{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7f4053922310>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f40539223a0>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f4053922430>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f40539224c0>", "_build": "<function ActorCriticPolicy._build at 0x7f4053922550>", "forward": "<function ActorCriticPolicy.forward at 0x7f40539225e0>", "extract_features": "<function ActorCriticPolicy.extract_features at 0x7f4053922670>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f4053922700>", "_predict": "<function ActorCriticPolicy._predict at 0x7f4053922790>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f4053922820>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f40539228b0>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7f4053922940>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc_data object at 0x7f4053918ba0>"}, "verbose": 1, "policy_kwargs": {":type:": "<class 'dict'>", ":serialized:": "gAWVowAAAAAAAAB9lCiMDGxvZ19zdGRfaW5pdJRK/v///4wKb3J0aG9faW5pdJSJjA9vcHRpbWl6ZXJfY2xhc3OUjBN0b3JjaC5vcHRpbS5ybXNwcm9wlIwHUk1TcHJvcJSTlIwQb3B0aW1pemVyX2t3YXJnc5R9lCiMBWFscGhhlEc/764UeuFHrowDZXBzlEc+5Pi1iONo8YwMd2VpZ2h0X2RlY2F5lEsAdXUu", "log_std_init": -2, "ortho_init": false, "optimizer_class": "<class 'torch.optim.rmsprop.RMSprop'>", "optimizer_kwargs": {"alpha": 0.99, "eps": 1e-05, "weight_decay": 0}}, "observation_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVZwIAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLHIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWcAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/lGgKSxyFlIwBQ5R0lFKUjARoaWdolGgSKJZwAAAAAAAAAAAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH+UaApLHIWUaBV0lFKUjA1ib3VuZGVkX2JlbG93lGgSKJYcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLHIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUaCFLHIWUaBV0lFKUjApfbnBfcmFuZG9tlE51Yi4=", "dtype": "float32", "_shape": [28], "low": "[-inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf\n -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf]", "high": "[inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf\n inf inf inf inf inf inf inf inf inf inf]", "bounded_below": "[False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False]", "bounded_above": "[False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False]", "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAIC/AACAvwAAgL8AAIC/AACAvwAAgL8AAIC/AACAv5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAP5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAQEBAQEBAQGUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAEBAQEBAQEBlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu", "dtype": "float32", "_shape": [8], "low": "[-1. -1. -1. -1. -1. -1. -1. -1.]", "high": "[1. 1. 1. 1. 1. 1. 1. 1.]", "bounded_below": "[ True True True True True True True True]", "bounded_above": "[ True True True True True True True True]", "_np_random": null}, "n_envs": 4, "num_timesteps": 2000000, "_total_timesteps": 2000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1674815574999660434, "learning_rate": 0.00096, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/T3UQTVUdaYWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVNQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJbAAQAAAAAAACKVD8CP1pQ/WursvRtOtL9OroO++8JpPTPkTT6EGmc/fRD0Pv40PrxdWma/7ytuvPPWCECBRRE7b8AfPzqJnDxTvA/A0Q9gu0glXT8qp8U8f4amP1j75DvMcou/fv1tvBu2gD/1iiE/kaQCP7HygD/P4nA+fiuAPv5v+j6Mg7i64Y7XvmqM9rxd6Ys/Faupv18FRL/AkQ8/ctXXvnaZqT82Cl0+eoTrvogaMD1cbiU+BaR9P8ImBb/Eqlg/nNbEvRZwPT+x3Sa+AST1PpcT1L7NlX6/9YohP5GkAj8uHn6/RLf2v0QX67/46TK/1Iipv4wN7T/tz6A+xl9hP36VcT84tJm/2ykEQA8mZr+muHm7fN8FQIGz7T9phx0/NQjNu3unAsBNixY/qyZgPyt0KDwS6zxAYnyIO3UojL91spO8zZV+vxXYyr+RpAI/sfKAP9mzML/LT4K//niCPvh/Hj8W3Im+5M2Tv7gpW7+47CA/PYO3v300QL9gYAe/2zmMP62t5D40sGO/H4AeP11ehzze2XI/bvlxvxYCCb/e9ZY/keoWvwtHfT+u/dO9uvkOwM2Vfr/1iiE/PNL6vy4efr+UjAVudW1weZSMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiSwRLHIaUjAFDlHSUUpQu"}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYEAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKULg=="}, "_last_original_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVNQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJbAAQAAAAAAAAAAAACA1x22AACAPwAAAAAAAAAAAAAAAAAAAAAAAACAiar5PAAAAAD0Etq/AAAAADSLVjwAAAAAst3/PwAAAAA4udy9AAAAAH0h5j8AAAAAK3XPvAAAAABK4uK/AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAqqURNgAAgD8AAAAAAAAAAAAAAAAAAAAAAAAAgKpm2j0AAAAAjDbhvwAAAAA0tqk9AAAAAL0O7z8AAAAAb7o4PQAAAACect8/AAAAADUTjL0AAAAA/r3lvwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAN8hGjYAAIA/AAAAAAAAAAAAAAAAAAAAAAAAAIDia+G9AAAAALay8b8AAAAAeNeZPQAAAAAW7eU/AAAAAJ/2SzwAAAAAUVrfPwAAAADATM49AAAAALrn8r8AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADcTS81AACAPwAAAAAAAAAAAAAAAAAAAAAAAACA6x8OvgAAAACl9uC/AAAAABHggr0AAAAAT3wAQAAAAACI/w++AAAAAOuT3j8AAAAASj3CvQAAAAARFvm/AAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiSwRLHIaUjAFDlHSUUpQu"}, "_episode_num": 0, "use_sde": true, "sde_sample_freq": -1, "_current_progress_remaining": 0.0, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVRAwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQJypASqU/wCMAWyUTegDjAF0lEdAp2ngrtmcv3V9lChoBkdAm2b5CKJl8WgHTegDaAhHQKdsZga3qiZ1fZQoaAZHQJvozpLVWjpoB03oA2gIR0CnbYvgWJrMdX2UKGgGR0CY1xPUrkKeaAdN6ANoCEdAp3LqjWTX8XV9lChoBkdAltQX752yLWgHTegDaAhHQKd2Av8IiTt1fZQoaAZHQJmNWwr1/UhoB03oA2gIR0CneI99+gDidX2UKGgGR0CcsOK1XvH+aAdN6ANoCEdAp3ml8NQTEnV9lChoBkdAnfCO2y9mH2gHTegDaAhHQKd/KgYgq3F1fZQoaAZHQJ2FJL/S6UdoB03oA2gIR0CngmFB6a9cdX2UKGgGR0CZI9z8P4EfaAdN6ANoCEdAp4TsUfxMFnV9lChoBkdAnTwCEg4ffWgHTegDaAhHQKeGEevpyIZ1fZQoaAZHQJ3iU7PppvhoB03oA2gIR0Cni8RgAp8XdX2UKGgGR0CbE/IlMRHxaAdN6ANoCEdAp47gEGJN03V9lChoBkdAm8+8h5gPVmgHTegDaAhHQKeRROpsGgV1fZQoaAZHQJkYZQrMC91oB03oA2gIR0Cnkktt65XmdX2UKGgGR0Cd8p/QSi/PaAdN6ANoCEdAp5equ8scyXV9lChoBkdAnL2ScXm/32gHTegDaAhHQKeatsjVx0d1fZQoaAZHQJQvhpwjt5VoB03oA2gIR0CnnR+fRNRFdX2UKGgGR0CX9GchC+lCaAdN6ANoCEdAp543N7jT8nV9lChoBkdAkyIwLApKBmgHTegDaAhHQKejiy2QXAN1fZQoaAZHQJafMBCD28JoB03oA2gIR0CnprxHoX9BdX2UKGgGR0CTLbxkupS8aAdN6ANoCEdAp6lQcrAgxXV9lChoBkdAnhLEOZssQWgHTegDaAhHQKeqggK4QSV1fZQoaAZHQJtm6y4Wk8BoB03oA2gIR0CnsAkNWluWdX2UKGgGR0Cd8K4lhPTHaAdN6ANoCEdAp7MdJL/S6XV9lChoBkdAmXyXndO6/mgHTegDaAhHQKe13rC3w1B1fZQoaAZHQJMqH+Lm6oVoB03oA2gIR0CntvyuhbnpdX2UKGgGR0CZyXjJMg2ZaAdN6ANoCEdAp7yf/zasZHV9lChoBkdAkdludPLxJGgHTegDaAhHQKe/w48U21l1fZQoaAZHQJn4pYjjaPFoB03oA2gIR0CnwkQK8cuKdX2UKGgGR0Cbx7kt29teaAdN6ANoCEdAp8Np5iVjZ3V9lChoBkdAmTYmwNb1RWgHTegDaAhHQKfI/L26ClJ1fZQoaAZHQJs8m+pOvdNoB03oA2gIR0CnzDANwzcidX2UKGgGR0CccxG9YfW+aAdN6ANoCEdAp86zMV1wHnV9lChoBkdAl03j9n9NvmgHTegDaAhHQKfPwKMNtqJ1fZQoaAZHQJf18Yl6Z6VoB03oA2gIR0Cn1UHsC1Z1dX2UKGgGR0Ccwz6Y3Ns4aAdN6ANoCEdAp9hvpjc2znV9lChoBkdAlztdmYjSomgHTegDaAhHQKfbCNFz+3p1fZQoaAZHQJDBj5HmRvFoB03oA2gIR0Cn3D3gk1MudX2UKGgGR0Ca1PXtjTa1aAdN6ANoCEdAp+Hci8nNPnV9lChoBkdAjFneQ2dd3WgHTegDaAhHQKfk9xn3+Mt1fZQoaAZHQJtuGFrVOKxoB03oA2gIR0Cn54N5D7ZWdX2UKGgGR0CWHBGJN0vHaAdN6ANoCEdAp+iVeyAxz3V9lChoBkdAn4OE+PikwmgHTegDaAhHQKfuH003wTd1fZQoaAZHQJuSLO0LMLZoB03oA2gIR0Cn8RcxCY1HdX2UKGgGR0CbSuaJyhi9aAdN6ANoCEdAp/OOK4x1xXV9lChoBkdAnUMQ6U7jk2gHTegDaAhHQKf0ldhRZU11fZQoaAZHQJePxg+hXbNoB03oA2gIR0Cn+fGff4yodX2UKGgGR0CClQ6+WWyDaAdN6ANoCEdAp/0OBz3h43V9lChoBkdAleCpVCHARGgHTegDaAhHQKf/eEidJ8R1fZQoaAZHQIYd3wAlv61oB03oA2gIR0CoAInSF49pdX2UKGgGR0CQhFp5eJHiaAdN6ANoCEdAqAdnnU2DQXV9lChoBkdAnL7vKdQO4GgHTegDaAhHQKgMUR28qWl1fZQoaAZHQJuYiKziS7poB03oA2gIR0CoDwZZKWcCdX2UKGgGR0CdQrB06o2oaAdN6ANoCEdAqBAvDk2gnXV9lChoBkdAnrSNrbg0j2gHTegDaAhHQKgVbqPfbbl1fZQoaAZHQJ58OPuG9HtoB03oA2gIR0CoGIKb8WKudX2UKGgGR0CW1jm5lOGkaAdN6ANoCEdAqBr3c32mHnV9lChoBkdAhDsGJ3xFzGgHTegDaAhHQKgcGo8ZDRd1fZQoaAZHQJY+esLfDUFoB03oA2gIR0CoIZhrvb48dX2UKGgGR0CCMgV8CxNZaAdN6ANoCEdAqCS/s9jgAXV9lChoBkdAlSgLpV0cO2gHTegDaAhHQKgnL95Qgs91fZQoaAZHQJDkdr/KhctoB03oA2gIR0CoKEdIGyHEdX2UKGgGR0Cd2AAH3UQTaAdN6ANoCEdAqC3gzFdcB3V9lChoBkdAn2wJWBBiTmgHTegDaAhHQKgw7bsWweN1fZQoaAZHQJaFDF3pwCNoB03oA2gIR0CoM34mTkhidX2UKGgGR0CTHLyuZCv6aAdN6ANoCEdAqDSa0hNdq3V9lChoBkdAkjFJOvdM02gHTegDaAhHQKg5zPYWcjJ1fZQoaAZHQJM49a+vhZRoB03oA2gIR0CoPO+gctGvdX2UKGgGR0CQZZcvM8oyaAdN6ANoCEdAqD9nZXdTHnV9lChoBkdAlOb7IcR15mgHTegDaAhHQKhAmN5MURF1fZQoaAZHQJojB4A0bcZoB03oA2gIR0CoRiSl3yI6dX2UKGgGR0CfbsBaLXMAaAdN6ANoCEdAqEk1mQKa5XV9lChoBkdAl7/AeRxLkGgHTegDaAhHQKhLnE9dNWV1fZQoaAZHQJssI8kleGBoB03oA2gIR0CoTLiRfWtmdX2UKGgGR0CgLMJ9y926aAdN6ANoCEdAqFIXtUn5SHV9lChoBkdAncsyAhB7eGgHTegDaAhHQKhVDpXZGrl1fZQoaAZHQJ4wacbzbvhoB03oA2gIR0CoV3wTVUdadX2UKGgGR0CdH3/yGzrvaAdN6ANoCEdAqFiGNedCmnV9lChoBkdAnYlS53C9AWgHTegDaAhHQKhdwRaHKwJ1fZQoaAZHQJ9I4GiYb85oB03oA2gIR0CoYNYQBgeBdX2UKGgGR0CggaExh2GJaAdN6ANoCEdAqGNOFL39JnV9lChoBkdAoMOV7KJVKmgHTegDaAhHQKhkVF7Uoa11fZQoaAZHQKD8/QLux8loB03oA2gIR0CoaZlKCg9NdX2UKGgGR0Cdb9OMERraaAdN6ANoCEdAqGyQ5Jbt7nV9lChoBkdAncnBY/3WWmgHTegDaAhHQKhu9XkHUtt1fZQoaAZHQJuEl1IRRMxoB03oA2gIR0CocBDb8FY/dX2UKGgGR0CcT2cv/R3NaAdN6ANoCEdAqHVu6bvw3HV9lChoBkdAluoL2tdRi2gHTbsDaAhHQKh4BzbN8md1fZQoaAZHQIbWmIAOrhloB03oA2gIR0CoewKuSwGGdX2UKGgGR0CQ8XOfdyksaAdN6ANoCEdAqHwgKYzBRHV9lChoBkdAjzbQWFev6mgHTegDaAhHQKiBcSxJNCZ1fZQoaAZHQJHKwYzi0fJoB03oA2gIR0CohARv3rUtdX2UKGgGR0CRSDfyPMjeaAdN9gJoCEdAqIQamTC+DnV9lChoBkdAleTfy9VWCGgHTegDaAhHQKiIDibUgB91fZQoaAZHQJuQ7iGWUr1oB03oA2gIR0CojV2IO6NEdX2UKGgGR0CVoc/lhgE2aAdN6ANoCEdAqI/hPwd8zHV9lChoBkdAmi245DJEIGgHTegDaAhHQKiQAB5ooNN1fZQoaAZHQJfgSd4FA3VoB03oA2gIR0ColBEkjX4CdX2UKGgGR0CcZjblzU7TaAdN6ANoCEdAqJmgwh4dIXVlLg=="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 62500, "n_steps": 8, "gamma": 0.99, "gae_lambda": 0.9, "ent_coef": 0.0, "vf_coef": 0.4, "max_grad_norm": 0.5, "normalize_advantage": false, "system_info": {"OS": "Linux-5.10.147+-x86_64-with-glibc2.29 # 1 SMP Sat Dec 10 16:00:40 UTC 2022", "Python": "3.8.10", "Stable-Baselines3": "1.7.0", "PyTorch": "1.13.1+cu116", "GPU Enabled": "True", "Numpy": "1.21.6", "Gym": "0.21.0"}} |