File size: 23,944 Bytes
23095d9
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
2023-10-18 23:11:51,022 ----------------------------------------------------------------------------------------------------
2023-10-18 23:11:51,023 Model: "SequenceTagger(
  (embeddings): TransformerWordEmbeddings(
    (model): BertModel(
      (embeddings): BertEmbeddings(
        (word_embeddings): Embedding(32001, 128)
        (position_embeddings): Embedding(512, 128)
        (token_type_embeddings): Embedding(2, 128)
        (LayerNorm): LayerNorm((128,), eps=1e-12, elementwise_affine=True)
        (dropout): Dropout(p=0.1, inplace=False)
      )
      (encoder): BertEncoder(
        (layer): ModuleList(
          (0-1): 2 x BertLayer(
            (attention): BertAttention(
              (self): BertSelfAttention(
                (query): Linear(in_features=128, out_features=128, bias=True)
                (key): Linear(in_features=128, out_features=128, bias=True)
                (value): Linear(in_features=128, out_features=128, bias=True)
                (dropout): Dropout(p=0.1, inplace=False)
              )
              (output): BertSelfOutput(
                (dense): Linear(in_features=128, out_features=128, bias=True)
                (LayerNorm): LayerNorm((128,), eps=1e-12, elementwise_affine=True)
                (dropout): Dropout(p=0.1, inplace=False)
              )
            )
            (intermediate): BertIntermediate(
              (dense): Linear(in_features=128, out_features=512, bias=True)
              (intermediate_act_fn): GELUActivation()
            )
            (output): BertOutput(
              (dense): Linear(in_features=512, out_features=128, bias=True)
              (LayerNorm): LayerNorm((128,), eps=1e-12, elementwise_affine=True)
              (dropout): Dropout(p=0.1, inplace=False)
            )
          )
        )
      )
      (pooler): BertPooler(
        (dense): Linear(in_features=128, out_features=128, bias=True)
        (activation): Tanh()
      )
    )
  )
  (locked_dropout): LockedDropout(p=0.5)
  (linear): Linear(in_features=128, out_features=13, bias=True)
  (loss_function): CrossEntropyLoss()
)"
2023-10-18 23:11:51,023 ----------------------------------------------------------------------------------------------------
2023-10-18 23:11:51,023 MultiCorpus: 5777 train + 722 dev + 723 test sentences
 - NER_ICDAR_EUROPEANA Corpus: 5777 train + 722 dev + 723 test sentences - /root/.flair/datasets/ner_icdar_europeana/nl
2023-10-18 23:11:51,023 ----------------------------------------------------------------------------------------------------
2023-10-18 23:11:51,023 Train:  5777 sentences
2023-10-18 23:11:51,023         (train_with_dev=False, train_with_test=False)
2023-10-18 23:11:51,023 ----------------------------------------------------------------------------------------------------
2023-10-18 23:11:51,023 Training Params:
2023-10-18 23:11:51,023  - learning_rate: "3e-05" 
2023-10-18 23:11:51,023  - mini_batch_size: "8"
2023-10-18 23:11:51,023  - max_epochs: "10"
2023-10-18 23:11:51,023  - shuffle: "True"
2023-10-18 23:11:51,023 ----------------------------------------------------------------------------------------------------
2023-10-18 23:11:51,023 Plugins:
2023-10-18 23:11:51,023  - TensorboardLogger
2023-10-18 23:11:51,023  - LinearScheduler | warmup_fraction: '0.1'
2023-10-18 23:11:51,023 ----------------------------------------------------------------------------------------------------
2023-10-18 23:11:51,023 Final evaluation on model from best epoch (best-model.pt)
2023-10-18 23:11:51,024  - metric: "('micro avg', 'f1-score')"
2023-10-18 23:11:51,024 ----------------------------------------------------------------------------------------------------
2023-10-18 23:11:51,024 Computation:
2023-10-18 23:11:51,024  - compute on device: cuda:0
2023-10-18 23:11:51,024  - embedding storage: none
2023-10-18 23:11:51,024 ----------------------------------------------------------------------------------------------------
2023-10-18 23:11:51,024 Model training base path: "hmbench-icdar/nl-dbmdz/bert-tiny-historic-multilingual-cased-bs8-wsFalse-e10-lr3e-05-poolingfirst-layers-1-crfFalse-5"
2023-10-18 23:11:51,024 ----------------------------------------------------------------------------------------------------
2023-10-18 23:11:51,024 ----------------------------------------------------------------------------------------------------
2023-10-18 23:11:51,024 Logging anything other than scalars to TensorBoard is currently not supported.
2023-10-18 23:11:52,810 epoch 1 - iter 72/723 - loss 2.44216644 - time (sec): 1.79 - samples/sec: 9891.33 - lr: 0.000003 - momentum: 0.000000
2023-10-18 23:11:54,513 epoch 1 - iter 144/723 - loss 2.30997642 - time (sec): 3.49 - samples/sec: 9666.55 - lr: 0.000006 - momentum: 0.000000
2023-10-18 23:11:56,360 epoch 1 - iter 216/723 - loss 2.05393390 - time (sec): 5.34 - samples/sec: 9829.87 - lr: 0.000009 - momentum: 0.000000
2023-10-18 23:11:58,201 epoch 1 - iter 288/723 - loss 1.77045723 - time (sec): 7.18 - samples/sec: 9840.23 - lr: 0.000012 - momentum: 0.000000
2023-10-18 23:12:00,137 epoch 1 - iter 360/723 - loss 1.52008804 - time (sec): 9.11 - samples/sec: 9790.22 - lr: 0.000015 - momentum: 0.000000
2023-10-18 23:12:01,901 epoch 1 - iter 432/723 - loss 1.35013626 - time (sec): 10.88 - samples/sec: 9666.70 - lr: 0.000018 - momentum: 0.000000
2023-10-18 23:12:03,716 epoch 1 - iter 504/723 - loss 1.20226231 - time (sec): 12.69 - samples/sec: 9703.98 - lr: 0.000021 - momentum: 0.000000
2023-10-18 23:12:05,525 epoch 1 - iter 576/723 - loss 1.08283856 - time (sec): 14.50 - samples/sec: 9753.81 - lr: 0.000024 - momentum: 0.000000
2023-10-18 23:12:07,307 epoch 1 - iter 648/723 - loss 0.99626271 - time (sec): 16.28 - samples/sec: 9763.13 - lr: 0.000027 - momentum: 0.000000
2023-10-18 23:12:09,067 epoch 1 - iter 720/723 - loss 0.93060332 - time (sec): 18.04 - samples/sec: 9729.50 - lr: 0.000030 - momentum: 0.000000
2023-10-18 23:12:09,137 ----------------------------------------------------------------------------------------------------
2023-10-18 23:12:09,137 EPOCH 1 done: loss 0.9281 - lr: 0.000030
2023-10-18 23:12:10,425 DEV : loss 0.3564930558204651 - f1-score (micro avg)  0.0
2023-10-18 23:12:10,439 ----------------------------------------------------------------------------------------------------
2023-10-18 23:12:12,188 epoch 2 - iter 72/723 - loss 0.30663308 - time (sec): 1.75 - samples/sec: 9893.05 - lr: 0.000030 - momentum: 0.000000
2023-10-18 23:12:13,958 epoch 2 - iter 144/723 - loss 0.28240631 - time (sec): 3.52 - samples/sec: 10127.51 - lr: 0.000029 - momentum: 0.000000
2023-10-18 23:12:15,633 epoch 2 - iter 216/723 - loss 0.27645540 - time (sec): 5.19 - samples/sec: 9965.04 - lr: 0.000029 - momentum: 0.000000
2023-10-18 23:12:17,358 epoch 2 - iter 288/723 - loss 0.25965837 - time (sec): 6.92 - samples/sec: 10137.11 - lr: 0.000029 - momentum: 0.000000
2023-10-18 23:12:19,033 epoch 2 - iter 360/723 - loss 0.25438816 - time (sec): 8.59 - samples/sec: 10112.60 - lr: 0.000028 - momentum: 0.000000
2023-10-18 23:12:20,694 epoch 2 - iter 432/723 - loss 0.24919098 - time (sec): 10.26 - samples/sec: 10093.78 - lr: 0.000028 - momentum: 0.000000
2023-10-18 23:12:22,452 epoch 2 - iter 504/723 - loss 0.24538984 - time (sec): 12.01 - samples/sec: 10092.18 - lr: 0.000028 - momentum: 0.000000
2023-10-18 23:12:24,250 epoch 2 - iter 576/723 - loss 0.24291302 - time (sec): 13.81 - samples/sec: 10182.61 - lr: 0.000027 - momentum: 0.000000
2023-10-18 23:12:26,001 epoch 2 - iter 648/723 - loss 0.23897319 - time (sec): 15.56 - samples/sec: 10175.96 - lr: 0.000027 - momentum: 0.000000
2023-10-18 23:12:27,797 epoch 2 - iter 720/723 - loss 0.23500077 - time (sec): 17.36 - samples/sec: 10117.24 - lr: 0.000027 - momentum: 0.000000
2023-10-18 23:12:27,861 ----------------------------------------------------------------------------------------------------
2023-10-18 23:12:27,861 EPOCH 2 done: loss 0.2347 - lr: 0.000027
2023-10-18 23:12:29,600 DEV : loss 0.25880512595176697 - f1-score (micro avg)  0.0802
2023-10-18 23:12:29,616 saving best model
2023-10-18 23:12:29,648 ----------------------------------------------------------------------------------------------------
2023-10-18 23:12:31,747 epoch 3 - iter 72/723 - loss 0.19921052 - time (sec): 2.10 - samples/sec: 8841.74 - lr: 0.000026 - momentum: 0.000000
2023-10-18 23:12:33,512 epoch 3 - iter 144/723 - loss 0.20066322 - time (sec): 3.86 - samples/sec: 9294.18 - lr: 0.000026 - momentum: 0.000000
2023-10-18 23:12:35,351 epoch 3 - iter 216/723 - loss 0.19999346 - time (sec): 5.70 - samples/sec: 9508.30 - lr: 0.000026 - momentum: 0.000000
2023-10-18 23:12:37,134 epoch 3 - iter 288/723 - loss 0.19507221 - time (sec): 7.49 - samples/sec: 9594.94 - lr: 0.000025 - momentum: 0.000000
2023-10-18 23:12:38,901 epoch 3 - iter 360/723 - loss 0.19575824 - time (sec): 9.25 - samples/sec: 9552.28 - lr: 0.000025 - momentum: 0.000000
2023-10-18 23:12:40,666 epoch 3 - iter 432/723 - loss 0.19871723 - time (sec): 11.02 - samples/sec: 9595.97 - lr: 0.000025 - momentum: 0.000000
2023-10-18 23:12:42,391 epoch 3 - iter 504/723 - loss 0.19742757 - time (sec): 12.74 - samples/sec: 9601.55 - lr: 0.000024 - momentum: 0.000000
2023-10-18 23:12:44,209 epoch 3 - iter 576/723 - loss 0.19808476 - time (sec): 14.56 - samples/sec: 9670.87 - lr: 0.000024 - momentum: 0.000000
2023-10-18 23:12:45,925 epoch 3 - iter 648/723 - loss 0.19493970 - time (sec): 16.28 - samples/sec: 9717.32 - lr: 0.000024 - momentum: 0.000000
2023-10-18 23:12:47,666 epoch 3 - iter 720/723 - loss 0.19510831 - time (sec): 18.02 - samples/sec: 9751.67 - lr: 0.000023 - momentum: 0.000000
2023-10-18 23:12:47,734 ----------------------------------------------------------------------------------------------------
2023-10-18 23:12:47,734 EPOCH 3 done: loss 0.1950 - lr: 0.000023
2023-10-18 23:12:49,485 DEV : loss 0.21803173422813416 - f1-score (micro avg)  0.3538
2023-10-18 23:12:49,499 saving best model
2023-10-18 23:12:49,535 ----------------------------------------------------------------------------------------------------
2023-10-18 23:12:51,301 epoch 4 - iter 72/723 - loss 0.22975421 - time (sec): 1.77 - samples/sec: 9675.63 - lr: 0.000023 - momentum: 0.000000
2023-10-18 23:12:53,064 epoch 4 - iter 144/723 - loss 0.18735987 - time (sec): 3.53 - samples/sec: 9833.21 - lr: 0.000023 - momentum: 0.000000
2023-10-18 23:12:54,777 epoch 4 - iter 216/723 - loss 0.19159436 - time (sec): 5.24 - samples/sec: 9779.61 - lr: 0.000022 - momentum: 0.000000
2023-10-18 23:12:56,585 epoch 4 - iter 288/723 - loss 0.18563505 - time (sec): 7.05 - samples/sec: 9911.36 - lr: 0.000022 - momentum: 0.000000
2023-10-18 23:12:58,399 epoch 4 - iter 360/723 - loss 0.18791900 - time (sec): 8.86 - samples/sec: 10005.62 - lr: 0.000022 - momentum: 0.000000
2023-10-18 23:13:00,168 epoch 4 - iter 432/723 - loss 0.18324138 - time (sec): 10.63 - samples/sec: 10088.63 - lr: 0.000021 - momentum: 0.000000
2023-10-18 23:13:01,926 epoch 4 - iter 504/723 - loss 0.18133811 - time (sec): 12.39 - samples/sec: 9995.66 - lr: 0.000021 - momentum: 0.000000
2023-10-18 23:13:03,688 epoch 4 - iter 576/723 - loss 0.18072363 - time (sec): 14.15 - samples/sec: 9985.13 - lr: 0.000021 - momentum: 0.000000
2023-10-18 23:13:05,512 epoch 4 - iter 648/723 - loss 0.18091767 - time (sec): 15.98 - samples/sec: 9975.68 - lr: 0.000020 - momentum: 0.000000
2023-10-18 23:13:07,229 epoch 4 - iter 720/723 - loss 0.17928566 - time (sec): 17.69 - samples/sec: 9935.66 - lr: 0.000020 - momentum: 0.000000
2023-10-18 23:13:07,292 ----------------------------------------------------------------------------------------------------
2023-10-18 23:13:07,292 EPOCH 4 done: loss 0.1792 - lr: 0.000020
2023-10-18 23:13:09,386 DEV : loss 0.20422407984733582 - f1-score (micro avg)  0.4014
2023-10-18 23:13:09,401 saving best model
2023-10-18 23:13:09,437 ----------------------------------------------------------------------------------------------------
2023-10-18 23:13:11,075 epoch 5 - iter 72/723 - loss 0.19248413 - time (sec): 1.64 - samples/sec: 10269.81 - lr: 0.000020 - momentum: 0.000000
2023-10-18 23:13:12,842 epoch 5 - iter 144/723 - loss 0.18350762 - time (sec): 3.41 - samples/sec: 9895.90 - lr: 0.000019 - momentum: 0.000000
2023-10-18 23:13:14,578 epoch 5 - iter 216/723 - loss 0.18053100 - time (sec): 5.14 - samples/sec: 9758.42 - lr: 0.000019 - momentum: 0.000000
2023-10-18 23:13:16,356 epoch 5 - iter 288/723 - loss 0.17488340 - time (sec): 6.92 - samples/sec: 9775.57 - lr: 0.000019 - momentum: 0.000000
2023-10-18 23:13:18,203 epoch 5 - iter 360/723 - loss 0.17643351 - time (sec): 8.77 - samples/sec: 9912.19 - lr: 0.000018 - momentum: 0.000000
2023-10-18 23:13:19,986 epoch 5 - iter 432/723 - loss 0.17288927 - time (sec): 10.55 - samples/sec: 9961.54 - lr: 0.000018 - momentum: 0.000000
2023-10-18 23:13:21,746 epoch 5 - iter 504/723 - loss 0.16875420 - time (sec): 12.31 - samples/sec: 9934.45 - lr: 0.000018 - momentum: 0.000000
2023-10-18 23:13:23,522 epoch 5 - iter 576/723 - loss 0.16965003 - time (sec): 14.08 - samples/sec: 9897.96 - lr: 0.000017 - momentum: 0.000000
2023-10-18 23:13:25,296 epoch 5 - iter 648/723 - loss 0.17161084 - time (sec): 15.86 - samples/sec: 9880.14 - lr: 0.000017 - momentum: 0.000000
2023-10-18 23:13:27,162 epoch 5 - iter 720/723 - loss 0.16754034 - time (sec): 17.73 - samples/sec: 9912.87 - lr: 0.000017 - momentum: 0.000000
2023-10-18 23:13:27,227 ----------------------------------------------------------------------------------------------------
2023-10-18 23:13:27,227 EPOCH 5 done: loss 0.1679 - lr: 0.000017
2023-10-18 23:13:29,008 DEV : loss 0.20114754140377045 - f1-score (micro avg)  0.4134
2023-10-18 23:13:29,022 saving best model
2023-10-18 23:13:29,058 ----------------------------------------------------------------------------------------------------
2023-10-18 23:13:30,756 epoch 6 - iter 72/723 - loss 0.14807821 - time (sec): 1.70 - samples/sec: 10519.59 - lr: 0.000016 - momentum: 0.000000
2023-10-18 23:13:32,245 epoch 6 - iter 144/723 - loss 0.15415731 - time (sec): 3.19 - samples/sec: 11334.87 - lr: 0.000016 - momentum: 0.000000
2023-10-18 23:13:33,795 epoch 6 - iter 216/723 - loss 0.15522735 - time (sec): 4.74 - samples/sec: 11531.86 - lr: 0.000016 - momentum: 0.000000
2023-10-18 23:13:35,377 epoch 6 - iter 288/723 - loss 0.15473174 - time (sec): 6.32 - samples/sec: 11383.57 - lr: 0.000015 - momentum: 0.000000
2023-10-18 23:13:37,089 epoch 6 - iter 360/723 - loss 0.15550787 - time (sec): 8.03 - samples/sec: 11119.06 - lr: 0.000015 - momentum: 0.000000
2023-10-18 23:13:38,921 epoch 6 - iter 432/723 - loss 0.15664718 - time (sec): 9.86 - samples/sec: 10919.44 - lr: 0.000015 - momentum: 0.000000
2023-10-18 23:13:40,663 epoch 6 - iter 504/723 - loss 0.16128146 - time (sec): 11.60 - samples/sec: 10784.98 - lr: 0.000014 - momentum: 0.000000
2023-10-18 23:13:42,110 epoch 6 - iter 576/723 - loss 0.16186203 - time (sec): 13.05 - samples/sec: 10836.50 - lr: 0.000014 - momentum: 0.000000
2023-10-18 23:13:44,253 epoch 6 - iter 648/723 - loss 0.15979228 - time (sec): 15.19 - samples/sec: 10419.81 - lr: 0.000014 - momentum: 0.000000
2023-10-18 23:13:45,929 epoch 6 - iter 720/723 - loss 0.15793335 - time (sec): 16.87 - samples/sec: 10410.89 - lr: 0.000013 - momentum: 0.000000
2023-10-18 23:13:45,995 ----------------------------------------------------------------------------------------------------
2023-10-18 23:13:45,995 EPOCH 6 done: loss 0.1579 - lr: 0.000013
2023-10-18 23:13:47,779 DEV : loss 0.2004448026418686 - f1-score (micro avg)  0.416
2023-10-18 23:13:47,795 saving best model
2023-10-18 23:13:47,834 ----------------------------------------------------------------------------------------------------
2023-10-18 23:13:49,636 epoch 7 - iter 72/723 - loss 0.13990666 - time (sec): 1.80 - samples/sec: 9771.45 - lr: 0.000013 - momentum: 0.000000
2023-10-18 23:13:51,369 epoch 7 - iter 144/723 - loss 0.14735534 - time (sec): 3.53 - samples/sec: 9523.67 - lr: 0.000013 - momentum: 0.000000
2023-10-18 23:13:53,172 epoch 7 - iter 216/723 - loss 0.14661026 - time (sec): 5.34 - samples/sec: 9781.19 - lr: 0.000012 - momentum: 0.000000
2023-10-18 23:13:54,922 epoch 7 - iter 288/723 - loss 0.14674013 - time (sec): 7.09 - samples/sec: 9725.99 - lr: 0.000012 - momentum: 0.000000
2023-10-18 23:13:56,722 epoch 7 - iter 360/723 - loss 0.14930807 - time (sec): 8.89 - samples/sec: 9778.01 - lr: 0.000012 - momentum: 0.000000
2023-10-18 23:13:58,314 epoch 7 - iter 432/723 - loss 0.15173579 - time (sec): 10.48 - samples/sec: 10017.22 - lr: 0.000011 - momentum: 0.000000
2023-10-18 23:13:59,917 epoch 7 - iter 504/723 - loss 0.15401105 - time (sec): 12.08 - samples/sec: 10112.71 - lr: 0.000011 - momentum: 0.000000
2023-10-18 23:14:01,793 epoch 7 - iter 576/723 - loss 0.15380009 - time (sec): 13.96 - samples/sec: 10127.35 - lr: 0.000011 - momentum: 0.000000
2023-10-18 23:14:03,567 epoch 7 - iter 648/723 - loss 0.15502582 - time (sec): 15.73 - samples/sec: 10055.51 - lr: 0.000010 - momentum: 0.000000
2023-10-18 23:14:05,325 epoch 7 - iter 720/723 - loss 0.15355652 - time (sec): 17.49 - samples/sec: 10050.03 - lr: 0.000010 - momentum: 0.000000
2023-10-18 23:14:05,386 ----------------------------------------------------------------------------------------------------
2023-10-18 23:14:05,387 EPOCH 7 done: loss 0.1535 - lr: 0.000010
2023-10-18 23:14:07,198 DEV : loss 0.1892377883195877 - f1-score (micro avg)  0.4715
2023-10-18 23:14:07,213 saving best model
2023-10-18 23:14:07,246 ----------------------------------------------------------------------------------------------------
2023-10-18 23:14:09,021 epoch 8 - iter 72/723 - loss 0.14918626 - time (sec): 1.78 - samples/sec: 10048.93 - lr: 0.000010 - momentum: 0.000000
2023-10-18 23:14:10,805 epoch 8 - iter 144/723 - loss 0.14341743 - time (sec): 3.56 - samples/sec: 9753.10 - lr: 0.000009 - momentum: 0.000000
2023-10-18 23:14:12,659 epoch 8 - iter 216/723 - loss 0.14638127 - time (sec): 5.41 - samples/sec: 9806.40 - lr: 0.000009 - momentum: 0.000000
2023-10-18 23:14:14,509 epoch 8 - iter 288/723 - loss 0.14570047 - time (sec): 7.26 - samples/sec: 9830.45 - lr: 0.000009 - momentum: 0.000000
2023-10-18 23:14:16,626 epoch 8 - iter 360/723 - loss 0.14588077 - time (sec): 9.38 - samples/sec: 9468.27 - lr: 0.000008 - momentum: 0.000000
2023-10-18 23:14:18,438 epoch 8 - iter 432/723 - loss 0.14940172 - time (sec): 11.19 - samples/sec: 9520.91 - lr: 0.000008 - momentum: 0.000000
2023-10-18 23:14:20,233 epoch 8 - iter 504/723 - loss 0.14995954 - time (sec): 12.99 - samples/sec: 9625.72 - lr: 0.000008 - momentum: 0.000000
2023-10-18 23:14:21,993 epoch 8 - iter 576/723 - loss 0.14830811 - time (sec): 14.75 - samples/sec: 9612.22 - lr: 0.000007 - momentum: 0.000000
2023-10-18 23:14:23,804 epoch 8 - iter 648/723 - loss 0.14882827 - time (sec): 16.56 - samples/sec: 9598.29 - lr: 0.000007 - momentum: 0.000000
2023-10-18 23:14:25,585 epoch 8 - iter 720/723 - loss 0.14797825 - time (sec): 18.34 - samples/sec: 9578.73 - lr: 0.000007 - momentum: 0.000000
2023-10-18 23:14:25,657 ----------------------------------------------------------------------------------------------------
2023-10-18 23:14:25,658 EPOCH 8 done: loss 0.1479 - lr: 0.000007
2023-10-18 23:14:27,424 DEV : loss 0.19318030774593353 - f1-score (micro avg)  0.4586
2023-10-18 23:14:27,439 ----------------------------------------------------------------------------------------------------
2023-10-18 23:14:29,358 epoch 9 - iter 72/723 - loss 0.13183658 - time (sec): 1.92 - samples/sec: 9729.82 - lr: 0.000006 - momentum: 0.000000
2023-10-18 23:14:31,178 epoch 9 - iter 144/723 - loss 0.14774974 - time (sec): 3.74 - samples/sec: 9894.94 - lr: 0.000006 - momentum: 0.000000
2023-10-18 23:14:32,918 epoch 9 - iter 216/723 - loss 0.14096225 - time (sec): 5.48 - samples/sec: 10029.57 - lr: 0.000006 - momentum: 0.000000
2023-10-18 23:14:34,783 epoch 9 - iter 288/723 - loss 0.14464135 - time (sec): 7.34 - samples/sec: 9979.83 - lr: 0.000005 - momentum: 0.000000
2023-10-18 23:14:36,533 epoch 9 - iter 360/723 - loss 0.14935950 - time (sec): 9.09 - samples/sec: 9842.57 - lr: 0.000005 - momentum: 0.000000
2023-10-18 23:14:38,298 epoch 9 - iter 432/723 - loss 0.14704814 - time (sec): 10.86 - samples/sec: 9811.71 - lr: 0.000005 - momentum: 0.000000
2023-10-18 23:14:40,074 epoch 9 - iter 504/723 - loss 0.14643788 - time (sec): 12.63 - samples/sec: 9786.04 - lr: 0.000004 - momentum: 0.000000
2023-10-18 23:14:41,871 epoch 9 - iter 576/723 - loss 0.14449966 - time (sec): 14.43 - samples/sec: 9853.99 - lr: 0.000004 - momentum: 0.000000
2023-10-18 23:14:43,694 epoch 9 - iter 648/723 - loss 0.14535218 - time (sec): 16.26 - samples/sec: 9804.97 - lr: 0.000004 - momentum: 0.000000
2023-10-18 23:14:45,473 epoch 9 - iter 720/723 - loss 0.14713910 - time (sec): 18.03 - samples/sec: 9748.64 - lr: 0.000003 - momentum: 0.000000
2023-10-18 23:14:45,537 ----------------------------------------------------------------------------------------------------
2023-10-18 23:14:45,537 EPOCH 9 done: loss 0.1474 - lr: 0.000003
2023-10-18 23:14:47,299 DEV : loss 0.18770474195480347 - f1-score (micro avg)  0.471
2023-10-18 23:14:47,313 ----------------------------------------------------------------------------------------------------
2023-10-18 23:14:49,152 epoch 10 - iter 72/723 - loss 0.15104826 - time (sec): 1.84 - samples/sec: 9691.05 - lr: 0.000003 - momentum: 0.000000
2023-10-18 23:14:50,921 epoch 10 - iter 144/723 - loss 0.14308456 - time (sec): 3.61 - samples/sec: 9833.81 - lr: 0.000003 - momentum: 0.000000
2023-10-18 23:14:52,704 epoch 10 - iter 216/723 - loss 0.14243977 - time (sec): 5.39 - samples/sec: 9795.49 - lr: 0.000002 - momentum: 0.000000
2023-10-18 23:14:54,769 epoch 10 - iter 288/723 - loss 0.14355974 - time (sec): 7.45 - samples/sec: 9299.45 - lr: 0.000002 - momentum: 0.000000
2023-10-18 23:14:56,644 epoch 10 - iter 360/723 - loss 0.15340840 - time (sec): 9.33 - samples/sec: 9434.86 - lr: 0.000002 - momentum: 0.000000
2023-10-18 23:14:58,530 epoch 10 - iter 432/723 - loss 0.14997278 - time (sec): 11.22 - samples/sec: 9508.69 - lr: 0.000001 - momentum: 0.000000
2023-10-18 23:15:00,395 epoch 10 - iter 504/723 - loss 0.15043498 - time (sec): 13.08 - samples/sec: 9565.34 - lr: 0.000001 - momentum: 0.000000
2023-10-18 23:15:02,186 epoch 10 - iter 576/723 - loss 0.15019473 - time (sec): 14.87 - samples/sec: 9470.10 - lr: 0.000001 - momentum: 0.000000
2023-10-18 23:15:03,925 epoch 10 - iter 648/723 - loss 0.14807576 - time (sec): 16.61 - samples/sec: 9514.24 - lr: 0.000000 - momentum: 0.000000
2023-10-18 23:15:05,690 epoch 10 - iter 720/723 - loss 0.14659442 - time (sec): 18.38 - samples/sec: 9565.63 - lr: 0.000000 - momentum: 0.000000
2023-10-18 23:15:05,744 ----------------------------------------------------------------------------------------------------
2023-10-18 23:15:05,744 EPOCH 10 done: loss 0.1466 - lr: 0.000000
2023-10-18 23:15:07,520 DEV : loss 0.1885942816734314 - f1-score (micro avg)  0.4686
2023-10-18 23:15:07,565 ----------------------------------------------------------------------------------------------------
2023-10-18 23:15:07,565 Loading model from best epoch ...
2023-10-18 23:15:07,651 SequenceTagger predicts: Dictionary with 13 tags: O, S-LOC, B-LOC, E-LOC, I-LOC, S-PER, B-PER, E-PER, I-PER, S-ORG, B-ORG, E-ORG, I-ORG
2023-10-18 23:15:08,989 
Results:
- F-score (micro) 0.4786
- F-score (macro) 0.3307
- Accuracy 0.3244

By class:
              precision    recall  f1-score   support

         LOC     0.5887    0.5218    0.5532       458
         PER     0.5595    0.3610    0.4388       482
         ORG     0.0000    0.0000    0.0000        69

   micro avg     0.5760    0.4093    0.4786      1009
   macro avg     0.3827    0.2943    0.3307      1009
weighted avg     0.5345    0.4093    0.4608      1009

2023-10-18 23:15:08,989 ----------------------------------------------------------------------------------------------------