Upload folder using huggingface_hub
Browse files- best-model.pt +3 -0
- dev.tsv +0 -0
- final-model.pt +3 -0
- loss.tsv +11 -0
- runs/events.out.tfevents.1696947686.6d4c7681f95b.1253.5 +3 -0
- test.tsv +0 -0
- training.log +265 -0
best-model.pt
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:5a9bcdda6d76b12492d020ddd1a41b83d986b6d7cefa39dfaa06b48640fefa2b
|
3 |
+
size 870817519
|
dev.tsv
ADDED
The diff for this file is too large to render.
See raw diff
|
|
final-model.pt
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:54556bdc9d4caf7fa07908f8d9ff7e8415cb2040ea0c89c9bc94c18412b0af5b
|
3 |
+
size 870817636
|
loss.tsv
ADDED
@@ -0,0 +1,11 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
EPOCH TIMESTAMP LEARNING_RATE TRAIN_LOSS DEV_LOSS DEV_PRECISION DEV_RECALL DEV_F1 DEV_ACCURACY
|
2 |
+
1 14:45:51 0.0002 0.9036 0.1515 0.1719 0.3617 0.2331 0.1322
|
3 |
+
2 15:10:10 0.0001 0.1490 0.1195 0.2659 0.4129 0.3234 0.1936
|
4 |
+
3 15:34:30 0.0001 0.0905 0.1802 0.2708 0.5189 0.3558 0.2171
|
5 |
+
4 15:57:41 0.0001 0.0650 0.2246 0.2708 0.5303 0.3585 0.2186
|
6 |
+
5 16:21:27 0.0001 0.0453 0.3552 0.2472 0.5398 0.3391 0.2052
|
7 |
+
6 16:45:00 0.0001 0.0336 0.3477 0.2933 0.5417 0.3806 0.2360
|
8 |
+
7 17:07:04 0.0001 0.0242 0.3891 0.2914 0.5833 0.3886 0.2419
|
9 |
+
8 17:29:14 0.0000 0.0185 0.4152 0.3009 0.5625 0.3921 0.2450
|
10 |
+
9 17:51:27 0.0000 0.0125 0.4364 0.2928 0.5739 0.3877 0.2418
|
11 |
+
10 18:14:05 0.0000 0.0087 0.4859 0.2820 0.5890 0.3814 0.2367
|
runs/events.out.tfevents.1696947686.6d4c7681f95b.1253.5
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:84b9ea4d4d59394461b0c0a63c3721de08dde9f4033ef384e1aeeeac90da85e6
|
3 |
+
size 1464420
|
test.tsv
ADDED
The diff for this file is too large to render.
See raw diff
|
|
training.log
ADDED
@@ -0,0 +1,265 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
2023-10-10 14:21:26,577 ----------------------------------------------------------------------------------------------------
|
2 |
+
2023-10-10 14:21:26,580 Model: "SequenceTagger(
|
3 |
+
(embeddings): ByT5Embeddings(
|
4 |
+
(model): T5EncoderModel(
|
5 |
+
(shared): Embedding(384, 1472)
|
6 |
+
(encoder): T5Stack(
|
7 |
+
(embed_tokens): Embedding(384, 1472)
|
8 |
+
(block): ModuleList(
|
9 |
+
(0): T5Block(
|
10 |
+
(layer): ModuleList(
|
11 |
+
(0): T5LayerSelfAttention(
|
12 |
+
(SelfAttention): T5Attention(
|
13 |
+
(q): Linear(in_features=1472, out_features=384, bias=False)
|
14 |
+
(k): Linear(in_features=1472, out_features=384, bias=False)
|
15 |
+
(v): Linear(in_features=1472, out_features=384, bias=False)
|
16 |
+
(o): Linear(in_features=384, out_features=1472, bias=False)
|
17 |
+
(relative_attention_bias): Embedding(32, 6)
|
18 |
+
)
|
19 |
+
(layer_norm): FusedRMSNorm(torch.Size([1472]), eps=1e-06, elementwise_affine=True)
|
20 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
21 |
+
)
|
22 |
+
(1): T5LayerFF(
|
23 |
+
(DenseReluDense): T5DenseGatedActDense(
|
24 |
+
(wi_0): Linear(in_features=1472, out_features=3584, bias=False)
|
25 |
+
(wi_1): Linear(in_features=1472, out_features=3584, bias=False)
|
26 |
+
(wo): Linear(in_features=3584, out_features=1472, bias=False)
|
27 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
28 |
+
(act): NewGELUActivation()
|
29 |
+
)
|
30 |
+
(layer_norm): FusedRMSNorm(torch.Size([1472]), eps=1e-06, elementwise_affine=True)
|
31 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
32 |
+
)
|
33 |
+
)
|
34 |
+
)
|
35 |
+
(1-11): 11 x T5Block(
|
36 |
+
(layer): ModuleList(
|
37 |
+
(0): T5LayerSelfAttention(
|
38 |
+
(SelfAttention): T5Attention(
|
39 |
+
(q): Linear(in_features=1472, out_features=384, bias=False)
|
40 |
+
(k): Linear(in_features=1472, out_features=384, bias=False)
|
41 |
+
(v): Linear(in_features=1472, out_features=384, bias=False)
|
42 |
+
(o): Linear(in_features=384, out_features=1472, bias=False)
|
43 |
+
)
|
44 |
+
(layer_norm): FusedRMSNorm(torch.Size([1472]), eps=1e-06, elementwise_affine=True)
|
45 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
46 |
+
)
|
47 |
+
(1): T5LayerFF(
|
48 |
+
(DenseReluDense): T5DenseGatedActDense(
|
49 |
+
(wi_0): Linear(in_features=1472, out_features=3584, bias=False)
|
50 |
+
(wi_1): Linear(in_features=1472, out_features=3584, bias=False)
|
51 |
+
(wo): Linear(in_features=3584, out_features=1472, bias=False)
|
52 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
53 |
+
(act): NewGELUActivation()
|
54 |
+
)
|
55 |
+
(layer_norm): FusedRMSNorm(torch.Size([1472]), eps=1e-06, elementwise_affine=True)
|
56 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
57 |
+
)
|
58 |
+
)
|
59 |
+
)
|
60 |
+
)
|
61 |
+
(final_layer_norm): FusedRMSNorm(torch.Size([1472]), eps=1e-06, elementwise_affine=True)
|
62 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
63 |
+
)
|
64 |
+
)
|
65 |
+
)
|
66 |
+
(locked_dropout): LockedDropout(p=0.5)
|
67 |
+
(linear): Linear(in_features=1472, out_features=17, bias=True)
|
68 |
+
(loss_function): CrossEntropyLoss()
|
69 |
+
)"
|
70 |
+
2023-10-10 14:21:26,580 ----------------------------------------------------------------------------------------------------
|
71 |
+
2023-10-10 14:21:26,580 MultiCorpus: 20847 train + 1123 dev + 3350 test sentences
|
72 |
+
- NER_HIPE_2022 Corpus: 20847 train + 1123 dev + 3350 test sentences - /root/.flair/datasets/ner_hipe_2022/v2.1/newseye/de/with_doc_seperator
|
73 |
+
2023-10-10 14:21:26,580 ----------------------------------------------------------------------------------------------------
|
74 |
+
2023-10-10 14:21:26,580 Train: 20847 sentences
|
75 |
+
2023-10-10 14:21:26,581 (train_with_dev=False, train_with_test=False)
|
76 |
+
2023-10-10 14:21:26,581 ----------------------------------------------------------------------------------------------------
|
77 |
+
2023-10-10 14:21:26,581 Training Params:
|
78 |
+
2023-10-10 14:21:26,581 - learning_rate: "0.00016"
|
79 |
+
2023-10-10 14:21:26,581 - mini_batch_size: "8"
|
80 |
+
2023-10-10 14:21:26,581 - max_epochs: "10"
|
81 |
+
2023-10-10 14:21:26,581 - shuffle: "True"
|
82 |
+
2023-10-10 14:21:26,581 ----------------------------------------------------------------------------------------------------
|
83 |
+
2023-10-10 14:21:26,581 Plugins:
|
84 |
+
2023-10-10 14:21:26,581 - TensorboardLogger
|
85 |
+
2023-10-10 14:21:26,581 - LinearScheduler | warmup_fraction: '0.1'
|
86 |
+
2023-10-10 14:21:26,581 ----------------------------------------------------------------------------------------------------
|
87 |
+
2023-10-10 14:21:26,581 Final evaluation on model from best epoch (best-model.pt)
|
88 |
+
2023-10-10 14:21:26,582 - metric: "('micro avg', 'f1-score')"
|
89 |
+
2023-10-10 14:21:26,582 ----------------------------------------------------------------------------------------------------
|
90 |
+
2023-10-10 14:21:26,582 Computation:
|
91 |
+
2023-10-10 14:21:26,582 - compute on device: cuda:0
|
92 |
+
2023-10-10 14:21:26,582 - embedding storage: none
|
93 |
+
2023-10-10 14:21:26,582 ----------------------------------------------------------------------------------------------------
|
94 |
+
2023-10-10 14:21:26,582 Model training base path: "hmbench-newseye/de-hmbyt5-preliminary/byt5-small-historic-multilingual-span20-flax-bs8-wsFalse-e10-lr0.00016-poolingfirst-layers-1-crfFalse-2"
|
95 |
+
2023-10-10 14:21:26,582 ----------------------------------------------------------------------------------------------------
|
96 |
+
2023-10-10 14:21:26,582 ----------------------------------------------------------------------------------------------------
|
97 |
+
2023-10-10 14:21:26,582 Logging anything other than scalars to TensorBoard is currently not supported.
|
98 |
+
2023-10-10 14:23:45,008 epoch 1 - iter 260/2606 - loss 2.82650621 - time (sec): 138.42 - samples/sec: 258.00 - lr: 0.000016 - momentum: 0.000000
|
99 |
+
2023-10-10 14:26:05,289 epoch 1 - iter 520/2606 - loss 2.56314673 - time (sec): 278.70 - samples/sec: 258.20 - lr: 0.000032 - momentum: 0.000000
|
100 |
+
2023-10-10 14:28:31,209 epoch 1 - iter 780/2606 - loss 2.14030820 - time (sec): 424.62 - samples/sec: 257.28 - lr: 0.000048 - momentum: 0.000000
|
101 |
+
2023-10-10 14:30:56,830 epoch 1 - iter 1040/2606 - loss 1.73439842 - time (sec): 570.25 - samples/sec: 260.41 - lr: 0.000064 - momentum: 0.000000
|
102 |
+
2023-10-10 14:33:17,157 epoch 1 - iter 1300/2606 - loss 1.47736320 - time (sec): 710.57 - samples/sec: 260.61 - lr: 0.000080 - momentum: 0.000000
|
103 |
+
2023-10-10 14:35:44,796 epoch 1 - iter 1560/2606 - loss 1.30609247 - time (sec): 858.21 - samples/sec: 260.09 - lr: 0.000096 - momentum: 0.000000
|
104 |
+
2023-10-10 14:38:04,201 epoch 1 - iter 1820/2606 - loss 1.17487372 - time (sec): 997.62 - samples/sec: 260.31 - lr: 0.000112 - momentum: 0.000000
|
105 |
+
2023-10-10 14:40:25,567 epoch 1 - iter 2080/2606 - loss 1.06691289 - time (sec): 1138.98 - samples/sec: 259.14 - lr: 0.000128 - momentum: 0.000000
|
106 |
+
2023-10-10 14:42:44,023 epoch 1 - iter 2340/2606 - loss 0.98460797 - time (sec): 1277.44 - samples/sec: 257.56 - lr: 0.000144 - momentum: 0.000000
|
107 |
+
2023-10-10 14:45:09,215 epoch 1 - iter 2600/2606 - loss 0.90554459 - time (sec): 1422.63 - samples/sec: 257.48 - lr: 0.000160 - momentum: 0.000000
|
108 |
+
2023-10-10 14:45:12,600 ----------------------------------------------------------------------------------------------------
|
109 |
+
2023-10-10 14:45:12,601 EPOCH 1 done: loss 0.9036 - lr: 0.000160
|
110 |
+
2023-10-10 14:45:51,723 DEV : loss 0.15153414011001587 - f1-score (micro avg) 0.2331
|
111 |
+
2023-10-10 14:45:51,776 saving best model
|
112 |
+
2023-10-10 14:45:52,788 ----------------------------------------------------------------------------------------------------
|
113 |
+
2023-10-10 14:48:11,787 epoch 2 - iter 260/2606 - loss 0.18842284 - time (sec): 139.00 - samples/sec: 251.93 - lr: 0.000158 - momentum: 0.000000
|
114 |
+
2023-10-10 14:50:30,954 epoch 2 - iter 520/2606 - loss 0.18792004 - time (sec): 278.16 - samples/sec: 254.84 - lr: 0.000156 - momentum: 0.000000
|
115 |
+
2023-10-10 14:52:50,250 epoch 2 - iter 780/2606 - loss 0.17880044 - time (sec): 417.46 - samples/sec: 257.67 - lr: 0.000155 - momentum: 0.000000
|
116 |
+
2023-10-10 14:55:12,932 epoch 2 - iter 1040/2606 - loss 0.17379042 - time (sec): 560.14 - samples/sec: 254.57 - lr: 0.000153 - momentum: 0.000000
|
117 |
+
2023-10-10 14:57:36,261 epoch 2 - iter 1300/2606 - loss 0.16829776 - time (sec): 703.47 - samples/sec: 255.54 - lr: 0.000151 - momentum: 0.000000
|
118 |
+
2023-10-10 14:59:58,439 epoch 2 - iter 1560/2606 - loss 0.16028935 - time (sec): 845.65 - samples/sec: 257.10 - lr: 0.000149 - momentum: 0.000000
|
119 |
+
2023-10-10 15:02:21,827 epoch 2 - iter 1820/2606 - loss 0.15744925 - time (sec): 989.04 - samples/sec: 257.84 - lr: 0.000148 - momentum: 0.000000
|
120 |
+
2023-10-10 15:04:42,614 epoch 2 - iter 2080/2606 - loss 0.15613165 - time (sec): 1129.82 - samples/sec: 257.27 - lr: 0.000146 - momentum: 0.000000
|
121 |
+
2023-10-10 15:07:03,205 epoch 2 - iter 2340/2606 - loss 0.15275373 - time (sec): 1270.42 - samples/sec: 256.73 - lr: 0.000144 - momentum: 0.000000
|
122 |
+
2023-10-10 15:09:24,020 epoch 2 - iter 2600/2606 - loss 0.14918224 - time (sec): 1411.23 - samples/sec: 259.85 - lr: 0.000142 - momentum: 0.000000
|
123 |
+
2023-10-10 15:09:26,918 ----------------------------------------------------------------------------------------------------
|
124 |
+
2023-10-10 15:09:26,919 EPOCH 2 done: loss 0.1490 - lr: 0.000142
|
125 |
+
2023-10-10 15:10:10,127 DEV : loss 0.11950229853391647 - f1-score (micro avg) 0.3234
|
126 |
+
2023-10-10 15:10:10,187 saving best model
|
127 |
+
2023-10-10 15:10:12,879 ----------------------------------------------------------------------------------------------------
|
128 |
+
2023-10-10 15:12:28,827 epoch 3 - iter 260/2606 - loss 0.08047863 - time (sec): 135.94 - samples/sec: 261.72 - lr: 0.000140 - momentum: 0.000000
|
129 |
+
2023-10-10 15:14:47,287 epoch 3 - iter 520/2606 - loss 0.08774055 - time (sec): 274.40 - samples/sec: 264.43 - lr: 0.000139 - momentum: 0.000000
|
130 |
+
2023-10-10 15:17:07,350 epoch 3 - iter 780/2606 - loss 0.08904143 - time (sec): 414.47 - samples/sec: 264.51 - lr: 0.000137 - momentum: 0.000000
|
131 |
+
2023-10-10 15:19:28,398 epoch 3 - iter 1040/2606 - loss 0.09225516 - time (sec): 555.51 - samples/sec: 261.92 - lr: 0.000135 - momentum: 0.000000
|
132 |
+
2023-10-10 15:21:56,150 epoch 3 - iter 1300/2606 - loss 0.09497422 - time (sec): 703.27 - samples/sec: 263.70 - lr: 0.000133 - momentum: 0.000000
|
133 |
+
2023-10-10 15:24:21,771 epoch 3 - iter 1560/2606 - loss 0.09353639 - time (sec): 848.89 - samples/sec: 262.80 - lr: 0.000132 - momentum: 0.000000
|
134 |
+
2023-10-10 15:26:45,547 epoch 3 - iter 1820/2606 - loss 0.09255565 - time (sec): 992.66 - samples/sec: 261.67 - lr: 0.000130 - momentum: 0.000000
|
135 |
+
2023-10-10 15:29:00,939 epoch 3 - iter 2080/2606 - loss 0.09167665 - time (sec): 1128.06 - samples/sec: 262.47 - lr: 0.000128 - momentum: 0.000000
|
136 |
+
2023-10-10 15:31:19,016 epoch 3 - iter 2340/2606 - loss 0.09077967 - time (sec): 1266.13 - samples/sec: 259.91 - lr: 0.000126 - momentum: 0.000000
|
137 |
+
2023-10-10 15:33:46,544 epoch 3 - iter 2600/2606 - loss 0.09046288 - time (sec): 1413.66 - samples/sec: 259.30 - lr: 0.000125 - momentum: 0.000000
|
138 |
+
2023-10-10 15:33:49,679 ----------------------------------------------------------------------------------------------------
|
139 |
+
2023-10-10 15:33:49,679 EPOCH 3 done: loss 0.0905 - lr: 0.000125
|
140 |
+
2023-10-10 15:34:30,739 DEV : loss 0.18015694618225098 - f1-score (micro avg) 0.3558
|
141 |
+
2023-10-10 15:34:30,790 saving best model
|
142 |
+
2023-10-10 15:34:33,476 ----------------------------------------------------------------------------------------------------
|
143 |
+
2023-10-10 15:36:51,151 epoch 4 - iter 260/2606 - loss 0.05157111 - time (sec): 137.67 - samples/sec: 267.59 - lr: 0.000123 - momentum: 0.000000
|
144 |
+
2023-10-10 15:39:11,379 epoch 4 - iter 520/2606 - loss 0.06164379 - time (sec): 277.90 - samples/sec: 274.53 - lr: 0.000121 - momentum: 0.000000
|
145 |
+
2023-10-10 15:41:28,765 epoch 4 - iter 780/2606 - loss 0.06041382 - time (sec): 415.28 - samples/sec: 271.33 - lr: 0.000119 - momentum: 0.000000
|
146 |
+
2023-10-10 15:43:44,655 epoch 4 - iter 1040/2606 - loss 0.06191568 - time (sec): 551.17 - samples/sec: 269.10 - lr: 0.000117 - momentum: 0.000000
|
147 |
+
2023-10-10 15:46:05,001 epoch 4 - iter 1300/2606 - loss 0.06056013 - time (sec): 691.52 - samples/sec: 268.16 - lr: 0.000116 - momentum: 0.000000
|
148 |
+
2023-10-10 15:48:16,573 epoch 4 - iter 1560/2606 - loss 0.06351392 - time (sec): 823.09 - samples/sec: 269.95 - lr: 0.000114 - momentum: 0.000000
|
149 |
+
2023-10-10 15:50:29,084 epoch 4 - iter 1820/2606 - loss 0.06300262 - time (sec): 955.60 - samples/sec: 272.07 - lr: 0.000112 - momentum: 0.000000
|
150 |
+
2023-10-10 15:52:38,568 epoch 4 - iter 2080/2606 - loss 0.06312479 - time (sec): 1085.09 - samples/sec: 271.77 - lr: 0.000110 - momentum: 0.000000
|
151 |
+
2023-10-10 15:54:50,406 epoch 4 - iter 2340/2606 - loss 0.06500771 - time (sec): 1216.93 - samples/sec: 272.23 - lr: 0.000109 - momentum: 0.000000
|
152 |
+
2023-10-10 15:56:59,946 epoch 4 - iter 2600/2606 - loss 0.06498073 - time (sec): 1346.47 - samples/sec: 272.46 - lr: 0.000107 - momentum: 0.000000
|
153 |
+
2023-10-10 15:57:02,689 ----------------------------------------------------------------------------------------------------
|
154 |
+
2023-10-10 15:57:02,690 EPOCH 4 done: loss 0.0650 - lr: 0.000107
|
155 |
+
2023-10-10 15:57:41,615 DEV : loss 0.22460463643074036 - f1-score (micro avg) 0.3585
|
156 |
+
2023-10-10 15:57:41,667 saving best model
|
157 |
+
2023-10-10 15:57:44,347 ----------------------------------------------------------------------------------------------------
|
158 |
+
2023-10-10 15:59:52,262 epoch 5 - iter 260/2606 - loss 0.03592166 - time (sec): 127.91 - samples/sec: 268.55 - lr: 0.000105 - momentum: 0.000000
|
159 |
+
2023-10-10 16:02:02,554 epoch 5 - iter 520/2606 - loss 0.04034587 - time (sec): 258.20 - samples/sec: 272.50 - lr: 0.000103 - momentum: 0.000000
|
160 |
+
2023-10-10 16:04:14,414 epoch 5 - iter 780/2606 - loss 0.03986586 - time (sec): 390.06 - samples/sec: 278.42 - lr: 0.000101 - momentum: 0.000000
|
161 |
+
2023-10-10 16:06:26,506 epoch 5 - iter 1040/2606 - loss 0.04078098 - time (sec): 522.15 - samples/sec: 277.65 - lr: 0.000100 - momentum: 0.000000
|
162 |
+
2023-10-10 16:08:39,982 epoch 5 - iter 1300/2606 - loss 0.04342342 - time (sec): 655.63 - samples/sec: 278.05 - lr: 0.000098 - momentum: 0.000000
|
163 |
+
2023-10-10 16:10:56,870 epoch 5 - iter 1560/2606 - loss 0.04386466 - time (sec): 792.52 - samples/sec: 276.41 - lr: 0.000096 - momentum: 0.000000
|
164 |
+
2023-10-10 16:13:22,636 epoch 5 - iter 1820/2606 - loss 0.04404192 - time (sec): 938.28 - samples/sec: 271.26 - lr: 0.000094 - momentum: 0.000000
|
165 |
+
2023-10-10 16:15:50,560 epoch 5 - iter 2080/2606 - loss 0.04511901 - time (sec): 1086.21 - samples/sec: 269.90 - lr: 0.000093 - momentum: 0.000000
|
166 |
+
2023-10-10 16:18:17,914 epoch 5 - iter 2340/2606 - loss 0.04514489 - time (sec): 1233.56 - samples/sec: 268.76 - lr: 0.000091 - momentum: 0.000000
|
167 |
+
2023-10-10 16:20:38,307 epoch 5 - iter 2600/2606 - loss 0.04534151 - time (sec): 1373.95 - samples/sec: 266.91 - lr: 0.000089 - momentum: 0.000000
|
168 |
+
2023-10-10 16:20:41,341 ----------------------------------------------------------------------------------------------------
|
169 |
+
2023-10-10 16:20:41,341 EPOCH 5 done: loss 0.0453 - lr: 0.000089
|
170 |
+
2023-10-10 16:21:26,960 DEV : loss 0.3552384078502655 - f1-score (micro avg) 0.3391
|
171 |
+
2023-10-10 16:21:27,020 ----------------------------------------------------------------------------------------------------
|
172 |
+
2023-10-10 16:23:46,309 epoch 6 - iter 260/2606 - loss 0.03073255 - time (sec): 139.29 - samples/sec: 251.20 - lr: 0.000087 - momentum: 0.000000
|
173 |
+
2023-10-10 16:26:06,409 epoch 6 - iter 520/2606 - loss 0.03336276 - time (sec): 279.39 - samples/sec: 250.59 - lr: 0.000085 - momentum: 0.000000
|
174 |
+
2023-10-10 16:28:31,218 epoch 6 - iter 780/2606 - loss 0.03342619 - time (sec): 424.20 - samples/sec: 255.01 - lr: 0.000084 - momentum: 0.000000
|
175 |
+
2023-10-10 16:30:56,809 epoch 6 - iter 1040/2606 - loss 0.03305085 - time (sec): 569.79 - samples/sec: 257.41 - lr: 0.000082 - momentum: 0.000000
|
176 |
+
2023-10-10 16:33:15,628 epoch 6 - iter 1300/2606 - loss 0.03234751 - time (sec): 708.61 - samples/sec: 261.61 - lr: 0.000080 - momentum: 0.000000
|
177 |
+
2023-10-10 16:35:27,531 epoch 6 - iter 1560/2606 - loss 0.03383010 - time (sec): 840.51 - samples/sec: 263.10 - lr: 0.000078 - momentum: 0.000000
|
178 |
+
2023-10-10 16:37:38,652 epoch 6 - iter 1820/2606 - loss 0.03360923 - time (sec): 971.63 - samples/sec: 265.18 - lr: 0.000077 - momentum: 0.000000
|
179 |
+
2023-10-10 16:39:50,837 epoch 6 - iter 2080/2606 - loss 0.03354235 - time (sec): 1103.82 - samples/sec: 267.05 - lr: 0.000075 - momentum: 0.000000
|
180 |
+
2023-10-10 16:42:00,685 epoch 6 - iter 2340/2606 - loss 0.03417729 - time (sec): 1233.66 - samples/sec: 266.96 - lr: 0.000073 - momentum: 0.000000
|
181 |
+
2023-10-10 16:44:19,012 epoch 6 - iter 2600/2606 - loss 0.03364077 - time (sec): 1371.99 - samples/sec: 267.28 - lr: 0.000071 - momentum: 0.000000
|
182 |
+
2023-10-10 16:44:21,887 ----------------------------------------------------------------------------------------------------
|
183 |
+
2023-10-10 16:44:21,888 EPOCH 6 done: loss 0.0336 - lr: 0.000071
|
184 |
+
2023-10-10 16:45:00,806 DEV : loss 0.34769406914711 - f1-score (micro avg) 0.3806
|
185 |
+
2023-10-10 16:45:00,863 saving best model
|
186 |
+
2023-10-10 16:45:03,552 ----------------------------------------------------------------------------------------------------
|
187 |
+
2023-10-10 16:47:10,382 epoch 7 - iter 260/2606 - loss 0.02507245 - time (sec): 126.82 - samples/sec: 279.71 - lr: 0.000069 - momentum: 0.000000
|
188 |
+
2023-10-10 16:49:17,745 epoch 7 - iter 520/2606 - loss 0.02198476 - time (sec): 254.19 - samples/sec: 280.93 - lr: 0.000068 - momentum: 0.000000
|
189 |
+
2023-10-10 16:51:24,652 epoch 7 - iter 780/2606 - loss 0.02230588 - time (sec): 381.09 - samples/sec: 283.27 - lr: 0.000066 - momentum: 0.000000
|
190 |
+
2023-10-10 16:53:32,924 epoch 7 - iter 1040/2606 - loss 0.02469517 - time (sec): 509.37 - samples/sec: 283.41 - lr: 0.000064 - momentum: 0.000000
|
191 |
+
2023-10-10 16:55:41,775 epoch 7 - iter 1300/2606 - loss 0.02514914 - time (sec): 638.22 - samples/sec: 286.11 - lr: 0.000062 - momentum: 0.000000
|
192 |
+
2023-10-10 16:57:48,643 epoch 7 - iter 1560/2606 - loss 0.02586490 - time (sec): 765.09 - samples/sec: 286.23 - lr: 0.000061 - momentum: 0.000000
|
193 |
+
2023-10-10 16:59:55,786 epoch 7 - iter 1820/2606 - loss 0.02506821 - time (sec): 892.23 - samples/sec: 286.32 - lr: 0.000059 - momentum: 0.000000
|
194 |
+
2023-10-10 17:02:01,919 epoch 7 - iter 2080/2606 - loss 0.02485056 - time (sec): 1018.36 - samples/sec: 284.07 - lr: 0.000057 - momentum: 0.000000
|
195 |
+
2023-10-10 17:04:11,098 epoch 7 - iter 2340/2606 - loss 0.02484702 - time (sec): 1147.54 - samples/sec: 284.94 - lr: 0.000055 - momentum: 0.000000
|
196 |
+
2023-10-10 17:06:22,781 epoch 7 - iter 2600/2606 - loss 0.02416949 - time (sec): 1279.22 - samples/sec: 286.55 - lr: 0.000053 - momentum: 0.000000
|
197 |
+
2023-10-10 17:06:25,669 ----------------------------------------------------------------------------------------------------
|
198 |
+
2023-10-10 17:06:25,669 EPOCH 7 done: loss 0.0242 - lr: 0.000053
|
199 |
+
2023-10-10 17:07:04,419 DEV : loss 0.38912469148635864 - f1-score (micro avg) 0.3886
|
200 |
+
2023-10-10 17:07:04,492 saving best model
|
201 |
+
2023-10-10 17:07:08,095 ----------------------------------------------------------------------------------------------------
|
202 |
+
2023-10-10 17:09:19,922 epoch 8 - iter 260/2606 - loss 0.01590417 - time (sec): 131.82 - samples/sec: 302.15 - lr: 0.000052 - momentum: 0.000000
|
203 |
+
2023-10-10 17:11:31,107 epoch 8 - iter 520/2606 - loss 0.01657268 - time (sec): 263.01 - samples/sec: 292.08 - lr: 0.000050 - momentum: 0.000000
|
204 |
+
2023-10-10 17:13:38,438 epoch 8 - iter 780/2606 - loss 0.01716544 - time (sec): 390.34 - samples/sec: 287.05 - lr: 0.000048 - momentum: 0.000000
|
205 |
+
2023-10-10 17:15:47,199 epoch 8 - iter 1040/2606 - loss 0.01681174 - time (sec): 519.10 - samples/sec: 288.07 - lr: 0.000046 - momentum: 0.000000
|
206 |
+
2023-10-10 17:17:54,730 epoch 8 - iter 1300/2606 - loss 0.01634833 - time (sec): 646.63 - samples/sec: 286.35 - lr: 0.000045 - momentum: 0.000000
|
207 |
+
2023-10-10 17:20:02,473 epoch 8 - iter 1560/2606 - loss 0.01711598 - time (sec): 774.37 - samples/sec: 287.31 - lr: 0.000043 - momentum: 0.000000
|
208 |
+
2023-10-10 17:22:11,287 epoch 8 - iter 1820/2606 - loss 0.01677195 - time (sec): 903.19 - samples/sec: 286.75 - lr: 0.000041 - momentum: 0.000000
|
209 |
+
2023-10-10 17:24:17,214 epoch 8 - iter 2080/2606 - loss 0.01710973 - time (sec): 1029.11 - samples/sec: 285.16 - lr: 0.000039 - momentum: 0.000000
|
210 |
+
2023-10-10 17:26:22,215 epoch 8 - iter 2340/2606 - loss 0.01765144 - time (sec): 1154.12 - samples/sec: 283.46 - lr: 0.000037 - momentum: 0.000000
|
211 |
+
2023-10-10 17:28:34,006 epoch 8 - iter 2600/2606 - loss 0.01846439 - time (sec): 1285.91 - samples/sec: 285.24 - lr: 0.000036 - momentum: 0.000000
|
212 |
+
2023-10-10 17:28:36,682 ----------------------------------------------------------------------------------------------------
|
213 |
+
2023-10-10 17:28:36,682 EPOCH 8 done: loss 0.0185 - lr: 0.000036
|
214 |
+
2023-10-10 17:29:14,536 DEV : loss 0.41515445709228516 - f1-score (micro avg) 0.3921
|
215 |
+
2023-10-10 17:29:14,587 saving best model
|
216 |
+
2023-10-10 17:29:17,244 ----------------------------------------------------------------------------------------------------
|
217 |
+
2023-10-10 17:31:26,353 epoch 9 - iter 260/2606 - loss 0.01719462 - time (sec): 129.10 - samples/sec: 286.82 - lr: 0.000034 - momentum: 0.000000
|
218 |
+
2023-10-10 17:33:37,943 epoch 9 - iter 520/2606 - loss 0.01306206 - time (sec): 260.69 - samples/sec: 296.75 - lr: 0.000032 - momentum: 0.000000
|
219 |
+
2023-10-10 17:35:45,408 epoch 9 - iter 780/2606 - loss 0.01249072 - time (sec): 388.15 - samples/sec: 291.69 - lr: 0.000030 - momentum: 0.000000
|
220 |
+
2023-10-10 17:37:50,026 epoch 9 - iter 1040/2606 - loss 0.01153243 - time (sec): 512.77 - samples/sec: 286.00 - lr: 0.000029 - momentum: 0.000000
|
221 |
+
2023-10-10 17:40:00,767 epoch 9 - iter 1300/2606 - loss 0.01176972 - time (sec): 643.51 - samples/sec: 288.25 - lr: 0.000027 - momentum: 0.000000
|
222 |
+
2023-10-10 17:42:06,166 epoch 9 - iter 1560/2606 - loss 0.01199337 - time (sec): 768.91 - samples/sec: 286.24 - lr: 0.000025 - momentum: 0.000000
|
223 |
+
2023-10-10 17:44:13,171 epoch 9 - iter 1820/2606 - loss 0.01190054 - time (sec): 895.91 - samples/sec: 284.89 - lr: 0.000023 - momentum: 0.000000
|
224 |
+
2023-10-10 17:46:21,808 epoch 9 - iter 2080/2606 - loss 0.01247403 - time (sec): 1024.55 - samples/sec: 284.48 - lr: 0.000021 - momentum: 0.000000
|
225 |
+
2023-10-10 17:48:30,521 epoch 9 - iter 2340/2606 - loss 0.01213440 - time (sec): 1153.26 - samples/sec: 284.01 - lr: 0.000020 - momentum: 0.000000
|
226 |
+
2023-10-10 17:50:42,947 epoch 9 - iter 2600/2606 - loss 0.01250624 - time (sec): 1285.69 - samples/sec: 285.36 - lr: 0.000018 - momentum: 0.000000
|
227 |
+
2023-10-10 17:50:45,623 ----------------------------------------------------------------------------------------------------
|
228 |
+
2023-10-10 17:50:45,624 EPOCH 9 done: loss 0.0125 - lr: 0.000018
|
229 |
+
2023-10-10 17:51:27,746 DEV : loss 0.4364360272884369 - f1-score (micro avg) 0.3877
|
230 |
+
2023-10-10 17:51:27,812 ----------------------------------------------------------------------------------------------------
|
231 |
+
2023-10-10 17:53:43,933 epoch 10 - iter 260/2606 - loss 0.01035287 - time (sec): 136.12 - samples/sec: 280.82 - lr: 0.000016 - momentum: 0.000000
|
232 |
+
2023-10-10 17:55:59,905 epoch 10 - iter 520/2606 - loss 0.00933623 - time (sec): 272.09 - samples/sec: 281.96 - lr: 0.000014 - momentum: 0.000000
|
233 |
+
2023-10-10 17:58:14,199 epoch 10 - iter 780/2606 - loss 0.00911268 - time (sec): 406.38 - samples/sec: 276.91 - lr: 0.000013 - momentum: 0.000000
|
234 |
+
2023-10-10 18:00:25,139 epoch 10 - iter 1040/2606 - loss 0.00886118 - time (sec): 537.32 - samples/sec: 270.22 - lr: 0.000011 - momentum: 0.000000
|
235 |
+
2023-10-10 18:02:36,223 epoch 10 - iter 1300/2606 - loss 0.00858393 - time (sec): 668.41 - samples/sec: 273.11 - lr: 0.000009 - momentum: 0.000000
|
236 |
+
2023-10-10 18:04:45,180 epoch 10 - iter 1560/2606 - loss 0.00837399 - time (sec): 797.37 - samples/sec: 274.08 - lr: 0.000007 - momentum: 0.000000
|
237 |
+
2023-10-10 18:06:54,526 epoch 10 - iter 1820/2606 - loss 0.00838034 - time (sec): 926.71 - samples/sec: 275.86 - lr: 0.000005 - momentum: 0.000000
|
238 |
+
2023-10-10 18:09:05,520 epoch 10 - iter 2080/2606 - loss 0.00862970 - time (sec): 1057.71 - samples/sec: 278.71 - lr: 0.000004 - momentum: 0.000000
|
239 |
+
2023-10-10 18:11:13,645 epoch 10 - iter 2340/2606 - loss 0.00858216 - time (sec): 1185.83 - samples/sec: 278.84 - lr: 0.000002 - momentum: 0.000000
|
240 |
+
2023-10-10 18:13:21,604 epoch 10 - iter 2600/2606 - loss 0.00867931 - time (sec): 1313.79 - samples/sec: 278.96 - lr: 0.000000 - momentum: 0.000000
|
241 |
+
2023-10-10 18:13:24,617 ----------------------------------------------------------------------------------------------------
|
242 |
+
2023-10-10 18:13:24,618 EPOCH 10 done: loss 0.0087 - lr: 0.000000
|
243 |
+
2023-10-10 18:14:05,757 DEV : loss 0.48594337701797485 - f1-score (micro avg) 0.3814
|
244 |
+
2023-10-10 18:14:06,788 ----------------------------------------------------------------------------------------------------
|
245 |
+
2023-10-10 18:14:06,791 Loading model from best epoch ...
|
246 |
+
2023-10-10 18:14:10,833 SequenceTagger predicts: Dictionary with 17 tags: O, S-LOC, B-LOC, E-LOC, I-LOC, S-PER, B-PER, E-PER, I-PER, S-ORG, B-ORG, E-ORG, I-ORG, S-HumanProd, B-HumanProd, E-HumanProd, I-HumanProd
|
247 |
+
2023-10-10 18:15:46,590
|
248 |
+
Results:
|
249 |
+
- F-score (micro) 0.4343
|
250 |
+
- F-score (macro) 0.3054
|
251 |
+
- Accuracy 0.2807
|
252 |
+
|
253 |
+
By class:
|
254 |
+
precision recall f1-score support
|
255 |
+
|
256 |
+
LOC 0.4638 0.4901 0.4766 1214
|
257 |
+
PER 0.4027 0.4480 0.4241 808
|
258 |
+
ORG 0.3274 0.3144 0.3208 353
|
259 |
+
HumanProd 0.0000 0.0000 0.0000 15
|
260 |
+
|
261 |
+
micro avg 0.4225 0.4469 0.4343 2390
|
262 |
+
macro avg 0.2985 0.3131 0.3054 2390
|
263 |
+
weighted avg 0.4201 0.4469 0.4328 2390
|
264 |
+
|
265 |
+
2023-10-10 18:15:46,590 ----------------------------------------------------------------------------------------------------
|