stefan-it's picture
Upload folder using huggingface_hub
f634640
2023-10-13 07:09:19,789 ----------------------------------------------------------------------------------------------------
2023-10-13 07:09:19,791 Model: "SequenceTagger(
(embeddings): ByT5Embeddings(
(model): T5EncoderModel(
(shared): Embedding(384, 1472)
(encoder): T5Stack(
(embed_tokens): Embedding(384, 1472)
(block): ModuleList(
(0): T5Block(
(layer): ModuleList(
(0): T5LayerSelfAttention(
(SelfAttention): T5Attention(
(q): Linear(in_features=1472, out_features=384, bias=False)
(k): Linear(in_features=1472, out_features=384, bias=False)
(v): Linear(in_features=1472, out_features=384, bias=False)
(o): Linear(in_features=384, out_features=1472, bias=False)
(relative_attention_bias): Embedding(32, 6)
)
(layer_norm): FusedRMSNorm(torch.Size([1472]), eps=1e-06, elementwise_affine=True)
(dropout): Dropout(p=0.1, inplace=False)
)
(1): T5LayerFF(
(DenseReluDense): T5DenseGatedActDense(
(wi_0): Linear(in_features=1472, out_features=3584, bias=False)
(wi_1): Linear(in_features=1472, out_features=3584, bias=False)
(wo): Linear(in_features=3584, out_features=1472, bias=False)
(dropout): Dropout(p=0.1, inplace=False)
(act): NewGELUActivation()
)
(layer_norm): FusedRMSNorm(torch.Size([1472]), eps=1e-06, elementwise_affine=True)
(dropout): Dropout(p=0.1, inplace=False)
)
)
)
(1-11): 11 x T5Block(
(layer): ModuleList(
(0): T5LayerSelfAttention(
(SelfAttention): T5Attention(
(q): Linear(in_features=1472, out_features=384, bias=False)
(k): Linear(in_features=1472, out_features=384, bias=False)
(v): Linear(in_features=1472, out_features=384, bias=False)
(o): Linear(in_features=384, out_features=1472, bias=False)
)
(layer_norm): FusedRMSNorm(torch.Size([1472]), eps=1e-06, elementwise_affine=True)
(dropout): Dropout(p=0.1, inplace=False)
)
(1): T5LayerFF(
(DenseReluDense): T5DenseGatedActDense(
(wi_0): Linear(in_features=1472, out_features=3584, bias=False)
(wi_1): Linear(in_features=1472, out_features=3584, bias=False)
(wo): Linear(in_features=3584, out_features=1472, bias=False)
(dropout): Dropout(p=0.1, inplace=False)
(act): NewGELUActivation()
)
(layer_norm): FusedRMSNorm(torch.Size([1472]), eps=1e-06, elementwise_affine=True)
(dropout): Dropout(p=0.1, inplace=False)
)
)
)
)
(final_layer_norm): FusedRMSNorm(torch.Size([1472]), eps=1e-06, elementwise_affine=True)
(dropout): Dropout(p=0.1, inplace=False)
)
)
)
(locked_dropout): LockedDropout(p=0.5)
(linear): Linear(in_features=1472, out_features=13, bias=True)
(loss_function): CrossEntropyLoss()
)"
2023-10-13 07:09:19,791 ----------------------------------------------------------------------------------------------------
2023-10-13 07:09:19,791 MultiCorpus: 14465 train + 1392 dev + 2432 test sentences
- NER_HIPE_2022 Corpus: 14465 train + 1392 dev + 2432 test sentences - /root/.flair/datasets/ner_hipe_2022/v2.1/letemps/fr/with_doc_seperator
2023-10-13 07:09:19,791 ----------------------------------------------------------------------------------------------------
2023-10-13 07:09:19,791 Train: 14465 sentences
2023-10-13 07:09:19,791 (train_with_dev=False, train_with_test=False)
2023-10-13 07:09:19,792 ----------------------------------------------------------------------------------------------------
2023-10-13 07:09:19,792 Training Params:
2023-10-13 07:09:19,792 - learning_rate: "0.00016"
2023-10-13 07:09:19,792 - mini_batch_size: "4"
2023-10-13 07:09:19,792 - max_epochs: "10"
2023-10-13 07:09:19,792 - shuffle: "True"
2023-10-13 07:09:19,792 ----------------------------------------------------------------------------------------------------
2023-10-13 07:09:19,792 Plugins:
2023-10-13 07:09:19,792 - TensorboardLogger
2023-10-13 07:09:19,792 - LinearScheduler | warmup_fraction: '0.1'
2023-10-13 07:09:19,792 ----------------------------------------------------------------------------------------------------
2023-10-13 07:09:19,792 Final evaluation on model from best epoch (best-model.pt)
2023-10-13 07:09:19,792 - metric: "('micro avg', 'f1-score')"
2023-10-13 07:09:19,792 ----------------------------------------------------------------------------------------------------
2023-10-13 07:09:19,792 Computation:
2023-10-13 07:09:19,793 - compute on device: cuda:0
2023-10-13 07:09:19,793 - embedding storage: none
2023-10-13 07:09:19,793 ----------------------------------------------------------------------------------------------------
2023-10-13 07:09:19,793 Model training base path: "hmbench-letemps/fr-hmbyt5-preliminary/byt5-small-historic-multilingual-span20-flax-bs4-wsFalse-e10-lr0.00016-poolingfirst-layers-1-crfFalse-1"
2023-10-13 07:09:19,793 ----------------------------------------------------------------------------------------------------
2023-10-13 07:09:19,793 ----------------------------------------------------------------------------------------------------
2023-10-13 07:09:19,793 Logging anything other than scalars to TensorBoard is currently not supported.
2023-10-13 07:11:03,127 epoch 1 - iter 361/3617 - loss 2.54672490 - time (sec): 103.33 - samples/sec: 372.78 - lr: 0.000016 - momentum: 0.000000
2023-10-13 07:12:44,471 epoch 1 - iter 722/3617 - loss 2.14481700 - time (sec): 204.68 - samples/sec: 372.30 - lr: 0.000032 - momentum: 0.000000
2023-10-13 07:14:23,374 epoch 1 - iter 1083/3617 - loss 1.68863182 - time (sec): 303.58 - samples/sec: 372.84 - lr: 0.000048 - momentum: 0.000000
2023-10-13 07:16:07,432 epoch 1 - iter 1444/3617 - loss 1.33089974 - time (sec): 407.64 - samples/sec: 373.61 - lr: 0.000064 - momentum: 0.000000
2023-10-13 07:17:50,485 epoch 1 - iter 1805/3617 - loss 1.10545660 - time (sec): 510.69 - samples/sec: 371.79 - lr: 0.000080 - momentum: 0.000000
2023-10-13 07:19:32,500 epoch 1 - iter 2166/3617 - loss 0.95603286 - time (sec): 612.71 - samples/sec: 370.31 - lr: 0.000096 - momentum: 0.000000
2023-10-13 07:21:14,877 epoch 1 - iter 2527/3617 - loss 0.84785682 - time (sec): 715.08 - samples/sec: 368.44 - lr: 0.000112 - momentum: 0.000000
2023-10-13 07:22:59,295 epoch 1 - iter 2888/3617 - loss 0.75882497 - time (sec): 819.50 - samples/sec: 368.18 - lr: 0.000128 - momentum: 0.000000
2023-10-13 07:24:39,030 epoch 1 - iter 3249/3617 - loss 0.69053264 - time (sec): 919.23 - samples/sec: 369.76 - lr: 0.000144 - momentum: 0.000000
2023-10-13 07:26:17,579 epoch 1 - iter 3610/3617 - loss 0.62979015 - time (sec): 1017.78 - samples/sec: 372.72 - lr: 0.000160 - momentum: 0.000000
2023-10-13 07:26:19,360 ----------------------------------------------------------------------------------------------------
2023-10-13 07:26:19,361 EPOCH 1 done: loss 0.6290 - lr: 0.000160
2023-10-13 07:26:58,014 DEV : loss 0.12302889674901962 - f1-score (micro avg) 0.5399
2023-10-13 07:26:58,075 saving best model
2023-10-13 07:26:58,931 ----------------------------------------------------------------------------------------------------
2023-10-13 07:28:41,476 epoch 2 - iter 361/3617 - loss 0.09184357 - time (sec): 102.54 - samples/sec: 379.17 - lr: 0.000158 - momentum: 0.000000
2023-10-13 07:30:19,808 epoch 2 - iter 722/3617 - loss 0.09724116 - time (sec): 200.88 - samples/sec: 385.81 - lr: 0.000156 - momentum: 0.000000
2023-10-13 07:31:58,762 epoch 2 - iter 1083/3617 - loss 0.09717697 - time (sec): 299.83 - samples/sec: 385.45 - lr: 0.000155 - momentum: 0.000000
2023-10-13 07:33:40,743 epoch 2 - iter 1444/3617 - loss 0.09928124 - time (sec): 401.81 - samples/sec: 379.33 - lr: 0.000153 - momentum: 0.000000
2023-10-13 07:35:19,332 epoch 2 - iter 1805/3617 - loss 0.09824636 - time (sec): 500.40 - samples/sec: 378.12 - lr: 0.000151 - momentum: 0.000000
2023-10-13 07:36:59,984 epoch 2 - iter 2166/3617 - loss 0.09948203 - time (sec): 601.05 - samples/sec: 378.45 - lr: 0.000149 - momentum: 0.000000
2023-10-13 07:38:39,721 epoch 2 - iter 2527/3617 - loss 0.09758575 - time (sec): 700.79 - samples/sec: 378.47 - lr: 0.000148 - momentum: 0.000000
2023-10-13 07:40:20,216 epoch 2 - iter 2888/3617 - loss 0.09631999 - time (sec): 801.28 - samples/sec: 378.70 - lr: 0.000146 - momentum: 0.000000
2023-10-13 07:42:00,600 epoch 2 - iter 3249/3617 - loss 0.09404083 - time (sec): 901.67 - samples/sec: 379.47 - lr: 0.000144 - momentum: 0.000000
2023-10-13 07:43:37,048 epoch 2 - iter 3610/3617 - loss 0.09413353 - time (sec): 998.11 - samples/sec: 379.70 - lr: 0.000142 - momentum: 0.000000
2023-10-13 07:43:38,928 ----------------------------------------------------------------------------------------------------
2023-10-13 07:43:38,928 EPOCH 2 done: loss 0.0940 - lr: 0.000142
2023-10-13 07:44:17,984 DEV : loss 0.11269791424274445 - f1-score (micro avg) 0.6141
2023-10-13 07:44:18,043 saving best model
2023-10-13 07:44:20,630 ----------------------------------------------------------------------------------------------------
2023-10-13 07:45:59,384 epoch 3 - iter 361/3617 - loss 0.05810261 - time (sec): 98.75 - samples/sec: 387.16 - lr: 0.000140 - momentum: 0.000000
2023-10-13 07:47:42,320 epoch 3 - iter 722/3617 - loss 0.06040886 - time (sec): 201.69 - samples/sec: 380.77 - lr: 0.000139 - momentum: 0.000000
2023-10-13 07:49:20,365 epoch 3 - iter 1083/3617 - loss 0.06342105 - time (sec): 299.73 - samples/sec: 379.17 - lr: 0.000137 - momentum: 0.000000
2023-10-13 07:50:58,968 epoch 3 - iter 1444/3617 - loss 0.06293381 - time (sec): 398.33 - samples/sec: 378.53 - lr: 0.000135 - momentum: 0.000000
2023-10-13 07:52:35,727 epoch 3 - iter 1805/3617 - loss 0.06498947 - time (sec): 495.09 - samples/sec: 381.36 - lr: 0.000133 - momentum: 0.000000
2023-10-13 07:54:12,518 epoch 3 - iter 2166/3617 - loss 0.06553587 - time (sec): 591.88 - samples/sec: 383.44 - lr: 0.000132 - momentum: 0.000000
2023-10-13 07:55:49,481 epoch 3 - iter 2527/3617 - loss 0.06591706 - time (sec): 688.85 - samples/sec: 385.80 - lr: 0.000130 - momentum: 0.000000
2023-10-13 07:57:29,045 epoch 3 - iter 2888/3617 - loss 0.06544978 - time (sec): 788.41 - samples/sec: 384.44 - lr: 0.000128 - momentum: 0.000000
2023-10-13 07:59:12,481 epoch 3 - iter 3249/3617 - loss 0.06554704 - time (sec): 891.85 - samples/sec: 382.70 - lr: 0.000126 - momentum: 0.000000
2023-10-13 08:00:54,592 epoch 3 - iter 3610/3617 - loss 0.06594083 - time (sec): 993.96 - samples/sec: 381.46 - lr: 0.000124 - momentum: 0.000000
2023-10-13 08:00:56,337 ----------------------------------------------------------------------------------------------------
2023-10-13 08:00:56,337 EPOCH 3 done: loss 0.0659 - lr: 0.000124
2023-10-13 08:01:36,047 DEV : loss 0.17262127995491028 - f1-score (micro avg) 0.6187
2023-10-13 08:01:36,109 saving best model
2023-10-13 08:01:38,726 ----------------------------------------------------------------------------------------------------
2023-10-13 08:03:17,667 epoch 4 - iter 361/3617 - loss 0.04571932 - time (sec): 98.94 - samples/sec: 372.96 - lr: 0.000123 - momentum: 0.000000
2023-10-13 08:04:59,641 epoch 4 - iter 722/3617 - loss 0.04768170 - time (sec): 200.91 - samples/sec: 380.44 - lr: 0.000121 - momentum: 0.000000
2023-10-13 08:06:45,305 epoch 4 - iter 1083/3617 - loss 0.04760406 - time (sec): 306.57 - samples/sec: 371.61 - lr: 0.000119 - momentum: 0.000000
2023-10-13 08:08:29,628 epoch 4 - iter 1444/3617 - loss 0.04660555 - time (sec): 410.90 - samples/sec: 367.32 - lr: 0.000117 - momentum: 0.000000
2023-10-13 08:10:11,625 epoch 4 - iter 1805/3617 - loss 0.04686239 - time (sec): 512.90 - samples/sec: 366.00 - lr: 0.000116 - momentum: 0.000000
2023-10-13 08:11:51,533 epoch 4 - iter 2166/3617 - loss 0.04882203 - time (sec): 612.80 - samples/sec: 369.00 - lr: 0.000114 - momentum: 0.000000
2023-10-13 08:13:32,397 epoch 4 - iter 2527/3617 - loss 0.04981878 - time (sec): 713.67 - samples/sec: 369.31 - lr: 0.000112 - momentum: 0.000000
2023-10-13 08:15:15,443 epoch 4 - iter 2888/3617 - loss 0.04947922 - time (sec): 816.71 - samples/sec: 369.59 - lr: 0.000110 - momentum: 0.000000
2023-10-13 08:16:59,452 epoch 4 - iter 3249/3617 - loss 0.04870494 - time (sec): 920.72 - samples/sec: 370.52 - lr: 0.000108 - momentum: 0.000000
2023-10-13 08:18:43,800 epoch 4 - iter 3610/3617 - loss 0.04931029 - time (sec): 1025.07 - samples/sec: 369.92 - lr: 0.000107 - momentum: 0.000000
2023-10-13 08:18:45,673 ----------------------------------------------------------------------------------------------------
2023-10-13 08:18:45,673 EPOCH 4 done: loss 0.0493 - lr: 0.000107
2023-10-13 08:19:25,861 DEV : loss 0.21019545197486877 - f1-score (micro avg) 0.6423
2023-10-13 08:19:25,919 saving best model
2023-10-13 08:19:28,524 ----------------------------------------------------------------------------------------------------
2023-10-13 08:21:10,444 epoch 5 - iter 361/3617 - loss 0.03375571 - time (sec): 101.91 - samples/sec: 377.94 - lr: 0.000105 - momentum: 0.000000
2023-10-13 08:22:55,141 epoch 5 - iter 722/3617 - loss 0.03056571 - time (sec): 206.61 - samples/sec: 372.05 - lr: 0.000103 - momentum: 0.000000
2023-10-13 08:24:42,670 epoch 5 - iter 1083/3617 - loss 0.03134028 - time (sec): 314.14 - samples/sec: 361.24 - lr: 0.000101 - momentum: 0.000000
2023-10-13 08:26:25,328 epoch 5 - iter 1444/3617 - loss 0.03200139 - time (sec): 416.80 - samples/sec: 360.14 - lr: 0.000100 - momentum: 0.000000
2023-10-13 08:28:05,490 epoch 5 - iter 1805/3617 - loss 0.03332061 - time (sec): 516.96 - samples/sec: 363.22 - lr: 0.000098 - momentum: 0.000000
2023-10-13 08:29:47,849 epoch 5 - iter 2166/3617 - loss 0.03328642 - time (sec): 619.32 - samples/sec: 364.98 - lr: 0.000096 - momentum: 0.000000
2023-10-13 08:31:31,345 epoch 5 - iter 2527/3617 - loss 0.03444733 - time (sec): 722.81 - samples/sec: 364.33 - lr: 0.000094 - momentum: 0.000000
2023-10-13 08:33:13,022 epoch 5 - iter 2888/3617 - loss 0.03503322 - time (sec): 824.49 - samples/sec: 364.33 - lr: 0.000092 - momentum: 0.000000
2023-10-13 08:34:58,383 epoch 5 - iter 3249/3617 - loss 0.03543944 - time (sec): 929.85 - samples/sec: 366.65 - lr: 0.000091 - momentum: 0.000000
2023-10-13 08:36:40,423 epoch 5 - iter 3610/3617 - loss 0.03600676 - time (sec): 1031.89 - samples/sec: 367.67 - lr: 0.000089 - momentum: 0.000000
2023-10-13 08:36:42,044 ----------------------------------------------------------------------------------------------------
2023-10-13 08:36:42,045 EPOCH 5 done: loss 0.0360 - lr: 0.000089
2023-10-13 08:37:22,806 DEV : loss 0.2428499311208725 - f1-score (micro avg) 0.6353
2023-10-13 08:37:22,864 ----------------------------------------------------------------------------------------------------
2023-10-13 08:39:03,567 epoch 6 - iter 361/3617 - loss 0.02475435 - time (sec): 100.70 - samples/sec: 374.38 - lr: 0.000087 - momentum: 0.000000
2023-10-13 08:40:46,107 epoch 6 - iter 722/3617 - loss 0.02240235 - time (sec): 203.24 - samples/sec: 373.84 - lr: 0.000085 - momentum: 0.000000
2023-10-13 08:42:26,885 epoch 6 - iter 1083/3617 - loss 0.02242435 - time (sec): 304.02 - samples/sec: 373.28 - lr: 0.000084 - momentum: 0.000000
2023-10-13 08:44:07,737 epoch 6 - iter 1444/3617 - loss 0.02215591 - time (sec): 404.87 - samples/sec: 374.59 - lr: 0.000082 - momentum: 0.000000
2023-10-13 08:45:50,341 epoch 6 - iter 1805/3617 - loss 0.02397631 - time (sec): 507.47 - samples/sec: 374.23 - lr: 0.000080 - momentum: 0.000000
2023-10-13 08:47:34,746 epoch 6 - iter 2166/3617 - loss 0.02419269 - time (sec): 611.88 - samples/sec: 372.36 - lr: 0.000078 - momentum: 0.000000
2023-10-13 08:49:19,195 epoch 6 - iter 2527/3617 - loss 0.02490330 - time (sec): 716.33 - samples/sec: 370.90 - lr: 0.000076 - momentum: 0.000000
2023-10-13 08:51:05,354 epoch 6 - iter 2888/3617 - loss 0.02459970 - time (sec): 822.49 - samples/sec: 367.63 - lr: 0.000075 - momentum: 0.000000
2023-10-13 08:52:48,651 epoch 6 - iter 3249/3617 - loss 0.02441037 - time (sec): 925.78 - samples/sec: 367.52 - lr: 0.000073 - momentum: 0.000000
2023-10-13 08:54:31,614 epoch 6 - iter 3610/3617 - loss 0.02410353 - time (sec): 1028.75 - samples/sec: 368.80 - lr: 0.000071 - momentum: 0.000000
2023-10-13 08:54:33,301 ----------------------------------------------------------------------------------------------------
2023-10-13 08:54:33,302 EPOCH 6 done: loss 0.0241 - lr: 0.000071
2023-10-13 08:55:13,801 DEV : loss 0.30240556597709656 - f1-score (micro avg) 0.6237
2023-10-13 08:55:13,880 ----------------------------------------------------------------------------------------------------
2023-10-13 08:56:59,065 epoch 7 - iter 361/3617 - loss 0.01445564 - time (sec): 105.18 - samples/sec: 353.40 - lr: 0.000069 - momentum: 0.000000
2023-10-13 08:58:43,231 epoch 7 - iter 722/3617 - loss 0.01467506 - time (sec): 209.35 - samples/sec: 362.74 - lr: 0.000068 - momentum: 0.000000
2023-10-13 09:00:28,382 epoch 7 - iter 1083/3617 - loss 0.01578205 - time (sec): 314.50 - samples/sec: 361.82 - lr: 0.000066 - momentum: 0.000000
2023-10-13 09:02:13,449 epoch 7 - iter 1444/3617 - loss 0.01703422 - time (sec): 419.57 - samples/sec: 360.77 - lr: 0.000064 - momentum: 0.000000
2023-10-13 09:03:56,020 epoch 7 - iter 1805/3617 - loss 0.01763882 - time (sec): 522.14 - samples/sec: 362.88 - lr: 0.000062 - momentum: 0.000000
2023-10-13 09:05:39,265 epoch 7 - iter 2166/3617 - loss 0.01724767 - time (sec): 625.38 - samples/sec: 362.10 - lr: 0.000060 - momentum: 0.000000
2023-10-13 09:07:26,199 epoch 7 - iter 2527/3617 - loss 0.01745495 - time (sec): 732.32 - samples/sec: 361.47 - lr: 0.000059 - momentum: 0.000000
2023-10-13 09:09:12,338 epoch 7 - iter 2888/3617 - loss 0.01801878 - time (sec): 838.46 - samples/sec: 360.57 - lr: 0.000057 - momentum: 0.000000
2023-10-13 09:10:58,550 epoch 7 - iter 3249/3617 - loss 0.01838554 - time (sec): 944.67 - samples/sec: 360.61 - lr: 0.000055 - momentum: 0.000000
2023-10-13 09:12:45,236 epoch 7 - iter 3610/3617 - loss 0.01799741 - time (sec): 1051.35 - samples/sec: 360.80 - lr: 0.000053 - momentum: 0.000000
2023-10-13 09:12:46,988 ----------------------------------------------------------------------------------------------------
2023-10-13 09:12:46,988 EPOCH 7 done: loss 0.0180 - lr: 0.000053
2023-10-13 09:13:29,166 DEV : loss 0.32392749190330505 - f1-score (micro avg) 0.6152
2023-10-13 09:13:29,227 ----------------------------------------------------------------------------------------------------
2023-10-13 09:15:11,286 epoch 8 - iter 361/3617 - loss 0.00831627 - time (sec): 102.06 - samples/sec: 368.88 - lr: 0.000052 - momentum: 0.000000
2023-10-13 09:16:52,695 epoch 8 - iter 722/3617 - loss 0.00914200 - time (sec): 203.46 - samples/sec: 373.90 - lr: 0.000050 - momentum: 0.000000
2023-10-13 09:18:32,396 epoch 8 - iter 1083/3617 - loss 0.00912467 - time (sec): 303.17 - samples/sec: 376.89 - lr: 0.000048 - momentum: 0.000000
2023-10-13 09:20:14,373 epoch 8 - iter 1444/3617 - loss 0.00993485 - time (sec): 405.14 - samples/sec: 378.39 - lr: 0.000046 - momentum: 0.000000
2023-10-13 09:21:55,557 epoch 8 - iter 1805/3617 - loss 0.01122757 - time (sec): 506.33 - samples/sec: 379.34 - lr: 0.000044 - momentum: 0.000000
2023-10-13 09:23:35,609 epoch 8 - iter 2166/3617 - loss 0.01152886 - time (sec): 606.38 - samples/sec: 376.14 - lr: 0.000043 - momentum: 0.000000
2023-10-13 09:25:14,099 epoch 8 - iter 2527/3617 - loss 0.01150134 - time (sec): 704.87 - samples/sec: 376.75 - lr: 0.000041 - momentum: 0.000000
2023-10-13 09:26:54,414 epoch 8 - iter 2888/3617 - loss 0.01131531 - time (sec): 805.18 - samples/sec: 377.48 - lr: 0.000039 - momentum: 0.000000
2023-10-13 09:28:34,512 epoch 8 - iter 3249/3617 - loss 0.01111063 - time (sec): 905.28 - samples/sec: 377.77 - lr: 0.000037 - momentum: 0.000000
2023-10-13 09:30:14,589 epoch 8 - iter 3610/3617 - loss 0.01137858 - time (sec): 1005.36 - samples/sec: 377.30 - lr: 0.000036 - momentum: 0.000000
2023-10-13 09:30:16,327 ----------------------------------------------------------------------------------------------------
2023-10-13 09:30:16,328 EPOCH 8 done: loss 0.0114 - lr: 0.000036
2023-10-13 09:30:58,519 DEV : loss 0.3561553359031677 - f1-score (micro avg) 0.636
2023-10-13 09:30:58,579 ----------------------------------------------------------------------------------------------------
2023-10-13 09:32:40,941 epoch 9 - iter 361/3617 - loss 0.00723439 - time (sec): 102.36 - samples/sec: 364.00 - lr: 0.000034 - momentum: 0.000000
2023-10-13 09:34:22,522 epoch 9 - iter 722/3617 - loss 0.00867757 - time (sec): 203.94 - samples/sec: 367.26 - lr: 0.000032 - momentum: 0.000000
2023-10-13 09:36:01,585 epoch 9 - iter 1083/3617 - loss 0.00720214 - time (sec): 303.00 - samples/sec: 371.87 - lr: 0.000030 - momentum: 0.000000
2023-10-13 09:37:46,141 epoch 9 - iter 1444/3617 - loss 0.00884133 - time (sec): 407.56 - samples/sec: 374.63 - lr: 0.000028 - momentum: 0.000000
2023-10-13 09:39:27,863 epoch 9 - iter 1805/3617 - loss 0.00912211 - time (sec): 509.28 - samples/sec: 373.69 - lr: 0.000027 - momentum: 0.000000
2023-10-13 09:41:06,474 epoch 9 - iter 2166/3617 - loss 0.00902114 - time (sec): 607.89 - samples/sec: 375.21 - lr: 0.000025 - momentum: 0.000000
2023-10-13 09:42:44,579 epoch 9 - iter 2527/3617 - loss 0.00876123 - time (sec): 706.00 - samples/sec: 375.58 - lr: 0.000023 - momentum: 0.000000
2023-10-13 09:44:26,686 epoch 9 - iter 2888/3617 - loss 0.00893095 - time (sec): 808.10 - samples/sec: 375.68 - lr: 0.000021 - momentum: 0.000000
2023-10-13 09:46:08,982 epoch 9 - iter 3249/3617 - loss 0.00856866 - time (sec): 910.40 - samples/sec: 375.95 - lr: 0.000020 - momentum: 0.000000
2023-10-13 09:47:53,550 epoch 9 - iter 3610/3617 - loss 0.00830378 - time (sec): 1014.97 - samples/sec: 373.82 - lr: 0.000018 - momentum: 0.000000
2023-10-13 09:47:55,260 ----------------------------------------------------------------------------------------------------
2023-10-13 09:47:55,260 EPOCH 9 done: loss 0.0083 - lr: 0.000018
2023-10-13 09:48:36,184 DEV : loss 0.38502201437950134 - f1-score (micro avg) 0.6408
2023-10-13 09:48:36,253 ----------------------------------------------------------------------------------------------------
2023-10-13 09:50:20,200 epoch 10 - iter 361/3617 - loss 0.00438003 - time (sec): 103.94 - samples/sec: 366.40 - lr: 0.000016 - momentum: 0.000000
2023-10-13 09:52:04,672 epoch 10 - iter 722/3617 - loss 0.00381567 - time (sec): 208.42 - samples/sec: 361.18 - lr: 0.000014 - momentum: 0.000000
2023-10-13 09:53:50,255 epoch 10 - iter 1083/3617 - loss 0.00444144 - time (sec): 314.00 - samples/sec: 360.25 - lr: 0.000012 - momentum: 0.000000
2023-10-13 09:55:35,823 epoch 10 - iter 1444/3617 - loss 0.00443475 - time (sec): 419.57 - samples/sec: 358.31 - lr: 0.000011 - momentum: 0.000000
2023-10-13 09:57:23,187 epoch 10 - iter 1805/3617 - loss 0.00403389 - time (sec): 526.93 - samples/sec: 357.77 - lr: 0.000009 - momentum: 0.000000
2023-10-13 09:59:06,440 epoch 10 - iter 2166/3617 - loss 0.00409837 - time (sec): 630.18 - samples/sec: 359.97 - lr: 0.000007 - momentum: 0.000000
2023-10-13 10:00:50,582 epoch 10 - iter 2527/3617 - loss 0.00436368 - time (sec): 734.33 - samples/sec: 360.70 - lr: 0.000005 - momentum: 0.000000
2023-10-13 10:02:33,802 epoch 10 - iter 2888/3617 - loss 0.00446848 - time (sec): 837.55 - samples/sec: 361.82 - lr: 0.000004 - momentum: 0.000000
2023-10-13 10:04:19,545 epoch 10 - iter 3249/3617 - loss 0.00433966 - time (sec): 943.29 - samples/sec: 361.99 - lr: 0.000002 - momentum: 0.000000
2023-10-13 10:06:04,901 epoch 10 - iter 3610/3617 - loss 0.00416053 - time (sec): 1048.65 - samples/sec: 361.81 - lr: 0.000000 - momentum: 0.000000
2023-10-13 10:06:06,582 ----------------------------------------------------------------------------------------------------
2023-10-13 10:06:06,582 EPOCH 10 done: loss 0.0042 - lr: 0.000000
2023-10-13 10:06:48,722 DEV : loss 0.3937250077724457 - f1-score (micro avg) 0.6409
2023-10-13 10:06:49,678 ----------------------------------------------------------------------------------------------------
2023-10-13 10:06:49,680 Loading model from best epoch ...
2023-10-13 10:06:53,669 SequenceTagger predicts: Dictionary with 13 tags: O, S-loc, B-loc, E-loc, I-loc, S-pers, B-pers, E-pers, I-pers, S-org, B-org, E-org, I-org
2023-10-13 10:07:56,286
Results:
- F-score (micro) 0.6366
- F-score (macro) 0.4589
- Accuracy 0.4766
By class:
precision recall f1-score support
loc 0.6312 0.8020 0.7064 591
pers 0.5514 0.6611 0.6013 357
org 0.1081 0.0506 0.0690 79
micro avg 0.5872 0.6952 0.6366 1027
macro avg 0.4302 0.5046 0.4589 1027
weighted avg 0.5632 0.6952 0.6208 1027
2023-10-13 10:07:56,287 ----------------------------------------------------------------------------------------------------