFKUaBVNQAFoFkdAj1tbD/EOy3V9lChoBmgJaA9DCOymlNfKKnJAlIaUUpRoFU0rAWgWR0CPgVvSc9W7dX2UKGgGaAloD0MIbagY5289bkCUhpRSlGgVTUABaBZHQI+FW3MINVl1fZQoaAZoCWgPQwjWjAxy1xhyQJSGlFKUaBVNKQNoFkdAj4pTo2XLNnV9lChoBmgJaA9DCEz9vKmIl3FAlIaUUpRoFU1qAWgWR0CPix7sOXmedX2UKGgGaAloD0MId0tywG6ScUCUhpRSlGgVTbQBaBZHQI+MeMOwxFl1fZQoaAZoCWgPQwiw4lRrYTFuQJSGlFKUaBVNNwJoFkdAj42/tpmEoXV9lChoBmgJaA9DCM8Tz9lCCXJAlIaUUpRoFU05AWgWR0CPj2riEQGwdX2UKGgGaAloD0MITIxl+iXOcECUhpRSlGgVTRoBaBZHQI+QTf+CK791fZQoaAZoCWgPQwj1geSdw3dvQJSGlFKUaBVNNAFoFkdAj5GyY5T6znV9lChoBmgJaA9DCGhcOBDS0nFAlIaUUpRoFU0nAWgWR0CPlOkZ75VPdX2UKGgGaAloD0MIigJ9Ik96b0CUhpRSlGgVTXQCaBZHQI+VeEkB0ZF1fZQoaAZoCWgPQwjU0XE1MlRwQJSGlFKUaBVNIgFoFkdAj5b63AmAsnV9lChoBmgJaA9DCKn6lc4Hl25AlIaUUpRoFU1iAWgWR0CPmeCSRr8BdX2UKGgGaAloD0MIPIOG/glacECUhpRSlGgVTbABaBZHQI+af0kGA091fZQoaAZoCWgPQwjc2OxINf9yQJSGlFKUaBVNPQFoFkdAj5ywbEP1+XV9lChoBmgJaA9DCITXLm24j2xAlIaUUpRoFU0wAmgWR0CPn8TfzjFRdX2UKGgGaAloD0MIJnLBGbzYckCUhpRSlGgVTTEBaBZHQI+gPWBjFyd1fZQoaAZoCWgPQwgN424QLe1sQJSGlFKUaBVN4gFoFkdAj6IXxe9i+nV9lChoBmgJaA9DCBE4Emjwo3FAlIaUUpRoFU1YAWgWR0CPo5jABT4tdX2UKGgGaAloD0MI9zx/2ijrbkCUhpRSlGgVTUgBaBZHQI+jlXvH93t1fZQoaAZoCWgPQwijIeNRqmluQJSGlFKUaBVNRgFoFkdAj6R6d1+y7nV9lChoBmgJaA9DCEbrqGoCXG5AlIaUUpRoFU0+AWgWR0CPpVP9DQZ5dX2UKGgGaAloD0MIeEFEalq3b0CUhpRSlGgVTVIBaBZHQI+oxGrjo6l1fZQoaAZoCWgPQwg9npYfuCRxQJSGlFKUaBVNTgFoFkdAj6xgZsKsuHV9lChoBmgJaA9DCB2rlJ5pF2RAlIaUUpRoFU3oA2gWR0CPrSdxyXD4dX2UKGgGaAloD0MI+vGXFrU5cECUhpRSlGgVTdwBaBZHQI+xs6RyOrB1fZQoaAZoCWgPQwgfEOhMml9xQJSGlFKUaBVNWwFoFkdAj7JLQHAymHV9lChoBmgJaA9DCDLohNCBE3FAlIaUUpRoFU1eAWgWR0CPsynSfDk3dX2UKGgGaAloD0MI5rFmZFB7ckCUhpRSlGgVTWQBaBZHQI+5uLiuMdd1fZQoaAZoCWgPQwiU+NwJNhFwQJSGlFKUaBVNxQFoFkdAj760DMeOn3V9lChoBmgJaA9DCFxWYTNAAXFAlIaUUpRoFU2lAWgWR0CPwHfR/mT1dX2UKGgGaAloD0MI74y2KokAb0CUhpRSlGgVTXgBaBZHQI/DYUnG8291fZQoaAZoCWgPQwgW3uUivppwQJSGlFKUaBVNrQFoFkdAj8OpaiblR3V9lChoBmgJaA9DCCQqVDfXL3JAlIaUUpRoFU2NAWgWR0CPw/l5GBnSdX2UKGgGaAloD0MIlQ9B1ejBbkCUhpRSlGgVTbcBaBZHQI/GHLxI8Qt1fZQoaAZoCWgPQwhJL2r3a+VwQJSGlFKUaBVNSwFoFkdAj8fjmCAc1nV9lChoBmgJaA9DCHCVJxB2RW5AlIaUUpRoFU2rAmgWR0CPyKgmqo60dX2UKGgGaAloD0MI2nOZmoSsb0CUhpRSlGgVTQ4BaBZHQI/I7Ikqto11fZQoaAZoCWgPQwhh/3VuWvdxQJSGlFKUaBVNEgJoFkdAj/EyYPXkHXV9lChoBmgJaA9DCGkbf6JyFXBAlIaUUpRoFU0DAWgWR0CP85qAz544dX2UKGgGaAloD0MIcAuW6kLVcECUhpRSlGgVTe0BaBZHQI/0wPPLPld1fZQoaAZoCWgPQwg5JSAmoT5wQJSGlFKUaBVNgAFoFkdAj/VOtW+49XV9lChoBmgJaA9DCFeXUwKiRXJAlIaUUpRoFU0uAWgWR0CP+qt8NQTFdX2UKGgGaAloD0MIgeofRLI3cUCUhpRSlGgVTbkBaBZHQI/65yQxN7B1fZQoaAZoCWgPQwh2wktwqvJxQJSGlFKUaBVNUAJoFkdAkACJTdcjaHV9lChoBmgJaA9DCBH8byU7Z29AlIaUUpRoFU1qAWgWR0CQAJTspobodX2UKGgGaAloD0MIQQx07YtXb0CUhpRSlGgVTVEBaBZHQJAA2wV0tAd1fZQoaAZoCWgPQwh/EwoRsHBwQJSGlFKUaBVNKAFoFkdAkAGCquKXOXV9lChoBmgJaA9DCN6Th4VaomFAlIaUUpRoFU3oA2gWR0CQBDN2TxG2dX2UKGgGaAloD0MIxCKGHUYsb0CUhpRSlGgVTRcBaBZHQJAFsU0vXbx1fZQoaAZoCWgPQwg5fNKJhE5tQJSGlFKUaBVNMgFoFkdAkAY9fXwsoXV9lChoBmgJaA9DCEHvjSFAKHBAlIaUUpRoFU2QAWgWR0CQBsVvddmhdX2UKGgGaAloD0MI6Etvf+45cECUhpRSlGgVTQcCaBZHQJAI7/rB0p51fZQoaAZoCWgPQwguO8Q/bEJuQJSGlFKUaBVNLAFoFkdAkApfW6K+BnV9lChoBmgJaA9DCEd1OpC1dHFAlIaUUpRoFU09AmgWR0CQC4Ij4YaYdX2UKGgGaAloD0MIlIjwLwJScUCUhpRSlGgVTRoCaBZHQJAMusuFpPB1fZQoaAZoCWgPQwhrK/aX3ZFvQJSGlFKUaBVNBwFoFkdAkA0yCvovBnV9lChoBmgJaA9DCCgMyjTasHBAlIaUUpRoFU0sAWgWR0CQDg48EFGHdX2UKGgGaAloD0MIjzaOWAseckCUhpRSlGgVTYUCaBZHQJAP6HEdeY51fZQoaAZoCWgPQwi78e7IWGZxQJSGlFKUaBVNFQJoFkdAkBFLrLQokXV9lChoBmgJaA9DCFPNrKUATHJAlIaUUpRoFU23AWgWR0CQE+zqbBoFdX2UKGgGaAloD0MI1Jy8yATbcUCUhpRSlGgVTT4BaBZHQJAUbljmSyN1fZQoaAZoCWgPQwjQ7/s3r/lwQJSGlFKUaBVNMgJoFkdAkBYTLns9jnV9lChoBmgJaA9DCPYjRWTY7XFAlIaUUpRoFU1gAWgWR0CQFoJ5VwPzdX2UKGgGaAloD0MI8db5t0vScUCUhpRSlGgVTToBaBZHQJAXB94NZvF1fZQoaAZoCWgPQwgAPKJC9WFuQJSGlFKUaBVNugFoFkdAkBlrNW2gF3V9lChoBmgJaA9DCE9bI4IxDHFAlIaUUpRoFU0/AWgWR0CQGcLfUF0QdX2UKGgGaAloD0MINNWT+cftckCUhpRSlGgVTWwBaBZHQJAahFc6eXl1fZQoaAZoCWgPQwhtrMQ8ayZzQJSGlFKUaBVNOgFoFkdAkBqQaaTfSHV9lChoBmgJaA9DCCJwJNBgAm9AlIaUUpRoFU0fAWgWR0CQGr5n13+udX2UKGgGaAloD0MIcY3PZH/wbECUhpRSlGgVTQ0BaBZHQJAbkBNmDlJ1fZQoaAZoCWgPQwif5A6byHRtQJSGlFKUaBVNgQJoFkdAkBxNOh0yQHV9lChoBmgJaA9DCHTqymd5LWtAlIaUUpRoFU0RAWgWR0CQHxpztCzDdX2UKGgGaAloD0MIB0MdVrjPcECUhpRSlGgVTSYBaBZHQJAfePOpsGh1fZQoaAZoCWgPQwiBWgweppxxQJSGlFKUaBVNewFoFkdAkCCDmSyMUHV9lChoBmgJaA9DCE6zQLvDxXBAlIaUUpRoFU2rAmgWR0CQIMv/BFd+dX2UKGgGaAloD0MI/l915MhnZkCUhpRSlGgVTegDaBZHQJAhwnb7CSB1ZS4="
|
73 |
+
},
|
74 |
+
"ep_success_buffer": {
|
75 |
+
":type:": "<class 'collections.deque'>",
|
76 |
+
":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
|
77 |
+
},
|
78 |
+
"_n_updates": 248,
|
79 |
+
"n_steps": 1024,
|
80 |
+
"gamma": 0.999,
|
81 |
+
"gae_lambda": 0.98,
|
82 |
+
"ent_coef": 0.01,
|
83 |
+
"vf_coef": 0.5,
|
84 |
+
"max_grad_norm": 0.5,
|
85 |
+
"batch_size": 64,
|
86 |
+
"n_epochs": 4,
|
87 |
+
"clip_range": {
|
88 |
+
":type:": "<class 'function'>",
|
89 |
+
":serialized:": "gAWVvwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAUsBSxNDBIgAUwCUToWUKYwBX5SFlIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5RLgEMCAAGUjAN2YWyUhZQpdJRSlH2UKIwLX19wYWNrYWdlX1+UjBhzdGFibGVfYmFzZWxpbmVzMy5jb21tb26UjAhfX25hbWVfX5SMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi51dGlsc5SMCF9fZmlsZV9flIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaCB9lH2UKGgXaA6MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgYjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"
|
90 |
+
},
|
91 |
+
"clip_range_vf": null,
|
92 |
+
"normalize_advantage": true,
|
93 |
+
"target_kl": null
|
94 |
+
}
|
ppo-LunarLander-v2/policy.optimizer.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:0e4084933d40e78f8b5e8c4c143f9c2a0552c482f2390588794897edf2ae6f10
|
3 |
+
size 84829
|
ppo-LunarLander-v2/policy.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:f67bf7ead269cd0bdb4a505b31db94a9e4ed555e4c60a82e5a3aef34a215014f
|
3 |
+
size 43201
|
ppo-LunarLander-v2/pytorch_variables.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:d030ad8db708280fcae77d87e973102039acd23a11bdecc3db8eb6c0ac940ee1
|
3 |
+
size 431
|
ppo-LunarLander-v2/system_info.txt
ADDED
@@ -0,0 +1,7 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
OS: Linux-5.4.188+-x86_64-with-Ubuntu-18.04-bionic #1 SMP Sun Apr 24 10:03:06 PDT 2022
|
2 |
+
Python: 3.7.13
|
3 |
+
Stable-Baselines3: 1.5.0
|
4 |
+
PyTorch: 1.11.0+cu113
|
5 |
+
GPU Enabled: True
|
6 |
+
Numpy: 1.21.6
|
7 |
+
Gym: 0.21.0
|
replay.mp4
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:1a80ac46ae0727b0212ead3fb209e459cab25d2df7992c6fe4dceb5be7c5811e
|
3 |
+
size 217640
|
results.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"mean_reward": 264.1170068871596, "std_reward": 20.459064206473382, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2022-05-12T12:50:49.869815"}
|