|
2023-10-17 17:11:32,078 ---------------------------------------------------------------------------------------------------- |
|
2023-10-17 17:11:32,079 Model: "SequenceTagger( |
|
(embeddings): TransformerWordEmbeddings( |
|
(model): ElectraModel( |
|
(embeddings): ElectraEmbeddings( |
|
(word_embeddings): Embedding(32001, 768) |
|
(position_embeddings): Embedding(512, 768) |
|
(token_type_embeddings): Embedding(2, 768) |
|
(LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True) |
|
(dropout): Dropout(p=0.1, inplace=False) |
|
) |
|
(encoder): ElectraEncoder( |
|
(layer): ModuleList( |
|
(0-11): 12 x ElectraLayer( |
|
(attention): ElectraAttention( |
|
(self): ElectraSelfAttention( |
|
(query): Linear(in_features=768, out_features=768, bias=True) |
|
(key): Linear(in_features=768, out_features=768, bias=True) |
|
(value): Linear(in_features=768, out_features=768, bias=True) |
|
(dropout): Dropout(p=0.1, inplace=False) |
|
) |
|
(output): ElectraSelfOutput( |
|
(dense): Linear(in_features=768, out_features=768, bias=True) |
|
(LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True) |
|
(dropout): Dropout(p=0.1, inplace=False) |
|
) |
|
) |
|
(intermediate): ElectraIntermediate( |
|
(dense): Linear(in_features=768, out_features=3072, bias=True) |
|
(intermediate_act_fn): GELUActivation() |
|
) |
|
(output): ElectraOutput( |
|
(dense): Linear(in_features=3072, out_features=768, bias=True) |
|
(LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True) |
|
(dropout): Dropout(p=0.1, inplace=False) |
|
) |
|
) |
|
) |
|
) |
|
) |
|
) |
|
(locked_dropout): LockedDropout(p=0.5) |
|
(linear): Linear(in_features=768, out_features=13, bias=True) |
|
(loss_function): CrossEntropyLoss() |
|
)" |
|
2023-10-17 17:11:32,079 ---------------------------------------------------------------------------------------------------- |
|
2023-10-17 17:11:32,079 MultiCorpus: 14465 train + 1392 dev + 2432 test sentences |
|
- NER_HIPE_2022 Corpus: 14465 train + 1392 dev + 2432 test sentences - /root/.flair/datasets/ner_hipe_2022/v2.1/letemps/fr/with_doc_seperator |
|
2023-10-17 17:11:32,079 ---------------------------------------------------------------------------------------------------- |
|
2023-10-17 17:11:32,079 Train: 14465 sentences |
|
2023-10-17 17:11:32,079 (train_with_dev=False, train_with_test=False) |
|
2023-10-17 17:11:32,079 ---------------------------------------------------------------------------------------------------- |
|
2023-10-17 17:11:32,080 Training Params: |
|
2023-10-17 17:11:32,080 - learning_rate: "5e-05" |
|
2023-10-17 17:11:32,080 - mini_batch_size: "8" |
|
2023-10-17 17:11:32,080 - max_epochs: "10" |
|
2023-10-17 17:11:32,080 - shuffle: "True" |
|
2023-10-17 17:11:32,080 ---------------------------------------------------------------------------------------------------- |
|
2023-10-17 17:11:32,080 Plugins: |
|
2023-10-17 17:11:32,080 - TensorboardLogger |
|
2023-10-17 17:11:32,080 - LinearScheduler | warmup_fraction: '0.1' |
|
2023-10-17 17:11:32,080 ---------------------------------------------------------------------------------------------------- |
|
2023-10-17 17:11:32,080 Final evaluation on model from best epoch (best-model.pt) |
|
2023-10-17 17:11:32,080 - metric: "('micro avg', 'f1-score')" |
|
2023-10-17 17:11:32,080 ---------------------------------------------------------------------------------------------------- |
|
2023-10-17 17:11:32,080 Computation: |
|
2023-10-17 17:11:32,080 - compute on device: cuda:0 |
|
2023-10-17 17:11:32,080 - embedding storage: none |
|
2023-10-17 17:11:32,080 ---------------------------------------------------------------------------------------------------- |
|
2023-10-17 17:11:32,080 Model training base path: "hmbench-letemps/fr-hmteams/teams-base-historic-multilingual-discriminator-bs8-wsFalse-e10-lr5e-05-poolingfirst-layers-1-crfFalse-4" |
|
2023-10-17 17:11:32,080 ---------------------------------------------------------------------------------------------------- |
|
2023-10-17 17:11:32,080 ---------------------------------------------------------------------------------------------------- |
|
2023-10-17 17:11:32,080 Logging anything other than scalars to TensorBoard is currently not supported. |
|
2023-10-17 17:11:44,801 epoch 1 - iter 180/1809 - loss 1.93561623 - time (sec): 12.72 - samples/sec: 2872.61 - lr: 0.000005 - momentum: 0.000000 |
|
2023-10-17 17:11:57,763 epoch 1 - iter 360/1809 - loss 1.05326650 - time (sec): 25.68 - samples/sec: 2943.24 - lr: 0.000010 - momentum: 0.000000 |
|
2023-10-17 17:12:10,514 epoch 1 - iter 540/1809 - loss 0.75155809 - time (sec): 38.43 - samples/sec: 2953.08 - lr: 0.000015 - momentum: 0.000000 |
|
2023-10-17 17:12:23,512 epoch 1 - iter 720/1809 - loss 0.59410555 - time (sec): 51.43 - samples/sec: 2963.13 - lr: 0.000020 - momentum: 0.000000 |
|
2023-10-17 17:12:36,258 epoch 1 - iter 900/1809 - loss 0.50080498 - time (sec): 64.18 - samples/sec: 2948.84 - lr: 0.000025 - momentum: 0.000000 |
|
2023-10-17 17:12:48,969 epoch 1 - iter 1080/1809 - loss 0.43858981 - time (sec): 76.89 - samples/sec: 2957.34 - lr: 0.000030 - momentum: 0.000000 |
|
2023-10-17 17:13:01,864 epoch 1 - iter 1260/1809 - loss 0.39099624 - time (sec): 89.78 - samples/sec: 2959.58 - lr: 0.000035 - momentum: 0.000000 |
|
2023-10-17 17:13:14,940 epoch 1 - iter 1440/1809 - loss 0.35498992 - time (sec): 102.86 - samples/sec: 2964.88 - lr: 0.000040 - momentum: 0.000000 |
|
2023-10-17 17:13:27,651 epoch 1 - iter 1620/1809 - loss 0.32835651 - time (sec): 115.57 - samples/sec: 2959.52 - lr: 0.000045 - momentum: 0.000000 |
|
2023-10-17 17:13:40,504 epoch 1 - iter 1800/1809 - loss 0.30714743 - time (sec): 128.42 - samples/sec: 2947.39 - lr: 0.000050 - momentum: 0.000000 |
|
2023-10-17 17:13:41,091 ---------------------------------------------------------------------------------------------------- |
|
2023-10-17 17:13:41,092 EPOCH 1 done: loss 0.3063 - lr: 0.000050 |
|
2023-10-17 17:13:46,484 DEV : loss 0.10938248783349991 - f1-score (micro avg) 0.6239 |
|
2023-10-17 17:13:46,524 saving best model |
|
2023-10-17 17:13:47,036 ---------------------------------------------------------------------------------------------------- |
|
2023-10-17 17:14:00,035 epoch 2 - iter 180/1809 - loss 0.10079900 - time (sec): 13.00 - samples/sec: 2981.06 - lr: 0.000049 - momentum: 0.000000 |
|
2023-10-17 17:14:12,944 epoch 2 - iter 360/1809 - loss 0.09271722 - time (sec): 25.91 - samples/sec: 2951.93 - lr: 0.000049 - momentum: 0.000000 |
|
2023-10-17 17:14:25,719 epoch 2 - iter 540/1809 - loss 0.08663485 - time (sec): 38.68 - samples/sec: 2966.04 - lr: 0.000048 - momentum: 0.000000 |
|
2023-10-17 17:14:38,078 epoch 2 - iter 720/1809 - loss 0.08679926 - time (sec): 51.04 - samples/sec: 2962.84 - lr: 0.000048 - momentum: 0.000000 |
|
2023-10-17 17:14:50,907 epoch 2 - iter 900/1809 - loss 0.09124566 - time (sec): 63.87 - samples/sec: 2948.30 - lr: 0.000047 - momentum: 0.000000 |
|
2023-10-17 17:15:03,593 epoch 2 - iter 1080/1809 - loss 0.09266770 - time (sec): 76.56 - samples/sec: 2932.10 - lr: 0.000047 - momentum: 0.000000 |
|
2023-10-17 17:15:16,588 epoch 2 - iter 1260/1809 - loss 0.09325153 - time (sec): 89.55 - samples/sec: 2929.00 - lr: 0.000046 - momentum: 0.000000 |
|
2023-10-17 17:15:29,899 epoch 2 - iter 1440/1809 - loss 0.09224137 - time (sec): 102.86 - samples/sec: 2929.07 - lr: 0.000046 - momentum: 0.000000 |
|
2023-10-17 17:15:43,216 epoch 2 - iter 1620/1809 - loss 0.09170900 - time (sec): 116.18 - samples/sec: 2913.77 - lr: 0.000045 - momentum: 0.000000 |
|
2023-10-17 17:15:57,487 epoch 2 - iter 1800/1809 - loss 0.09078426 - time (sec): 130.45 - samples/sec: 2897.12 - lr: 0.000044 - momentum: 0.000000 |
|
2023-10-17 17:15:58,247 ---------------------------------------------------------------------------------------------------- |
|
2023-10-17 17:15:58,248 EPOCH 2 done: loss 0.0907 - lr: 0.000044 |
|
2023-10-17 17:16:05,410 DEV : loss 0.1160627156496048 - f1-score (micro avg) 0.6271 |
|
2023-10-17 17:16:05,450 saving best model |
|
2023-10-17 17:16:06,018 ---------------------------------------------------------------------------------------------------- |
|
2023-10-17 17:16:17,628 epoch 3 - iter 180/1809 - loss 0.06093404 - time (sec): 11.61 - samples/sec: 3292.81 - lr: 0.000044 - momentum: 0.000000 |
|
2023-10-17 17:16:29,276 epoch 3 - iter 360/1809 - loss 0.06003849 - time (sec): 23.26 - samples/sec: 3289.97 - lr: 0.000043 - momentum: 0.000000 |
|
2023-10-17 17:16:40,839 epoch 3 - iter 540/1809 - loss 0.05954656 - time (sec): 34.82 - samples/sec: 3268.21 - lr: 0.000043 - momentum: 0.000000 |
|
2023-10-17 17:16:52,586 epoch 3 - iter 720/1809 - loss 0.06117659 - time (sec): 46.57 - samples/sec: 3255.69 - lr: 0.000042 - momentum: 0.000000 |
|
2023-10-17 17:17:04,060 epoch 3 - iter 900/1809 - loss 0.06253581 - time (sec): 58.04 - samples/sec: 3255.61 - lr: 0.000042 - momentum: 0.000000 |
|
2023-10-17 17:17:15,528 epoch 3 - iter 1080/1809 - loss 0.06281026 - time (sec): 69.51 - samples/sec: 3261.44 - lr: 0.000041 - momentum: 0.000000 |
|
2023-10-17 17:17:27,332 epoch 3 - iter 1260/1809 - loss 0.06335577 - time (sec): 81.31 - samples/sec: 3259.87 - lr: 0.000041 - momentum: 0.000000 |
|
2023-10-17 17:17:38,880 epoch 3 - iter 1440/1809 - loss 0.06437289 - time (sec): 92.86 - samples/sec: 3252.54 - lr: 0.000040 - momentum: 0.000000 |
|
2023-10-17 17:17:50,414 epoch 3 - iter 1620/1809 - loss 0.06571986 - time (sec): 104.39 - samples/sec: 3248.91 - lr: 0.000039 - momentum: 0.000000 |
|
2023-10-17 17:18:02,437 epoch 3 - iter 1800/1809 - loss 0.06565150 - time (sec): 116.42 - samples/sec: 3250.23 - lr: 0.000039 - momentum: 0.000000 |
|
2023-10-17 17:18:02,972 ---------------------------------------------------------------------------------------------------- |
|
2023-10-17 17:18:02,972 EPOCH 3 done: loss 0.0658 - lr: 0.000039 |
|
2023-10-17 17:18:09,303 DEV : loss 0.14074555039405823 - f1-score (micro avg) 0.6223 |
|
2023-10-17 17:18:09,344 ---------------------------------------------------------------------------------------------------- |
|
2023-10-17 17:18:20,880 epoch 4 - iter 180/1809 - loss 0.03667366 - time (sec): 11.53 - samples/sec: 3245.02 - lr: 0.000038 - momentum: 0.000000 |
|
2023-10-17 17:18:32,507 epoch 4 - iter 360/1809 - loss 0.04218888 - time (sec): 23.16 - samples/sec: 3262.25 - lr: 0.000038 - momentum: 0.000000 |
|
2023-10-17 17:18:44,274 epoch 4 - iter 540/1809 - loss 0.04768593 - time (sec): 34.93 - samples/sec: 3279.30 - lr: 0.000037 - momentum: 0.000000 |
|
2023-10-17 17:18:56,716 epoch 4 - iter 720/1809 - loss 0.04825907 - time (sec): 47.37 - samples/sec: 3197.49 - lr: 0.000037 - momentum: 0.000000 |
|
2023-10-17 17:19:07,914 epoch 4 - iter 900/1809 - loss 0.04754011 - time (sec): 58.57 - samples/sec: 3203.52 - lr: 0.000036 - momentum: 0.000000 |
|
2023-10-17 17:19:19,903 epoch 4 - iter 1080/1809 - loss 0.04777440 - time (sec): 70.56 - samples/sec: 3221.03 - lr: 0.000036 - momentum: 0.000000 |
|
2023-10-17 17:19:31,289 epoch 4 - iter 1260/1809 - loss 0.04719754 - time (sec): 81.94 - samples/sec: 3228.10 - lr: 0.000035 - momentum: 0.000000 |
|
2023-10-17 17:19:42,794 epoch 4 - iter 1440/1809 - loss 0.04734516 - time (sec): 93.45 - samples/sec: 3227.79 - lr: 0.000034 - momentum: 0.000000 |
|
2023-10-17 17:19:54,449 epoch 4 - iter 1620/1809 - loss 0.04770838 - time (sec): 105.10 - samples/sec: 3240.33 - lr: 0.000034 - momentum: 0.000000 |
|
2023-10-17 17:20:06,242 epoch 4 - iter 1800/1809 - loss 0.04788521 - time (sec): 116.90 - samples/sec: 3235.87 - lr: 0.000033 - momentum: 0.000000 |
|
2023-10-17 17:20:06,788 ---------------------------------------------------------------------------------------------------- |
|
2023-10-17 17:20:06,789 EPOCH 4 done: loss 0.0479 - lr: 0.000033 |
|
2023-10-17 17:20:13,082 DEV : loss 0.19297103583812714 - f1-score (micro avg) 0.6447 |
|
2023-10-17 17:20:13,123 saving best model |
|
2023-10-17 17:20:13,730 ---------------------------------------------------------------------------------------------------- |
|
2023-10-17 17:20:25,234 epoch 5 - iter 180/1809 - loss 0.03277920 - time (sec): 11.50 - samples/sec: 3302.89 - lr: 0.000033 - momentum: 0.000000 |
|
2023-10-17 17:20:36,730 epoch 5 - iter 360/1809 - loss 0.03524838 - time (sec): 23.00 - samples/sec: 3286.71 - lr: 0.000032 - momentum: 0.000000 |
|
2023-10-17 17:20:48,176 epoch 5 - iter 540/1809 - loss 0.03536296 - time (sec): 34.44 - samples/sec: 3271.30 - lr: 0.000032 - momentum: 0.000000 |
|
2023-10-17 17:20:59,738 epoch 5 - iter 720/1809 - loss 0.03462499 - time (sec): 46.01 - samples/sec: 3270.53 - lr: 0.000031 - momentum: 0.000000 |
|
2023-10-17 17:21:11,201 epoch 5 - iter 900/1809 - loss 0.03564067 - time (sec): 57.47 - samples/sec: 3261.46 - lr: 0.000031 - momentum: 0.000000 |
|
2023-10-17 17:21:22,490 epoch 5 - iter 1080/1809 - loss 0.03492180 - time (sec): 68.76 - samples/sec: 3259.96 - lr: 0.000030 - momentum: 0.000000 |
|
2023-10-17 17:21:34,269 epoch 5 - iter 1260/1809 - loss 0.03567128 - time (sec): 80.54 - samples/sec: 3266.60 - lr: 0.000029 - momentum: 0.000000 |
|
2023-10-17 17:21:45,765 epoch 5 - iter 1440/1809 - loss 0.03640100 - time (sec): 92.03 - samples/sec: 3271.15 - lr: 0.000029 - momentum: 0.000000 |
|
2023-10-17 17:21:57,633 epoch 5 - iter 1620/1809 - loss 0.03683705 - time (sec): 103.90 - samples/sec: 3266.95 - lr: 0.000028 - momentum: 0.000000 |
|
2023-10-17 17:22:10,494 epoch 5 - iter 1800/1809 - loss 0.03664054 - time (sec): 116.76 - samples/sec: 3240.02 - lr: 0.000028 - momentum: 0.000000 |
|
2023-10-17 17:22:11,124 ---------------------------------------------------------------------------------------------------- |
|
2023-10-17 17:22:11,124 EPOCH 5 done: loss 0.0365 - lr: 0.000028 |
|
2023-10-17 17:22:18,401 DEV : loss 0.27114248275756836 - f1-score (micro avg) 0.6489 |
|
2023-10-17 17:22:18,442 saving best model |
|
2023-10-17 17:22:19,012 ---------------------------------------------------------------------------------------------------- |
|
2023-10-17 17:22:30,865 epoch 6 - iter 180/1809 - loss 0.02380828 - time (sec): 11.85 - samples/sec: 3203.90 - lr: 0.000027 - momentum: 0.000000 |
|
2023-10-17 17:22:42,265 epoch 6 - iter 360/1809 - loss 0.02336456 - time (sec): 23.25 - samples/sec: 3201.60 - lr: 0.000027 - momentum: 0.000000 |
|
2023-10-17 17:22:53,931 epoch 6 - iter 540/1809 - loss 0.02458402 - time (sec): 34.92 - samples/sec: 3210.75 - lr: 0.000026 - momentum: 0.000000 |
|
2023-10-17 17:23:06,012 epoch 6 - iter 720/1809 - loss 0.02370887 - time (sec): 47.00 - samples/sec: 3231.32 - lr: 0.000026 - momentum: 0.000000 |
|
2023-10-17 17:23:17,769 epoch 6 - iter 900/1809 - loss 0.02321931 - time (sec): 58.76 - samples/sec: 3223.85 - lr: 0.000025 - momentum: 0.000000 |
|
2023-10-17 17:23:30,920 epoch 6 - iter 1080/1809 - loss 0.02428414 - time (sec): 71.91 - samples/sec: 3165.19 - lr: 0.000024 - momentum: 0.000000 |
|
2023-10-17 17:23:43,365 epoch 6 - iter 1260/1809 - loss 0.02576350 - time (sec): 84.35 - samples/sec: 3117.42 - lr: 0.000024 - momentum: 0.000000 |
|
2023-10-17 17:23:56,563 epoch 6 - iter 1440/1809 - loss 0.02577017 - time (sec): 97.55 - samples/sec: 3086.57 - lr: 0.000023 - momentum: 0.000000 |
|
2023-10-17 17:24:09,657 epoch 6 - iter 1620/1809 - loss 0.02611217 - time (sec): 110.64 - samples/sec: 3067.46 - lr: 0.000023 - momentum: 0.000000 |
|
2023-10-17 17:24:22,953 epoch 6 - iter 1800/1809 - loss 0.02567029 - time (sec): 123.94 - samples/sec: 3052.44 - lr: 0.000022 - momentum: 0.000000 |
|
2023-10-17 17:24:23,520 ---------------------------------------------------------------------------------------------------- |
|
2023-10-17 17:24:23,521 EPOCH 6 done: loss 0.0257 - lr: 0.000022 |
|
2023-10-17 17:24:29,799 DEV : loss 0.2926296889781952 - f1-score (micro avg) 0.6557 |
|
2023-10-17 17:24:29,840 saving best model |
|
2023-10-17 17:24:30,418 ---------------------------------------------------------------------------------------------------- |
|
2023-10-17 17:24:41,928 epoch 7 - iter 180/1809 - loss 0.01540372 - time (sec): 11.51 - samples/sec: 3142.49 - lr: 0.000022 - momentum: 0.000000 |
|
2023-10-17 17:24:53,530 epoch 7 - iter 360/1809 - loss 0.01373858 - time (sec): 23.11 - samples/sec: 3149.87 - lr: 0.000021 - momentum: 0.000000 |
|
2023-10-17 17:25:04,891 epoch 7 - iter 540/1809 - loss 0.01476080 - time (sec): 34.47 - samples/sec: 3169.89 - lr: 0.000021 - momentum: 0.000000 |
|
2023-10-17 17:25:17,063 epoch 7 - iter 720/1809 - loss 0.01553034 - time (sec): 46.64 - samples/sec: 3178.69 - lr: 0.000020 - momentum: 0.000000 |
|
2023-10-17 17:25:31,212 epoch 7 - iter 900/1809 - loss 0.01608482 - time (sec): 60.79 - samples/sec: 3092.52 - lr: 0.000019 - momentum: 0.000000 |
|
2023-10-17 17:25:44,555 epoch 7 - iter 1080/1809 - loss 0.01625864 - time (sec): 74.14 - samples/sec: 3065.32 - lr: 0.000019 - momentum: 0.000000 |
|
2023-10-17 17:25:57,185 epoch 7 - iter 1260/1809 - loss 0.01598109 - time (sec): 86.77 - samples/sec: 3046.68 - lr: 0.000018 - momentum: 0.000000 |
|
2023-10-17 17:26:10,352 epoch 7 - iter 1440/1809 - loss 0.01620623 - time (sec): 99.93 - samples/sec: 3018.29 - lr: 0.000018 - momentum: 0.000000 |
|
2023-10-17 17:26:23,271 epoch 7 - iter 1620/1809 - loss 0.01562169 - time (sec): 112.85 - samples/sec: 3008.43 - lr: 0.000017 - momentum: 0.000000 |
|
2023-10-17 17:26:35,991 epoch 7 - iter 1800/1809 - loss 0.01568355 - time (sec): 125.57 - samples/sec: 3009.51 - lr: 0.000017 - momentum: 0.000000 |
|
2023-10-17 17:26:36,606 ---------------------------------------------------------------------------------------------------- |
|
2023-10-17 17:26:36,607 EPOCH 7 done: loss 0.0157 - lr: 0.000017 |
|
2023-10-17 17:26:43,029 DEV : loss 0.3529641330242157 - f1-score (micro avg) 0.6571 |
|
2023-10-17 17:26:43,073 saving best model |
|
2023-10-17 17:26:43,674 ---------------------------------------------------------------------------------------------------- |
|
2023-10-17 17:26:56,220 epoch 8 - iter 180/1809 - loss 0.01695089 - time (sec): 12.54 - samples/sec: 2962.85 - lr: 0.000016 - momentum: 0.000000 |
|
2023-10-17 17:27:08,773 epoch 8 - iter 360/1809 - loss 0.01377195 - time (sec): 25.10 - samples/sec: 2935.92 - lr: 0.000016 - momentum: 0.000000 |
|
2023-10-17 17:27:21,487 epoch 8 - iter 540/1809 - loss 0.01220865 - time (sec): 37.81 - samples/sec: 2935.57 - lr: 0.000015 - momentum: 0.000000 |
|
2023-10-17 17:27:35,132 epoch 8 - iter 720/1809 - loss 0.01373650 - time (sec): 51.46 - samples/sec: 2917.35 - lr: 0.000014 - momentum: 0.000000 |
|
2023-10-17 17:27:48,191 epoch 8 - iter 900/1809 - loss 0.01422431 - time (sec): 64.52 - samples/sec: 2914.87 - lr: 0.000014 - momentum: 0.000000 |
|
2023-10-17 17:28:01,243 epoch 8 - iter 1080/1809 - loss 0.01318920 - time (sec): 77.57 - samples/sec: 2904.54 - lr: 0.000013 - momentum: 0.000000 |
|
2023-10-17 17:28:14,364 epoch 8 - iter 1260/1809 - loss 0.01262812 - time (sec): 90.69 - samples/sec: 2907.44 - lr: 0.000013 - momentum: 0.000000 |
|
2023-10-17 17:28:27,356 epoch 8 - iter 1440/1809 - loss 0.01230139 - time (sec): 103.68 - samples/sec: 2915.00 - lr: 0.000012 - momentum: 0.000000 |
|
2023-10-17 17:28:40,048 epoch 8 - iter 1620/1809 - loss 0.01216736 - time (sec): 116.37 - samples/sec: 2911.57 - lr: 0.000012 - momentum: 0.000000 |
|
2023-10-17 17:28:53,484 epoch 8 - iter 1800/1809 - loss 0.01174195 - time (sec): 129.81 - samples/sec: 2910.13 - lr: 0.000011 - momentum: 0.000000 |
|
2023-10-17 17:28:54,159 ---------------------------------------------------------------------------------------------------- |
|
2023-10-17 17:28:54,160 EPOCH 8 done: loss 0.0119 - lr: 0.000011 |
|
2023-10-17 17:29:01,334 DEV : loss 0.36510923504829407 - f1-score (micro avg) 0.6581 |
|
2023-10-17 17:29:01,379 saving best model |
|
2023-10-17 17:29:01,990 ---------------------------------------------------------------------------------------------------- |
|
2023-10-17 17:29:14,799 epoch 9 - iter 180/1809 - loss 0.00676309 - time (sec): 12.81 - samples/sec: 2836.96 - lr: 0.000011 - momentum: 0.000000 |
|
2023-10-17 17:29:27,626 epoch 9 - iter 360/1809 - loss 0.00654625 - time (sec): 25.63 - samples/sec: 2881.92 - lr: 0.000010 - momentum: 0.000000 |
|
2023-10-17 17:29:40,593 epoch 9 - iter 540/1809 - loss 0.00662540 - time (sec): 38.60 - samples/sec: 2901.39 - lr: 0.000009 - momentum: 0.000000 |
|
2023-10-17 17:29:54,034 epoch 9 - iter 720/1809 - loss 0.00713313 - time (sec): 52.04 - samples/sec: 2892.66 - lr: 0.000009 - momentum: 0.000000 |
|
2023-10-17 17:30:07,467 epoch 9 - iter 900/1809 - loss 0.00725837 - time (sec): 65.48 - samples/sec: 2877.00 - lr: 0.000008 - momentum: 0.000000 |
|
2023-10-17 17:30:20,535 epoch 9 - iter 1080/1809 - loss 0.00748436 - time (sec): 78.54 - samples/sec: 2881.75 - lr: 0.000008 - momentum: 0.000000 |
|
2023-10-17 17:30:34,143 epoch 9 - iter 1260/1809 - loss 0.00775191 - time (sec): 92.15 - samples/sec: 2889.46 - lr: 0.000007 - momentum: 0.000000 |
|
2023-10-17 17:30:46,967 epoch 9 - iter 1440/1809 - loss 0.00761670 - time (sec): 104.97 - samples/sec: 2900.62 - lr: 0.000007 - momentum: 0.000000 |
|
2023-10-17 17:30:59,707 epoch 9 - iter 1620/1809 - loss 0.00766050 - time (sec): 117.71 - samples/sec: 2901.81 - lr: 0.000006 - momentum: 0.000000 |
|
2023-10-17 17:31:13,080 epoch 9 - iter 1800/1809 - loss 0.00746642 - time (sec): 131.09 - samples/sec: 2886.97 - lr: 0.000006 - momentum: 0.000000 |
|
2023-10-17 17:31:13,704 ---------------------------------------------------------------------------------------------------- |
|
2023-10-17 17:31:13,704 EPOCH 9 done: loss 0.0075 - lr: 0.000006 |
|
2023-10-17 17:31:20,092 DEV : loss 0.39079737663269043 - f1-score (micro avg) 0.6541 |
|
2023-10-17 17:31:20,133 ---------------------------------------------------------------------------------------------------- |
|
2023-10-17 17:31:34,992 epoch 10 - iter 180/1809 - loss 0.00435699 - time (sec): 14.86 - samples/sec: 2533.83 - lr: 0.000005 - momentum: 0.000000 |
|
2023-10-17 17:31:49,379 epoch 10 - iter 360/1809 - loss 0.00449193 - time (sec): 29.24 - samples/sec: 2657.93 - lr: 0.000004 - momentum: 0.000000 |
|
2023-10-17 17:32:03,565 epoch 10 - iter 540/1809 - loss 0.00402430 - time (sec): 43.43 - samples/sec: 2649.88 - lr: 0.000004 - momentum: 0.000000 |
|
2023-10-17 17:32:17,158 epoch 10 - iter 720/1809 - loss 0.00509725 - time (sec): 57.02 - samples/sec: 2683.43 - lr: 0.000003 - momentum: 0.000000 |
|
2023-10-17 17:32:30,887 epoch 10 - iter 900/1809 - loss 0.00529774 - time (sec): 70.75 - samples/sec: 2670.34 - lr: 0.000003 - momentum: 0.000000 |
|
2023-10-17 17:32:44,665 epoch 10 - iter 1080/1809 - loss 0.00507294 - time (sec): 84.53 - samples/sec: 2692.78 - lr: 0.000002 - momentum: 0.000000 |
|
2023-10-17 17:32:57,604 epoch 10 - iter 1260/1809 - loss 0.00509465 - time (sec): 97.47 - samples/sec: 2728.72 - lr: 0.000002 - momentum: 0.000000 |
|
2023-10-17 17:33:10,510 epoch 10 - iter 1440/1809 - loss 0.00507500 - time (sec): 110.38 - samples/sec: 2749.44 - lr: 0.000001 - momentum: 0.000000 |
|
2023-10-17 17:33:23,583 epoch 10 - iter 1620/1809 - loss 0.00502796 - time (sec): 123.45 - samples/sec: 2774.09 - lr: 0.000001 - momentum: 0.000000 |
|
2023-10-17 17:33:37,029 epoch 10 - iter 1800/1809 - loss 0.00499215 - time (sec): 136.89 - samples/sec: 2765.41 - lr: 0.000000 - momentum: 0.000000 |
|
2023-10-17 17:33:37,688 ---------------------------------------------------------------------------------------------------- |
|
2023-10-17 17:33:37,688 EPOCH 10 done: loss 0.0050 - lr: 0.000000 |
|
2023-10-17 17:33:43,978 DEV : loss 0.39810895919799805 - f1-score (micro avg) 0.6564 |
|
2023-10-17 17:33:44,542 ---------------------------------------------------------------------------------------------------- |
|
2023-10-17 17:33:44,544 Loading model from best epoch ... |
|
2023-10-17 17:33:46,262 SequenceTagger predicts: Dictionary with 13 tags: O, S-loc, B-loc, E-loc, I-loc, S-pers, B-pers, E-pers, I-pers, S-org, B-org, E-org, I-org |
|
2023-10-17 17:33:55,163 |
|
Results: |
|
- F-score (micro) 0.6707 |
|
- F-score (macro) 0.5415 |
|
- Accuracy 0.5185 |
|
|
|
By class: |
|
precision recall f1-score support |
|
|
|
loc 0.6425 0.8088 0.7161 591 |
|
pers 0.5864 0.7703 0.6659 357 |
|
org 0.3019 0.2025 0.2424 79 |
|
|
|
micro avg 0.6074 0.7488 0.6707 1027 |
|
macro avg 0.5102 0.5939 0.5415 1027 |
|
weighted avg 0.5968 0.7488 0.6622 1027 |
|
|
|
2023-10-17 17:33:55,163 ---------------------------------------------------------------------------------------------------- |
|
|