Mustafa Mohamed commited on
Commit
f0ef3b5
·
1 Parent(s): e58cea9

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +37 -0
README.md CHANGED
@@ -1,3 +1,40 @@
1
  ---
2
  license: mit
 
 
 
 
 
 
 
3
  ---
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
  ---
2
  license: mit
3
+ tags:
4
+ - sentiment
5
+ - sentiment-analysis
6
+ - financial
7
+ - fine-tuned
8
+ - fine-tuned-bert
9
+ - bert-uncased
10
  ---
11
+
12
+ ### Model Overview:
13
+ This NLP model is fine-tuned with a focus on analyzing sentiment in financial text and news headlines. It was trained using the [bert-base-uncased](https://huggingface.co/bert-base-uncased) model on the [financial_phrasebank](https://huggingface.co/datasets/financial_phrasebank) and [auditor_sentiment](https://huggingface.co/datasets/FinanceInc/auditor_sentiment) datasets. It achieves the following accuracies in the trained datasets:
14
+
15
+ **financial_phrasebank accuracy:** 0.993
16
+ **auditor_senitment accuracy:** 0.974
17
+
18
+ ### Training Hyperparameters:
19
+
20
+ **Learning Rate:** 2e-05
21
+ **Train Batch Size:** 16
22
+ **Eval Batch Size:** 16
23
+ **Random Seed:** 42
24
+ **Optimizer:** AdamW-betas(0.9, 0.999)
25
+ **Learning Rate Scheduler:** Linear
26
+ **Number of Epochs:** 6
27
+ **Number of Warmup Steps:** 0.2 * Number of Training Steps
28
+
29
+ ### How To Use:
30
+
31
+ ```
32
+ >> from transformers import pipeline
33
+ >> pipe = pipeline("sentiment-analysis", model="mstafam/fine-tuned-bert-financial-sentimental-analysis")
34
+
35
+ >> text = "Example company has seen a 5% increase in revenue this quarter."
36
+
37
+ >> pipe(text)
38
+
39
+ [{'label': 'Positive', 'score': 0.9993795156478882}]
40
+ ```