stefan-it's picture
Upload folder using huggingface_hub
2644dc4
raw
history blame
25.4 kB
2023-10-11 20:52:35,997 ----------------------------------------------------------------------------------------------------
2023-10-11 20:52:35,999 Model: "SequenceTagger(
(embeddings): ByT5Embeddings(
(model): T5EncoderModel(
(shared): Embedding(384, 1472)
(encoder): T5Stack(
(embed_tokens): Embedding(384, 1472)
(block): ModuleList(
(0): T5Block(
(layer): ModuleList(
(0): T5LayerSelfAttention(
(SelfAttention): T5Attention(
(q): Linear(in_features=1472, out_features=384, bias=False)
(k): Linear(in_features=1472, out_features=384, bias=False)
(v): Linear(in_features=1472, out_features=384, bias=False)
(o): Linear(in_features=384, out_features=1472, bias=False)
(relative_attention_bias): Embedding(32, 6)
)
(layer_norm): FusedRMSNorm(torch.Size([1472]), eps=1e-06, elementwise_affine=True)
(dropout): Dropout(p=0.1, inplace=False)
)
(1): T5LayerFF(
(DenseReluDense): T5DenseGatedActDense(
(wi_0): Linear(in_features=1472, out_features=3584, bias=False)
(wi_1): Linear(in_features=1472, out_features=3584, bias=False)
(wo): Linear(in_features=3584, out_features=1472, bias=False)
(dropout): Dropout(p=0.1, inplace=False)
(act): NewGELUActivation()
)
(layer_norm): FusedRMSNorm(torch.Size([1472]), eps=1e-06, elementwise_affine=True)
(dropout): Dropout(p=0.1, inplace=False)
)
)
)
(1-11): 11 x T5Block(
(layer): ModuleList(
(0): T5LayerSelfAttention(
(SelfAttention): T5Attention(
(q): Linear(in_features=1472, out_features=384, bias=False)
(k): Linear(in_features=1472, out_features=384, bias=False)
(v): Linear(in_features=1472, out_features=384, bias=False)
(o): Linear(in_features=384, out_features=1472, bias=False)
)
(layer_norm): FusedRMSNorm(torch.Size([1472]), eps=1e-06, elementwise_affine=True)
(dropout): Dropout(p=0.1, inplace=False)
)
(1): T5LayerFF(
(DenseReluDense): T5DenseGatedActDense(
(wi_0): Linear(in_features=1472, out_features=3584, bias=False)
(wi_1): Linear(in_features=1472, out_features=3584, bias=False)
(wo): Linear(in_features=3584, out_features=1472, bias=False)
(dropout): Dropout(p=0.1, inplace=False)
(act): NewGELUActivation()
)
(layer_norm): FusedRMSNorm(torch.Size([1472]), eps=1e-06, elementwise_affine=True)
(dropout): Dropout(p=0.1, inplace=False)
)
)
)
)
(final_layer_norm): FusedRMSNorm(torch.Size([1472]), eps=1e-06, elementwise_affine=True)
(dropout): Dropout(p=0.1, inplace=False)
)
)
)
(locked_dropout): LockedDropout(p=0.5)
(linear): Linear(in_features=1472, out_features=17, bias=True)
(loss_function): CrossEntropyLoss()
)"
2023-10-11 20:52:36,000 ----------------------------------------------------------------------------------------------------
2023-10-11 20:52:36,000 MultiCorpus: 7142 train + 698 dev + 2570 test sentences
- NER_HIPE_2022 Corpus: 7142 train + 698 dev + 2570 test sentences - /root/.flair/datasets/ner_hipe_2022/v2.1/newseye/fr/with_doc_seperator
2023-10-11 20:52:36,000 ----------------------------------------------------------------------------------------------------
2023-10-11 20:52:36,000 Train: 7142 sentences
2023-10-11 20:52:36,000 (train_with_dev=False, train_with_test=False)
2023-10-11 20:52:36,000 ----------------------------------------------------------------------------------------------------
2023-10-11 20:52:36,000 Training Params:
2023-10-11 20:52:36,000 - learning_rate: "0.00015"
2023-10-11 20:52:36,000 - mini_batch_size: "8"
2023-10-11 20:52:36,000 - max_epochs: "10"
2023-10-11 20:52:36,000 - shuffle: "True"
2023-10-11 20:52:36,000 ----------------------------------------------------------------------------------------------------
2023-10-11 20:52:36,001 Plugins:
2023-10-11 20:52:36,001 - TensorboardLogger
2023-10-11 20:52:36,001 - LinearScheduler | warmup_fraction: '0.1'
2023-10-11 20:52:36,001 ----------------------------------------------------------------------------------------------------
2023-10-11 20:52:36,001 Final evaluation on model from best epoch (best-model.pt)
2023-10-11 20:52:36,001 - metric: "('micro avg', 'f1-score')"
2023-10-11 20:52:36,001 ----------------------------------------------------------------------------------------------------
2023-10-11 20:52:36,001 Computation:
2023-10-11 20:52:36,001 - compute on device: cuda:0
2023-10-11 20:52:36,001 - embedding storage: none
2023-10-11 20:52:36,001 ----------------------------------------------------------------------------------------------------
2023-10-11 20:52:36,001 Model training base path: "hmbench-newseye/fr-hmbyt5-preliminary/byt5-small-historic-multilingual-span20-flax-bs8-wsFalse-e10-lr0.00015-poolingfirst-layers-1-crfFalse-5"
2023-10-11 20:52:36,001 ----------------------------------------------------------------------------------------------------
2023-10-11 20:52:36,001 ----------------------------------------------------------------------------------------------------
2023-10-11 20:52:36,002 Logging anything other than scalars to TensorBoard is currently not supported.
2023-10-11 20:53:30,393 epoch 1 - iter 89/893 - loss 2.81613488 - time (sec): 54.39 - samples/sec: 498.00 - lr: 0.000015 - momentum: 0.000000
2023-10-11 20:54:22,518 epoch 1 - iter 178/893 - loss 2.73845748 - time (sec): 106.51 - samples/sec: 496.29 - lr: 0.000030 - momentum: 0.000000
2023-10-11 20:55:13,898 epoch 1 - iter 267/893 - loss 2.54046487 - time (sec): 157.89 - samples/sec: 504.70 - lr: 0.000045 - momentum: 0.000000
2023-10-11 20:56:03,634 epoch 1 - iter 356/893 - loss 2.33753858 - time (sec): 207.63 - samples/sec: 504.86 - lr: 0.000060 - momentum: 0.000000
2023-10-11 20:56:52,756 epoch 1 - iter 445/893 - loss 2.11803692 - time (sec): 256.75 - samples/sec: 503.90 - lr: 0.000075 - momentum: 0.000000
2023-10-11 20:57:41,859 epoch 1 - iter 534/893 - loss 1.90825297 - time (sec): 305.86 - samples/sec: 500.33 - lr: 0.000090 - momentum: 0.000000
2023-10-11 20:58:30,865 epoch 1 - iter 623/893 - loss 1.73583373 - time (sec): 354.86 - samples/sec: 498.90 - lr: 0.000104 - momentum: 0.000000
2023-10-11 20:59:18,284 epoch 1 - iter 712/893 - loss 1.60212408 - time (sec): 402.28 - samples/sec: 495.84 - lr: 0.000119 - momentum: 0.000000
2023-10-11 21:00:07,780 epoch 1 - iter 801/893 - loss 1.47431684 - time (sec): 451.78 - samples/sec: 494.97 - lr: 0.000134 - momentum: 0.000000
2023-10-11 21:00:56,330 epoch 1 - iter 890/893 - loss 1.36510703 - time (sec): 500.33 - samples/sec: 495.86 - lr: 0.000149 - momentum: 0.000000
2023-10-11 21:00:57,770 ----------------------------------------------------------------------------------------------------
2023-10-11 21:00:57,771 EPOCH 1 done: loss 1.3620 - lr: 0.000149
2023-10-11 21:01:17,012 DEV : loss 0.2528855502605438 - f1-score (micro avg) 0.3972
2023-10-11 21:01:17,041 saving best model
2023-10-11 21:01:17,905 ----------------------------------------------------------------------------------------------------
2023-10-11 21:02:06,967 epoch 2 - iter 89/893 - loss 0.31703165 - time (sec): 49.06 - samples/sec: 508.66 - lr: 0.000148 - momentum: 0.000000
2023-10-11 21:02:56,720 epoch 2 - iter 178/893 - loss 0.29370793 - time (sec): 98.81 - samples/sec: 509.36 - lr: 0.000147 - momentum: 0.000000
2023-10-11 21:03:47,381 epoch 2 - iter 267/893 - loss 0.26771875 - time (sec): 149.47 - samples/sec: 504.46 - lr: 0.000145 - momentum: 0.000000
2023-10-11 21:04:35,944 epoch 2 - iter 356/893 - loss 0.24749931 - time (sec): 198.04 - samples/sec: 504.18 - lr: 0.000143 - momentum: 0.000000
2023-10-11 21:05:25,721 epoch 2 - iter 445/893 - loss 0.22753805 - time (sec): 247.81 - samples/sec: 509.20 - lr: 0.000142 - momentum: 0.000000
2023-10-11 21:06:13,587 epoch 2 - iter 534/893 - loss 0.21653155 - time (sec): 295.68 - samples/sec: 505.52 - lr: 0.000140 - momentum: 0.000000
2023-10-11 21:07:01,206 epoch 2 - iter 623/893 - loss 0.20530533 - time (sec): 343.30 - samples/sec: 504.85 - lr: 0.000138 - momentum: 0.000000
2023-10-11 21:07:49,818 epoch 2 - iter 712/893 - loss 0.19565496 - time (sec): 391.91 - samples/sec: 507.23 - lr: 0.000137 - momentum: 0.000000
2023-10-11 21:08:37,917 epoch 2 - iter 801/893 - loss 0.18851018 - time (sec): 440.01 - samples/sec: 506.57 - lr: 0.000135 - momentum: 0.000000
2023-10-11 21:09:26,153 epoch 2 - iter 890/893 - loss 0.17990919 - time (sec): 488.25 - samples/sec: 507.13 - lr: 0.000133 - momentum: 0.000000
2023-10-11 21:09:27,932 ----------------------------------------------------------------------------------------------------
2023-10-11 21:09:27,933 EPOCH 2 done: loss 0.1797 - lr: 0.000133
2023-10-11 21:09:49,130 DEV : loss 0.10362720489501953 - f1-score (micro avg) 0.7507
2023-10-11 21:09:49,162 saving best model
2023-10-11 21:09:51,732 ----------------------------------------------------------------------------------------------------
2023-10-11 21:10:41,847 epoch 3 - iter 89/893 - loss 0.08229146 - time (sec): 50.11 - samples/sec: 489.78 - lr: 0.000132 - momentum: 0.000000
2023-10-11 21:11:31,776 epoch 3 - iter 178/893 - loss 0.08114947 - time (sec): 100.04 - samples/sec: 500.73 - lr: 0.000130 - momentum: 0.000000
2023-10-11 21:12:20,073 epoch 3 - iter 267/893 - loss 0.08051125 - time (sec): 148.34 - samples/sec: 497.04 - lr: 0.000128 - momentum: 0.000000
2023-10-11 21:13:08,650 epoch 3 - iter 356/893 - loss 0.07991414 - time (sec): 196.91 - samples/sec: 497.08 - lr: 0.000127 - momentum: 0.000000
2023-10-11 21:13:59,030 epoch 3 - iter 445/893 - loss 0.07654832 - time (sec): 247.29 - samples/sec: 499.98 - lr: 0.000125 - momentum: 0.000000
2023-10-11 21:14:49,928 epoch 3 - iter 534/893 - loss 0.07698540 - time (sec): 298.19 - samples/sec: 500.71 - lr: 0.000123 - momentum: 0.000000
2023-10-11 21:15:39,596 epoch 3 - iter 623/893 - loss 0.07568197 - time (sec): 347.86 - samples/sec: 500.44 - lr: 0.000122 - momentum: 0.000000
2023-10-11 21:16:26,772 epoch 3 - iter 712/893 - loss 0.07552582 - time (sec): 395.04 - samples/sec: 499.42 - lr: 0.000120 - momentum: 0.000000
2023-10-11 21:17:14,772 epoch 3 - iter 801/893 - loss 0.07615903 - time (sec): 443.04 - samples/sec: 500.35 - lr: 0.000118 - momentum: 0.000000
2023-10-11 21:18:04,158 epoch 3 - iter 890/893 - loss 0.07422971 - time (sec): 492.42 - samples/sec: 503.52 - lr: 0.000117 - momentum: 0.000000
2023-10-11 21:18:05,654 ----------------------------------------------------------------------------------------------------
2023-10-11 21:18:05,654 EPOCH 3 done: loss 0.0744 - lr: 0.000117
2023-10-11 21:18:26,816 DEV : loss 0.10866602510213852 - f1-score (micro avg) 0.7824
2023-10-11 21:18:26,845 saving best model
2023-10-11 21:18:29,409 ----------------------------------------------------------------------------------------------------
2023-10-11 21:19:18,462 epoch 4 - iter 89/893 - loss 0.05155868 - time (sec): 49.05 - samples/sec: 546.85 - lr: 0.000115 - momentum: 0.000000
2023-10-11 21:20:06,688 epoch 4 - iter 178/893 - loss 0.04973704 - time (sec): 97.27 - samples/sec: 522.35 - lr: 0.000113 - momentum: 0.000000
2023-10-11 21:20:54,538 epoch 4 - iter 267/893 - loss 0.04803400 - time (sec): 145.12 - samples/sec: 523.03 - lr: 0.000112 - momentum: 0.000000
2023-10-11 21:21:42,141 epoch 4 - iter 356/893 - loss 0.04813800 - time (sec): 192.73 - samples/sec: 521.30 - lr: 0.000110 - momentum: 0.000000
2023-10-11 21:22:29,528 epoch 4 - iter 445/893 - loss 0.05071141 - time (sec): 240.11 - samples/sec: 516.67 - lr: 0.000108 - momentum: 0.000000
2023-10-11 21:23:17,733 epoch 4 - iter 534/893 - loss 0.05008976 - time (sec): 288.32 - samples/sec: 518.01 - lr: 0.000107 - momentum: 0.000000
2023-10-11 21:24:04,878 epoch 4 - iter 623/893 - loss 0.05021815 - time (sec): 335.46 - samples/sec: 516.12 - lr: 0.000105 - momentum: 0.000000
2023-10-11 21:24:52,076 epoch 4 - iter 712/893 - loss 0.05021718 - time (sec): 382.66 - samples/sec: 515.30 - lr: 0.000103 - momentum: 0.000000
2023-10-11 21:25:41,335 epoch 4 - iter 801/893 - loss 0.05019721 - time (sec): 431.92 - samples/sec: 518.39 - lr: 0.000102 - momentum: 0.000000
2023-10-11 21:26:29,456 epoch 4 - iter 890/893 - loss 0.05021542 - time (sec): 480.04 - samples/sec: 516.82 - lr: 0.000100 - momentum: 0.000000
2023-10-11 21:26:30,870 ----------------------------------------------------------------------------------------------------
2023-10-11 21:26:30,870 EPOCH 4 done: loss 0.0502 - lr: 0.000100
2023-10-11 21:26:52,142 DEV : loss 0.12372089177370071 - f1-score (micro avg) 0.7877
2023-10-11 21:26:52,174 saving best model
2023-10-11 21:26:54,776 ----------------------------------------------------------------------------------------------------
2023-10-11 21:27:42,615 epoch 5 - iter 89/893 - loss 0.03046838 - time (sec): 47.83 - samples/sec: 512.85 - lr: 0.000098 - momentum: 0.000000
2023-10-11 21:28:30,404 epoch 5 - iter 178/893 - loss 0.03085776 - time (sec): 95.62 - samples/sec: 512.12 - lr: 0.000097 - momentum: 0.000000
2023-10-11 21:29:19,488 epoch 5 - iter 267/893 - loss 0.03370752 - time (sec): 144.71 - samples/sec: 513.15 - lr: 0.000095 - momentum: 0.000000
2023-10-11 21:30:07,132 epoch 5 - iter 356/893 - loss 0.03329933 - time (sec): 192.35 - samples/sec: 508.19 - lr: 0.000093 - momentum: 0.000000
2023-10-11 21:30:54,518 epoch 5 - iter 445/893 - loss 0.03377639 - time (sec): 239.74 - samples/sec: 507.69 - lr: 0.000092 - momentum: 0.000000
2023-10-11 21:31:42,115 epoch 5 - iter 534/893 - loss 0.03379913 - time (sec): 287.33 - samples/sec: 509.40 - lr: 0.000090 - momentum: 0.000000
2023-10-11 21:32:31,921 epoch 5 - iter 623/893 - loss 0.03448817 - time (sec): 337.14 - samples/sec: 515.02 - lr: 0.000088 - momentum: 0.000000
2023-10-11 21:33:19,817 epoch 5 - iter 712/893 - loss 0.03635184 - time (sec): 385.04 - samples/sec: 515.41 - lr: 0.000087 - momentum: 0.000000
2023-10-11 21:34:08,207 epoch 5 - iter 801/893 - loss 0.03720106 - time (sec): 433.43 - samples/sec: 515.07 - lr: 0.000085 - momentum: 0.000000
2023-10-11 21:34:56,748 epoch 5 - iter 890/893 - loss 0.03706033 - time (sec): 481.97 - samples/sec: 514.77 - lr: 0.000083 - momentum: 0.000000
2023-10-11 21:34:58,157 ----------------------------------------------------------------------------------------------------
2023-10-11 21:34:58,158 EPOCH 5 done: loss 0.0370 - lr: 0.000083
2023-10-11 21:35:19,477 DEV : loss 0.1354159116744995 - f1-score (micro avg) 0.8008
2023-10-11 21:35:19,508 saving best model
2023-10-11 21:35:22,255 ----------------------------------------------------------------------------------------------------
2023-10-11 21:36:12,944 epoch 6 - iter 89/893 - loss 0.02532107 - time (sec): 50.69 - samples/sec: 506.97 - lr: 0.000082 - momentum: 0.000000
2023-10-11 21:37:02,222 epoch 6 - iter 178/893 - loss 0.02623938 - time (sec): 99.96 - samples/sec: 498.02 - lr: 0.000080 - momentum: 0.000000
2023-10-11 21:37:54,722 epoch 6 - iter 267/893 - loss 0.02667748 - time (sec): 152.46 - samples/sec: 505.98 - lr: 0.000078 - momentum: 0.000000
2023-10-11 21:38:44,103 epoch 6 - iter 356/893 - loss 0.02740607 - time (sec): 201.84 - samples/sec: 501.98 - lr: 0.000077 - momentum: 0.000000
2023-10-11 21:39:34,876 epoch 6 - iter 445/893 - loss 0.02812179 - time (sec): 252.62 - samples/sec: 504.13 - lr: 0.000075 - momentum: 0.000000
2023-10-11 21:40:23,868 epoch 6 - iter 534/893 - loss 0.02732688 - time (sec): 301.61 - samples/sec: 502.95 - lr: 0.000073 - momentum: 0.000000
2023-10-11 21:41:12,773 epoch 6 - iter 623/893 - loss 0.02745474 - time (sec): 350.51 - samples/sec: 501.52 - lr: 0.000072 - momentum: 0.000000
2023-10-11 21:42:02,849 epoch 6 - iter 712/893 - loss 0.02741235 - time (sec): 400.59 - samples/sec: 501.62 - lr: 0.000070 - momentum: 0.000000
2023-10-11 21:42:51,619 epoch 6 - iter 801/893 - loss 0.02707534 - time (sec): 449.36 - samples/sec: 499.01 - lr: 0.000068 - momentum: 0.000000
2023-10-11 21:43:40,632 epoch 6 - iter 890/893 - loss 0.02836216 - time (sec): 498.37 - samples/sec: 496.97 - lr: 0.000067 - momentum: 0.000000
2023-10-11 21:43:42,374 ----------------------------------------------------------------------------------------------------
2023-10-11 21:43:42,375 EPOCH 6 done: loss 0.0283 - lr: 0.000067
2023-10-11 21:44:03,672 DEV : loss 0.15866339206695557 - f1-score (micro avg) 0.8064
2023-10-11 21:44:03,703 saving best model
2023-10-11 21:44:06,269 ----------------------------------------------------------------------------------------------------
2023-10-11 21:44:55,120 epoch 7 - iter 89/893 - loss 0.02508843 - time (sec): 48.85 - samples/sec: 492.72 - lr: 0.000065 - momentum: 0.000000
2023-10-11 21:45:46,535 epoch 7 - iter 178/893 - loss 0.02218286 - time (sec): 100.26 - samples/sec: 496.71 - lr: 0.000063 - momentum: 0.000000
2023-10-11 21:46:37,443 epoch 7 - iter 267/893 - loss 0.02238652 - time (sec): 151.17 - samples/sec: 487.09 - lr: 0.000062 - momentum: 0.000000
2023-10-11 21:47:30,667 epoch 7 - iter 356/893 - loss 0.02043595 - time (sec): 204.39 - samples/sec: 486.68 - lr: 0.000060 - momentum: 0.000000
2023-10-11 21:48:22,320 epoch 7 - iter 445/893 - loss 0.02102355 - time (sec): 256.05 - samples/sec: 486.24 - lr: 0.000058 - momentum: 0.000000
2023-10-11 21:49:15,960 epoch 7 - iter 534/893 - loss 0.02018963 - time (sec): 309.69 - samples/sec: 482.13 - lr: 0.000057 - momentum: 0.000000
2023-10-11 21:50:07,792 epoch 7 - iter 623/893 - loss 0.02143349 - time (sec): 361.52 - samples/sec: 480.22 - lr: 0.000055 - momentum: 0.000000
2023-10-11 21:50:59,256 epoch 7 - iter 712/893 - loss 0.02184410 - time (sec): 412.98 - samples/sec: 479.36 - lr: 0.000053 - momentum: 0.000000
2023-10-11 21:51:50,666 epoch 7 - iter 801/893 - loss 0.02268425 - time (sec): 464.39 - samples/sec: 480.74 - lr: 0.000052 - momentum: 0.000000
2023-10-11 21:52:42,522 epoch 7 - iter 890/893 - loss 0.02266701 - time (sec): 516.25 - samples/sec: 480.13 - lr: 0.000050 - momentum: 0.000000
2023-10-11 21:52:44,260 ----------------------------------------------------------------------------------------------------
2023-10-11 21:52:44,260 EPOCH 7 done: loss 0.0227 - lr: 0.000050
2023-10-11 21:53:07,308 DEV : loss 0.17522385716438293 - f1-score (micro avg) 0.8056
2023-10-11 21:53:07,340 ----------------------------------------------------------------------------------------------------
2023-10-11 21:53:59,208 epoch 8 - iter 89/893 - loss 0.01896678 - time (sec): 51.87 - samples/sec: 482.91 - lr: 0.000048 - momentum: 0.000000
2023-10-11 21:54:51,807 epoch 8 - iter 178/893 - loss 0.01940469 - time (sec): 104.46 - samples/sec: 481.54 - lr: 0.000047 - momentum: 0.000000
2023-10-11 21:55:42,555 epoch 8 - iter 267/893 - loss 0.01877862 - time (sec): 155.21 - samples/sec: 484.20 - lr: 0.000045 - momentum: 0.000000
2023-10-11 21:56:32,597 epoch 8 - iter 356/893 - loss 0.01814048 - time (sec): 205.25 - samples/sec: 479.00 - lr: 0.000043 - momentum: 0.000000
2023-10-11 21:57:23,920 epoch 8 - iter 445/893 - loss 0.01757910 - time (sec): 256.58 - samples/sec: 474.93 - lr: 0.000042 - momentum: 0.000000
2023-10-11 21:58:17,174 epoch 8 - iter 534/893 - loss 0.01741564 - time (sec): 309.83 - samples/sec: 477.97 - lr: 0.000040 - momentum: 0.000000
2023-10-11 21:59:08,333 epoch 8 - iter 623/893 - loss 0.01792758 - time (sec): 360.99 - samples/sec: 473.96 - lr: 0.000038 - momentum: 0.000000
2023-10-11 22:00:01,125 epoch 8 - iter 712/893 - loss 0.01725608 - time (sec): 413.78 - samples/sec: 476.51 - lr: 0.000037 - momentum: 0.000000
2023-10-11 22:00:54,116 epoch 8 - iter 801/893 - loss 0.01742091 - time (sec): 466.77 - samples/sec: 478.74 - lr: 0.000035 - momentum: 0.000000
2023-10-11 22:01:45,063 epoch 8 - iter 890/893 - loss 0.01785493 - time (sec): 517.72 - samples/sec: 478.83 - lr: 0.000033 - momentum: 0.000000
2023-10-11 22:01:46,660 ----------------------------------------------------------------------------------------------------
2023-10-11 22:01:46,661 EPOCH 8 done: loss 0.0178 - lr: 0.000033
2023-10-11 22:02:09,359 DEV : loss 0.18762467801570892 - f1-score (micro avg) 0.8003
2023-10-11 22:02:09,391 ----------------------------------------------------------------------------------------------------
2023-10-11 22:02:59,516 epoch 9 - iter 89/893 - loss 0.01401632 - time (sec): 50.12 - samples/sec: 517.17 - lr: 0.000032 - momentum: 0.000000
2023-10-11 22:03:48,274 epoch 9 - iter 178/893 - loss 0.01214473 - time (sec): 98.88 - samples/sec: 505.06 - lr: 0.000030 - momentum: 0.000000
2023-10-11 22:04:37,160 epoch 9 - iter 267/893 - loss 0.01334299 - time (sec): 147.77 - samples/sec: 502.93 - lr: 0.000028 - momentum: 0.000000
2023-10-11 22:05:26,043 epoch 9 - iter 356/893 - loss 0.01321979 - time (sec): 196.65 - samples/sec: 499.97 - lr: 0.000027 - momentum: 0.000000
2023-10-11 22:06:14,819 epoch 9 - iter 445/893 - loss 0.01360501 - time (sec): 245.43 - samples/sec: 500.45 - lr: 0.000025 - momentum: 0.000000
2023-10-11 22:07:04,964 epoch 9 - iter 534/893 - loss 0.01382477 - time (sec): 295.57 - samples/sec: 504.43 - lr: 0.000023 - momentum: 0.000000
2023-10-11 22:07:55,514 epoch 9 - iter 623/893 - loss 0.01454438 - time (sec): 346.12 - samples/sec: 506.54 - lr: 0.000022 - momentum: 0.000000
2023-10-11 22:08:45,051 epoch 9 - iter 712/893 - loss 0.01451511 - time (sec): 395.66 - samples/sec: 506.42 - lr: 0.000020 - momentum: 0.000000
2023-10-11 22:09:34,492 epoch 9 - iter 801/893 - loss 0.01499387 - time (sec): 445.10 - samples/sec: 504.31 - lr: 0.000019 - momentum: 0.000000
2023-10-11 22:10:22,701 epoch 9 - iter 890/893 - loss 0.01501724 - time (sec): 493.31 - samples/sec: 502.86 - lr: 0.000017 - momentum: 0.000000
2023-10-11 22:10:24,180 ----------------------------------------------------------------------------------------------------
2023-10-11 22:10:24,180 EPOCH 9 done: loss 0.0151 - lr: 0.000017
2023-10-11 22:10:45,263 DEV : loss 0.18942216038703918 - f1-score (micro avg) 0.8021
2023-10-11 22:10:45,292 ----------------------------------------------------------------------------------------------------
2023-10-11 22:11:33,613 epoch 10 - iter 89/893 - loss 0.01255615 - time (sec): 48.32 - samples/sec: 522.34 - lr: 0.000015 - momentum: 0.000000
2023-10-11 22:12:22,743 epoch 10 - iter 178/893 - loss 0.01274093 - time (sec): 97.45 - samples/sec: 518.18 - lr: 0.000013 - momentum: 0.000000
2023-10-11 22:13:11,304 epoch 10 - iter 267/893 - loss 0.01151278 - time (sec): 146.01 - samples/sec: 519.59 - lr: 0.000012 - momentum: 0.000000
2023-10-11 22:13:59,597 epoch 10 - iter 356/893 - loss 0.01202932 - time (sec): 194.30 - samples/sec: 520.48 - lr: 0.000010 - momentum: 0.000000
2023-10-11 22:14:47,516 epoch 10 - iter 445/893 - loss 0.01209366 - time (sec): 242.22 - samples/sec: 522.14 - lr: 0.000008 - momentum: 0.000000
2023-10-11 22:15:34,392 epoch 10 - iter 534/893 - loss 0.01129065 - time (sec): 289.10 - samples/sec: 520.44 - lr: 0.000007 - momentum: 0.000000
2023-10-11 22:16:23,818 epoch 10 - iter 623/893 - loss 0.01226211 - time (sec): 338.52 - samples/sec: 520.53 - lr: 0.000005 - momentum: 0.000000
2023-10-11 22:17:10,864 epoch 10 - iter 712/893 - loss 0.01183880 - time (sec): 385.57 - samples/sec: 519.33 - lr: 0.000004 - momentum: 0.000000
2023-10-11 22:17:58,433 epoch 10 - iter 801/893 - loss 0.01204233 - time (sec): 433.14 - samples/sec: 517.95 - lr: 0.000002 - momentum: 0.000000
2023-10-11 22:18:45,661 epoch 10 - iter 890/893 - loss 0.01204849 - time (sec): 480.37 - samples/sec: 516.66 - lr: 0.000000 - momentum: 0.000000
2023-10-11 22:18:46,984 ----------------------------------------------------------------------------------------------------
2023-10-11 22:18:46,984 EPOCH 10 done: loss 0.0120 - lr: 0.000000
2023-10-11 22:19:07,928 DEV : loss 0.19141535460948944 - f1-score (micro avg) 0.8029
2023-10-11 22:19:08,805 ----------------------------------------------------------------------------------------------------
2023-10-11 22:19:08,807 Loading model from best epoch ...
2023-10-11 22:19:12,543 SequenceTagger predicts: Dictionary with 17 tags: O, S-PER, B-PER, E-PER, I-PER, S-LOC, B-LOC, E-LOC, I-LOC, S-ORG, B-ORG, E-ORG, I-ORG, S-HumanProd, B-HumanProd, E-HumanProd, I-HumanProd
2023-10-11 22:20:19,954
Results:
- F-score (micro) 0.7109
- F-score (macro) 0.6499
- Accuracy 0.5673
By class:
precision recall f1-score support
LOC 0.7284 0.7324 0.7304 1095
PER 0.7764 0.7925 0.7844 1012
ORG 0.4249 0.6022 0.4983 357
HumanProd 0.5238 0.6667 0.5867 33
micro avg 0.6864 0.7373 0.7109 2497
macro avg 0.6134 0.6985 0.6499 2497
weighted avg 0.7018 0.7373 0.7172 2497
2023-10-11 22:20:19,954 ----------------------------------------------------------------------------------------------------