Steve Chiou
commited on
Commit
·
5c3c6b0
1
Parent(s):
62e6f4c
update model card README.md
Browse files
README.md
ADDED
@@ -0,0 +1,89 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
license: cc-by-nc-4.0
|
3 |
+
tags:
|
4 |
+
- generated_from_trainer
|
5 |
+
metrics:
|
6 |
+
- accuracy
|
7 |
+
model-index:
|
8 |
+
- name: videomae-base-finetuned-engine-subset-20230313
|
9 |
+
results: []
|
10 |
+
---
|
11 |
+
|
12 |
+
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
|
13 |
+
should probably proofread and complete it, then remove this comment. -->
|
14 |
+
|
15 |
+
# videomae-base-finetuned-engine-subset-20230313
|
16 |
+
|
17 |
+
This model is a fine-tuned version of [MCG-NJU/videomae-base](https://huggingface.co/MCG-NJU/videomae-base) on an unknown dataset.
|
18 |
+
It achieves the following results on the evaluation set:
|
19 |
+
- Loss: 0.8913
|
20 |
+
- Accuracy: 0.6745
|
21 |
+
|
22 |
+
## Model description
|
23 |
+
|
24 |
+
More information needed
|
25 |
+
|
26 |
+
## Intended uses & limitations
|
27 |
+
|
28 |
+
More information needed
|
29 |
+
|
30 |
+
## Training and evaluation data
|
31 |
+
|
32 |
+
More information needed
|
33 |
+
|
34 |
+
## Training procedure
|
35 |
+
|
36 |
+
### Training hyperparameters
|
37 |
+
|
38 |
+
The following hyperparameters were used during training:
|
39 |
+
- learning_rate: 5e-05
|
40 |
+
- train_batch_size: 6
|
41 |
+
- eval_batch_size: 6
|
42 |
+
- seed: 42
|
43 |
+
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
|
44 |
+
- lr_scheduler_type: linear
|
45 |
+
- lr_scheduler_warmup_ratio: 0.1
|
46 |
+
- training_steps: 1110
|
47 |
+
|
48 |
+
### Training results
|
49 |
+
|
50 |
+
| Training Loss | Epoch | Step | Validation Loss | Accuracy |
|
51 |
+
|:-------------:|:-----:|:----:|:---------------:|:--------:|
|
52 |
+
| 2.6212 | 0.03 | 38 | 2.3629 | 0.3774 |
|
53 |
+
| 2.455 | 1.03 | 76 | 2.3674 | 0.2170 |
|
54 |
+
| 2.4311 | 2.03 | 114 | 2.2191 | 0.3231 |
|
55 |
+
| 2.2768 | 3.03 | 152 | 2.1227 | 0.3608 |
|
56 |
+
| 1.7528 | 4.03 | 190 | 1.7296 | 0.4363 |
|
57 |
+
| 1.5381 | 5.03 | 228 | 1.5016 | 0.4340 |
|
58 |
+
| 1.407 | 6.03 | 266 | 1.2878 | 0.5448 |
|
59 |
+
| 1.1053 | 7.03 | 304 | 1.5210 | 0.4009 |
|
60 |
+
| 1.0893 | 8.03 | 342 | 1.3902 | 0.4623 |
|
61 |
+
| 0.8136 | 9.03 | 380 | 1.6456 | 0.4033 |
|
62 |
+
| 0.9565 | 10.03 | 418 | 1.1826 | 0.5613 |
|
63 |
+
| 1.0147 | 11.03 | 456 | 1.2099 | 0.5118 |
|
64 |
+
| 0.9125 | 12.03 | 494 | 1.1850 | 0.5495 |
|
65 |
+
| 0.7091 | 13.03 | 532 | 1.2324 | 0.5354 |
|
66 |
+
| 0.7361 | 14.03 | 570 | 1.0225 | 0.6226 |
|
67 |
+
| 0.6979 | 15.03 | 608 | 1.0738 | 0.5590 |
|
68 |
+
| 0.5265 | 16.03 | 646 | 1.1062 | 0.5873 |
|
69 |
+
| 0.5651 | 17.03 | 684 | 1.1402 | 0.5802 |
|
70 |
+
| 0.7182 | 18.03 | 722 | 1.0974 | 0.5802 |
|
71 |
+
| 0.6582 | 19.03 | 760 | 1.0529 | 0.6179 |
|
72 |
+
| 0.5709 | 20.03 | 798 | 0.9655 | 0.6344 |
|
73 |
+
| 0.4808 | 21.03 | 836 | 1.0441 | 0.6226 |
|
74 |
+
| 0.5816 | 22.03 | 874 | 0.9445 | 0.6439 |
|
75 |
+
| 0.5057 | 23.03 | 912 | 1.0248 | 0.6321 |
|
76 |
+
| 0.6253 | 24.03 | 950 | 0.9518 | 0.6604 |
|
77 |
+
| 0.6841 | 25.03 | 988 | 0.8913 | 0.6745 |
|
78 |
+
| 0.5933 | 26.03 | 1026 | 0.9013 | 0.6439 |
|
79 |
+
| 0.389 | 27.03 | 1064 | 0.9090 | 0.6627 |
|
80 |
+
| 0.3705 | 28.03 | 1102 | 0.8936 | 0.6722 |
|
81 |
+
| 0.6043 | 29.01 | 1110 | 0.8942 | 0.6722 |
|
82 |
+
|
83 |
+
|
84 |
+
### Framework versions
|
85 |
+
|
86 |
+
- Transformers 4.26.1
|
87 |
+
- Pytorch 1.12.1+cu113
|
88 |
+
- Datasets 2.10.1
|
89 |
+
- Tokenizers 0.13.2
|