Upload folder using huggingface_hub
Browse files- best-model.pt +3 -0
- dev.tsv +0 -0
- loss.tsv +11 -0
- runs/events.out.tfevents.1697666900.46dc0c540dd0.3571.2 +3 -0
- test.tsv +0 -0
- training.log +241 -0
best-model.pt
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:9d3dc5421b102db1f9a158a29639635acd073da35f2a541180ac586ca943fe14
|
3 |
+
size 19045922
|
dev.tsv
ADDED
The diff for this file is too large to render.
See raw diff
|
|
loss.tsv
ADDED
@@ -0,0 +1,11 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
EPOCH TIMESTAMP LEARNING_RATE TRAIN_LOSS DEV_LOSS DEV_PRECISION DEV_RECALL DEV_F1 DEV_ACCURACY
|
2 |
+
1 22:08:39 0.0000 1.1433 0.3696 0.0000 0.0000 0.0000 0.0000
|
3 |
+
2 22:09:00 0.0000 0.2412 0.2479 0.6357 0.0919 0.1606 0.0879
|
4 |
+
3 22:09:20 0.0000 0.1963 0.2340 0.6290 0.1612 0.2566 0.1486
|
5 |
+
4 22:09:40 0.0000 0.1813 0.2118 0.5937 0.3698 0.4558 0.3036
|
6 |
+
5 22:10:00 0.0000 0.1715 0.2095 0.6230 0.3295 0.4311 0.2811
|
7 |
+
6 22:10:20 0.0000 0.1633 0.2053 0.5989 0.3440 0.4370 0.2868
|
8 |
+
7 22:10:39 0.0000 0.1571 0.2020 0.5823 0.3471 0.4350 0.2874
|
9 |
+
8 22:10:59 0.0000 0.1530 0.1938 0.5753 0.4143 0.4817 0.3282
|
10 |
+
9 22:11:18 0.0000 0.1503 0.1969 0.5764 0.3936 0.4678 0.3157
|
11 |
+
10 22:11:38 0.0000 0.1504 0.1977 0.5811 0.3884 0.4656 0.3133
|
runs/events.out.tfevents.1697666900.46dc0c540dd0.3571.2
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:bb8657bc9b20fc10650eacc8af0a5da5ca2f7be4e0aaf901042efad8551c4457
|
3 |
+
size 407048
|
test.tsv
ADDED
The diff for this file is too large to render.
See raw diff
|
|
training.log
ADDED
@@ -0,0 +1,241 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
2023-10-18 22:08:20,553 ----------------------------------------------------------------------------------------------------
|
2 |
+
2023-10-18 22:08:20,553 Model: "SequenceTagger(
|
3 |
+
(embeddings): TransformerWordEmbeddings(
|
4 |
+
(model): BertModel(
|
5 |
+
(embeddings): BertEmbeddings(
|
6 |
+
(word_embeddings): Embedding(32001, 128)
|
7 |
+
(position_embeddings): Embedding(512, 128)
|
8 |
+
(token_type_embeddings): Embedding(2, 128)
|
9 |
+
(LayerNorm): LayerNorm((128,), eps=1e-12, elementwise_affine=True)
|
10 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
11 |
+
)
|
12 |
+
(encoder): BertEncoder(
|
13 |
+
(layer): ModuleList(
|
14 |
+
(0-1): 2 x BertLayer(
|
15 |
+
(attention): BertAttention(
|
16 |
+
(self): BertSelfAttention(
|
17 |
+
(query): Linear(in_features=128, out_features=128, bias=True)
|
18 |
+
(key): Linear(in_features=128, out_features=128, bias=True)
|
19 |
+
(value): Linear(in_features=128, out_features=128, bias=True)
|
20 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
21 |
+
)
|
22 |
+
(output): BertSelfOutput(
|
23 |
+
(dense): Linear(in_features=128, out_features=128, bias=True)
|
24 |
+
(LayerNorm): LayerNorm((128,), eps=1e-12, elementwise_affine=True)
|
25 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
26 |
+
)
|
27 |
+
)
|
28 |
+
(intermediate): BertIntermediate(
|
29 |
+
(dense): Linear(in_features=128, out_features=512, bias=True)
|
30 |
+
(intermediate_act_fn): GELUActivation()
|
31 |
+
)
|
32 |
+
(output): BertOutput(
|
33 |
+
(dense): Linear(in_features=512, out_features=128, bias=True)
|
34 |
+
(LayerNorm): LayerNorm((128,), eps=1e-12, elementwise_affine=True)
|
35 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
36 |
+
)
|
37 |
+
)
|
38 |
+
)
|
39 |
+
)
|
40 |
+
(pooler): BertPooler(
|
41 |
+
(dense): Linear(in_features=128, out_features=128, bias=True)
|
42 |
+
(activation): Tanh()
|
43 |
+
)
|
44 |
+
)
|
45 |
+
)
|
46 |
+
(locked_dropout): LockedDropout(p=0.5)
|
47 |
+
(linear): Linear(in_features=128, out_features=13, bias=True)
|
48 |
+
(loss_function): CrossEntropyLoss()
|
49 |
+
)"
|
50 |
+
2023-10-18 22:08:20,553 ----------------------------------------------------------------------------------------------------
|
51 |
+
2023-10-18 22:08:20,554 MultiCorpus: 5777 train + 722 dev + 723 test sentences
|
52 |
+
- NER_ICDAR_EUROPEANA Corpus: 5777 train + 722 dev + 723 test sentences - /root/.flair/datasets/ner_icdar_europeana/nl
|
53 |
+
2023-10-18 22:08:20,554 ----------------------------------------------------------------------------------------------------
|
54 |
+
2023-10-18 22:08:20,554 Train: 5777 sentences
|
55 |
+
2023-10-18 22:08:20,554 (train_with_dev=False, train_with_test=False)
|
56 |
+
2023-10-18 22:08:20,554 ----------------------------------------------------------------------------------------------------
|
57 |
+
2023-10-18 22:08:20,554 Training Params:
|
58 |
+
2023-10-18 22:08:20,554 - learning_rate: "3e-05"
|
59 |
+
2023-10-18 22:08:20,554 - mini_batch_size: "8"
|
60 |
+
2023-10-18 22:08:20,554 - max_epochs: "10"
|
61 |
+
2023-10-18 22:08:20,554 - shuffle: "True"
|
62 |
+
2023-10-18 22:08:20,554 ----------------------------------------------------------------------------------------------------
|
63 |
+
2023-10-18 22:08:20,554 Plugins:
|
64 |
+
2023-10-18 22:08:20,554 - TensorboardLogger
|
65 |
+
2023-10-18 22:08:20,554 - LinearScheduler | warmup_fraction: '0.1'
|
66 |
+
2023-10-18 22:08:20,554 ----------------------------------------------------------------------------------------------------
|
67 |
+
2023-10-18 22:08:20,554 Final evaluation on model from best epoch (best-model.pt)
|
68 |
+
2023-10-18 22:08:20,554 - metric: "('micro avg', 'f1-score')"
|
69 |
+
2023-10-18 22:08:20,554 ----------------------------------------------------------------------------------------------------
|
70 |
+
2023-10-18 22:08:20,554 Computation:
|
71 |
+
2023-10-18 22:08:20,554 - compute on device: cuda:0
|
72 |
+
2023-10-18 22:08:20,554 - embedding storage: none
|
73 |
+
2023-10-18 22:08:20,554 ----------------------------------------------------------------------------------------------------
|
74 |
+
2023-10-18 22:08:20,554 Model training base path: "hmbench-icdar/nl-dbmdz/bert-tiny-historic-multilingual-cased-bs8-wsFalse-e10-lr3e-05-poolingfirst-layers-1-crfFalse-1"
|
75 |
+
2023-10-18 22:08:20,554 ----------------------------------------------------------------------------------------------------
|
76 |
+
2023-10-18 22:08:20,554 ----------------------------------------------------------------------------------------------------
|
77 |
+
2023-10-18 22:08:20,554 Logging anything other than scalars to TensorBoard is currently not supported.
|
78 |
+
2023-10-18 22:08:22,339 epoch 1 - iter 72/723 - loss 3.19628147 - time (sec): 1.78 - samples/sec: 9675.62 - lr: 0.000003 - momentum: 0.000000
|
79 |
+
2023-10-18 22:08:24,206 epoch 1 - iter 144/723 - loss 2.98886129 - time (sec): 3.65 - samples/sec: 9785.27 - lr: 0.000006 - momentum: 0.000000
|
80 |
+
2023-10-18 22:08:26,021 epoch 1 - iter 216/723 - loss 2.66211908 - time (sec): 5.47 - samples/sec: 9773.41 - lr: 0.000009 - momentum: 0.000000
|
81 |
+
2023-10-18 22:08:27,869 epoch 1 - iter 288/723 - loss 2.30691520 - time (sec): 7.31 - samples/sec: 9694.54 - lr: 0.000012 - momentum: 0.000000
|
82 |
+
2023-10-18 22:08:29,724 epoch 1 - iter 360/723 - loss 1.94819460 - time (sec): 9.17 - samples/sec: 9712.82 - lr: 0.000015 - momentum: 0.000000
|
83 |
+
2023-10-18 22:08:31,493 epoch 1 - iter 432/723 - loss 1.67747636 - time (sec): 10.94 - samples/sec: 9797.48 - lr: 0.000018 - momentum: 0.000000
|
84 |
+
2023-10-18 22:08:33,327 epoch 1 - iter 504/723 - loss 1.48735944 - time (sec): 12.77 - samples/sec: 9773.89 - lr: 0.000021 - momentum: 0.000000
|
85 |
+
2023-10-18 22:08:35,091 epoch 1 - iter 576/723 - loss 1.34523933 - time (sec): 14.54 - samples/sec: 9791.10 - lr: 0.000024 - momentum: 0.000000
|
86 |
+
2023-10-18 22:08:36,824 epoch 1 - iter 648/723 - loss 1.23775011 - time (sec): 16.27 - samples/sec: 9748.59 - lr: 0.000027 - momentum: 0.000000
|
87 |
+
2023-10-18 22:08:38,548 epoch 1 - iter 720/723 - loss 1.14588291 - time (sec): 17.99 - samples/sec: 9754.09 - lr: 0.000030 - momentum: 0.000000
|
88 |
+
2023-10-18 22:08:38,637 ----------------------------------------------------------------------------------------------------
|
89 |
+
2023-10-18 22:08:38,637 EPOCH 1 done: loss 1.1433 - lr: 0.000030
|
90 |
+
2023-10-18 22:08:39,957 DEV : loss 0.36958980560302734 - f1-score (micro avg) 0.0
|
91 |
+
2023-10-18 22:08:39,971 ----------------------------------------------------------------------------------------------------
|
92 |
+
2023-10-18 22:08:41,819 epoch 2 - iter 72/723 - loss 0.27018856 - time (sec): 1.85 - samples/sec: 10070.33 - lr: 0.000030 - momentum: 0.000000
|
93 |
+
2023-10-18 22:08:43,579 epoch 2 - iter 144/723 - loss 0.28145989 - time (sec): 3.61 - samples/sec: 9918.45 - lr: 0.000029 - momentum: 0.000000
|
94 |
+
2023-10-18 22:08:45,396 epoch 2 - iter 216/723 - loss 0.28554002 - time (sec): 5.42 - samples/sec: 9927.00 - lr: 0.000029 - momentum: 0.000000
|
95 |
+
2023-10-18 22:08:47,278 epoch 2 - iter 288/723 - loss 0.27514712 - time (sec): 7.31 - samples/sec: 9805.31 - lr: 0.000029 - momentum: 0.000000
|
96 |
+
2023-10-18 22:08:49,104 epoch 2 - iter 360/723 - loss 0.26170040 - time (sec): 9.13 - samples/sec: 9725.21 - lr: 0.000028 - momentum: 0.000000
|
97 |
+
2023-10-18 22:08:50,949 epoch 2 - iter 432/723 - loss 0.25484094 - time (sec): 10.98 - samples/sec: 9792.59 - lr: 0.000028 - momentum: 0.000000
|
98 |
+
2023-10-18 22:08:52,671 epoch 2 - iter 504/723 - loss 0.25302933 - time (sec): 12.70 - samples/sec: 9736.45 - lr: 0.000028 - momentum: 0.000000
|
99 |
+
2023-10-18 22:08:54,386 epoch 2 - iter 576/723 - loss 0.24981194 - time (sec): 14.42 - samples/sec: 9726.09 - lr: 0.000027 - momentum: 0.000000
|
100 |
+
2023-10-18 22:08:56,178 epoch 2 - iter 648/723 - loss 0.24711782 - time (sec): 16.21 - samples/sec: 9733.59 - lr: 0.000027 - momentum: 0.000000
|
101 |
+
2023-10-18 22:08:57,963 epoch 2 - iter 720/723 - loss 0.24099947 - time (sec): 17.99 - samples/sec: 9770.09 - lr: 0.000027 - momentum: 0.000000
|
102 |
+
2023-10-18 22:08:58,019 ----------------------------------------------------------------------------------------------------
|
103 |
+
2023-10-18 22:08:58,020 EPOCH 2 done: loss 0.2412 - lr: 0.000027
|
104 |
+
2023-10-18 22:09:00,129 DEV : loss 0.24794618785381317 - f1-score (micro avg) 0.1606
|
105 |
+
2023-10-18 22:09:00,145 saving best model
|
106 |
+
2023-10-18 22:09:00,182 ----------------------------------------------------------------------------------------------------
|
107 |
+
2023-10-18 22:09:02,154 epoch 3 - iter 72/723 - loss 0.21367677 - time (sec): 1.97 - samples/sec: 9104.26 - lr: 0.000026 - momentum: 0.000000
|
108 |
+
2023-10-18 22:09:03,878 epoch 3 - iter 144/723 - loss 0.21394777 - time (sec): 3.70 - samples/sec: 9404.23 - lr: 0.000026 - momentum: 0.000000
|
109 |
+
2023-10-18 22:09:05,631 epoch 3 - iter 216/723 - loss 0.20709447 - time (sec): 5.45 - samples/sec: 9586.09 - lr: 0.000026 - momentum: 0.000000
|
110 |
+
2023-10-18 22:09:07,509 epoch 3 - iter 288/723 - loss 0.19573277 - time (sec): 7.33 - samples/sec: 9663.93 - lr: 0.000025 - momentum: 0.000000
|
111 |
+
2023-10-18 22:09:09,309 epoch 3 - iter 360/723 - loss 0.19576608 - time (sec): 9.13 - samples/sec: 9638.03 - lr: 0.000025 - momentum: 0.000000
|
112 |
+
2023-10-18 22:09:11,120 epoch 3 - iter 432/723 - loss 0.19557293 - time (sec): 10.94 - samples/sec: 9644.08 - lr: 0.000025 - momentum: 0.000000
|
113 |
+
2023-10-18 22:09:12,825 epoch 3 - iter 504/723 - loss 0.19629812 - time (sec): 12.64 - samples/sec: 9660.73 - lr: 0.000024 - momentum: 0.000000
|
114 |
+
2023-10-18 22:09:14,649 epoch 3 - iter 576/723 - loss 0.19836773 - time (sec): 14.47 - samples/sec: 9671.57 - lr: 0.000024 - momentum: 0.000000
|
115 |
+
2023-10-18 22:09:16,513 epoch 3 - iter 648/723 - loss 0.19587120 - time (sec): 16.33 - samples/sec: 9673.08 - lr: 0.000024 - momentum: 0.000000
|
116 |
+
2023-10-18 22:09:18,375 epoch 3 - iter 720/723 - loss 0.19640335 - time (sec): 18.19 - samples/sec: 9661.70 - lr: 0.000023 - momentum: 0.000000
|
117 |
+
2023-10-18 22:09:18,427 ----------------------------------------------------------------------------------------------------
|
118 |
+
2023-10-18 22:09:18,427 EPOCH 3 done: loss 0.1963 - lr: 0.000023
|
119 |
+
2023-10-18 22:09:20,180 DEV : loss 0.23398783802986145 - f1-score (micro avg) 0.2566
|
120 |
+
2023-10-18 22:09:20,195 saving best model
|
121 |
+
2023-10-18 22:09:20,231 ----------------------------------------------------------------------------------------------------
|
122 |
+
2023-10-18 22:09:22,057 epoch 4 - iter 72/723 - loss 0.17513429 - time (sec): 1.82 - samples/sec: 9662.51 - lr: 0.000023 - momentum: 0.000000
|
123 |
+
2023-10-18 22:09:23,842 epoch 4 - iter 144/723 - loss 0.17318933 - time (sec): 3.61 - samples/sec: 9551.33 - lr: 0.000023 - momentum: 0.000000
|
124 |
+
2023-10-18 22:09:25,544 epoch 4 - iter 216/723 - loss 0.18058374 - time (sec): 5.31 - samples/sec: 9862.22 - lr: 0.000022 - momentum: 0.000000
|
125 |
+
2023-10-18 22:09:27,220 epoch 4 - iter 288/723 - loss 0.17700677 - time (sec): 6.99 - samples/sec: 10223.72 - lr: 0.000022 - momentum: 0.000000
|
126 |
+
2023-10-18 22:09:28,987 epoch 4 - iter 360/723 - loss 0.17605842 - time (sec): 8.75 - samples/sec: 10119.42 - lr: 0.000022 - momentum: 0.000000
|
127 |
+
2023-10-18 22:09:30,862 epoch 4 - iter 432/723 - loss 0.18006832 - time (sec): 10.63 - samples/sec: 10053.19 - lr: 0.000021 - momentum: 0.000000
|
128 |
+
2023-10-18 22:09:32,700 epoch 4 - iter 504/723 - loss 0.17871246 - time (sec): 12.47 - samples/sec: 10026.68 - lr: 0.000021 - momentum: 0.000000
|
129 |
+
2023-10-18 22:09:34,452 epoch 4 - iter 576/723 - loss 0.17713673 - time (sec): 14.22 - samples/sec: 10011.82 - lr: 0.000021 - momentum: 0.000000
|
130 |
+
2023-10-18 22:09:36,217 epoch 4 - iter 648/723 - loss 0.17726623 - time (sec): 15.98 - samples/sec: 9931.35 - lr: 0.000020 - momentum: 0.000000
|
131 |
+
2023-10-18 22:09:37,995 epoch 4 - iter 720/723 - loss 0.18135238 - time (sec): 17.76 - samples/sec: 9890.23 - lr: 0.000020 - momentum: 0.000000
|
132 |
+
2023-10-18 22:09:38,053 ----------------------------------------------------------------------------------------------------
|
133 |
+
2023-10-18 22:09:38,053 EPOCH 4 done: loss 0.1813 - lr: 0.000020
|
134 |
+
2023-10-18 22:09:40,150 DEV : loss 0.21179497241973877 - f1-score (micro avg) 0.4558
|
135 |
+
2023-10-18 22:09:40,164 saving best model
|
136 |
+
2023-10-18 22:09:40,198 ----------------------------------------------------------------------------------------------------
|
137 |
+
2023-10-18 22:09:42,041 epoch 5 - iter 72/723 - loss 0.19369549 - time (sec): 1.84 - samples/sec: 9869.29 - lr: 0.000020 - momentum: 0.000000
|
138 |
+
2023-10-18 22:09:43,801 epoch 5 - iter 144/723 - loss 0.18409304 - time (sec): 3.60 - samples/sec: 9974.14 - lr: 0.000019 - momentum: 0.000000
|
139 |
+
2023-10-18 22:09:45,514 epoch 5 - iter 216/723 - loss 0.18004779 - time (sec): 5.32 - samples/sec: 9724.56 - lr: 0.000019 - momentum: 0.000000
|
140 |
+
2023-10-18 22:09:47,330 epoch 5 - iter 288/723 - loss 0.17894839 - time (sec): 7.13 - samples/sec: 9574.37 - lr: 0.000019 - momentum: 0.000000
|
141 |
+
2023-10-18 22:09:49,078 epoch 5 - iter 360/723 - loss 0.17522117 - time (sec): 8.88 - samples/sec: 9572.50 - lr: 0.000018 - momentum: 0.000000
|
142 |
+
2023-10-18 22:09:50,902 epoch 5 - iter 432/723 - loss 0.17234762 - time (sec): 10.70 - samples/sec: 9692.67 - lr: 0.000018 - momentum: 0.000000
|
143 |
+
2023-10-18 22:09:52,702 epoch 5 - iter 504/723 - loss 0.17119392 - time (sec): 12.50 - samples/sec: 9721.98 - lr: 0.000018 - momentum: 0.000000
|
144 |
+
2023-10-18 22:09:54,427 epoch 5 - iter 576/723 - loss 0.17011314 - time (sec): 14.23 - samples/sec: 9782.07 - lr: 0.000017 - momentum: 0.000000
|
145 |
+
2023-10-18 22:09:56,281 epoch 5 - iter 648/723 - loss 0.17258346 - time (sec): 16.08 - samples/sec: 9755.92 - lr: 0.000017 - momentum: 0.000000
|
146 |
+
2023-10-18 22:09:58,160 epoch 5 - iter 720/723 - loss 0.17140290 - time (sec): 17.96 - samples/sec: 9775.89 - lr: 0.000017 - momentum: 0.000000
|
147 |
+
2023-10-18 22:09:58,222 ----------------------------------------------------------------------------------------------------
|
148 |
+
2023-10-18 22:09:58,223 EPOCH 5 done: loss 0.1715 - lr: 0.000017
|
149 |
+
2023-10-18 22:09:59,986 DEV : loss 0.20946592092514038 - f1-score (micro avg) 0.4311
|
150 |
+
2023-10-18 22:10:00,001 ----------------------------------------------------------------------------------------------------
|
151 |
+
2023-10-18 22:10:01,737 epoch 6 - iter 72/723 - loss 0.15932427 - time (sec): 1.74 - samples/sec: 9819.08 - lr: 0.000016 - momentum: 0.000000
|
152 |
+
2023-10-18 22:10:03,525 epoch 6 - iter 144/723 - loss 0.16318147 - time (sec): 3.52 - samples/sec: 9748.74 - lr: 0.000016 - momentum: 0.000000
|
153 |
+
2023-10-18 22:10:05,353 epoch 6 - iter 216/723 - loss 0.17376298 - time (sec): 5.35 - samples/sec: 9741.66 - lr: 0.000016 - momentum: 0.000000
|
154 |
+
2023-10-18 22:10:07,055 epoch 6 - iter 288/723 - loss 0.17504093 - time (sec): 7.05 - samples/sec: 9699.27 - lr: 0.000015 - momentum: 0.000000
|
155 |
+
2023-10-18 22:10:08,797 epoch 6 - iter 360/723 - loss 0.16835316 - time (sec): 8.79 - samples/sec: 9839.54 - lr: 0.000015 - momentum: 0.000000
|
156 |
+
2023-10-18 22:10:10,614 epoch 6 - iter 432/723 - loss 0.16479689 - time (sec): 10.61 - samples/sec: 9759.78 - lr: 0.000015 - momentum: 0.000000
|
157 |
+
2023-10-18 22:10:12,459 epoch 6 - iter 504/723 - loss 0.16660146 - time (sec): 12.46 - samples/sec: 9848.56 - lr: 0.000014 - momentum: 0.000000
|
158 |
+
2023-10-18 22:10:14,270 epoch 6 - iter 576/723 - loss 0.16492361 - time (sec): 14.27 - samples/sec: 9864.81 - lr: 0.000014 - momentum: 0.000000
|
159 |
+
2023-10-18 22:10:16,409 epoch 6 - iter 648/723 - loss 0.16587764 - time (sec): 16.41 - samples/sec: 9696.86 - lr: 0.000014 - momentum: 0.000000
|
160 |
+
2023-10-18 22:10:18,149 epoch 6 - iter 720/723 - loss 0.16381985 - time (sec): 18.15 - samples/sec: 9670.91 - lr: 0.000013 - momentum: 0.000000
|
161 |
+
2023-10-18 22:10:18,222 ----------------------------------------------------------------------------------------------------
|
162 |
+
2023-10-18 22:10:18,222 EPOCH 6 done: loss 0.1633 - lr: 0.000013
|
163 |
+
2023-10-18 22:10:19,990 DEV : loss 0.20532798767089844 - f1-score (micro avg) 0.437
|
164 |
+
2023-10-18 22:10:20,004 ----------------------------------------------------------------------------------------------------
|
165 |
+
2023-10-18 22:10:21,747 epoch 7 - iter 72/723 - loss 0.15945249 - time (sec): 1.74 - samples/sec: 9697.69 - lr: 0.000013 - momentum: 0.000000
|
166 |
+
2023-10-18 22:10:23,545 epoch 7 - iter 144/723 - loss 0.15900563 - time (sec): 3.54 - samples/sec: 9956.07 - lr: 0.000013 - momentum: 0.000000
|
167 |
+
2023-10-18 22:10:25,277 epoch 7 - iter 216/723 - loss 0.15756915 - time (sec): 5.27 - samples/sec: 9983.42 - lr: 0.000012 - momentum: 0.000000
|
168 |
+
2023-10-18 22:10:27,035 epoch 7 - iter 288/723 - loss 0.16114798 - time (sec): 7.03 - samples/sec: 9914.44 - lr: 0.000012 - momentum: 0.000000
|
169 |
+
2023-10-18 22:10:28,803 epoch 7 - iter 360/723 - loss 0.15938604 - time (sec): 8.80 - samples/sec: 9841.78 - lr: 0.000012 - momentum: 0.000000
|
170 |
+
2023-10-18 22:10:30,596 epoch 7 - iter 432/723 - loss 0.15944278 - time (sec): 10.59 - samples/sec: 9940.46 - lr: 0.000011 - momentum: 0.000000
|
171 |
+
2023-10-18 22:10:32,312 epoch 7 - iter 504/723 - loss 0.15758147 - time (sec): 12.31 - samples/sec: 9961.91 - lr: 0.000011 - momentum: 0.000000
|
172 |
+
2023-10-18 22:10:34,029 epoch 7 - iter 576/723 - loss 0.15825257 - time (sec): 14.02 - samples/sec: 9904.92 - lr: 0.000011 - momentum: 0.000000
|
173 |
+
2023-10-18 22:10:35,849 epoch 7 - iter 648/723 - loss 0.15932809 - time (sec): 15.84 - samples/sec: 9917.65 - lr: 0.000010 - momentum: 0.000000
|
174 |
+
2023-10-18 22:10:37,706 epoch 7 - iter 720/723 - loss 0.15736768 - time (sec): 17.70 - samples/sec: 9919.43 - lr: 0.000010 - momentum: 0.000000
|
175 |
+
2023-10-18 22:10:37,771 ----------------------------------------------------------------------------------------------------
|
176 |
+
2023-10-18 22:10:37,772 EPOCH 7 done: loss 0.1571 - lr: 0.000010
|
177 |
+
2023-10-18 22:10:39,536 DEV : loss 0.20203644037246704 - f1-score (micro avg) 0.435
|
178 |
+
2023-10-18 22:10:39,551 ----------------------------------------------------------------------------------------------------
|
179 |
+
2023-10-18 22:10:41,250 epoch 8 - iter 72/723 - loss 0.14938503 - time (sec): 1.70 - samples/sec: 9489.78 - lr: 0.000010 - momentum: 0.000000
|
180 |
+
2023-10-18 22:10:43,030 epoch 8 - iter 144/723 - loss 0.17061855 - time (sec): 3.48 - samples/sec: 9818.98 - lr: 0.000009 - momentum: 0.000000
|
181 |
+
2023-10-18 22:10:44,814 epoch 8 - iter 216/723 - loss 0.15925070 - time (sec): 5.26 - samples/sec: 10070.94 - lr: 0.000009 - momentum: 0.000000
|
182 |
+
2023-10-18 22:10:46,559 epoch 8 - iter 288/723 - loss 0.15425474 - time (sec): 7.01 - samples/sec: 10052.28 - lr: 0.000009 - momentum: 0.000000
|
183 |
+
2023-10-18 22:10:48,290 epoch 8 - iter 360/723 - loss 0.15406306 - time (sec): 8.74 - samples/sec: 10093.66 - lr: 0.000008 - momentum: 0.000000
|
184 |
+
2023-10-18 22:10:50,448 epoch 8 - iter 432/723 - loss 0.14990555 - time (sec): 10.90 - samples/sec: 9787.11 - lr: 0.000008 - momentum: 0.000000
|
185 |
+
2023-10-18 22:10:52,136 epoch 8 - iter 504/723 - loss 0.14942113 - time (sec): 12.59 - samples/sec: 9789.64 - lr: 0.000008 - momentum: 0.000000
|
186 |
+
2023-10-18 22:10:53,938 epoch 8 - iter 576/723 - loss 0.14926547 - time (sec): 14.39 - samples/sec: 9816.21 - lr: 0.000007 - momentum: 0.000000
|
187 |
+
2023-10-18 22:10:55,695 epoch 8 - iter 648/723 - loss 0.15071738 - time (sec): 16.14 - samples/sec: 9794.35 - lr: 0.000007 - momentum: 0.000000
|
188 |
+
2023-10-18 22:10:57,488 epoch 8 - iter 720/723 - loss 0.15325254 - time (sec): 17.94 - samples/sec: 9801.83 - lr: 0.000007 - momentum: 0.000000
|
189 |
+
2023-10-18 22:10:57,544 ----------------------------------------------------------------------------------------------------
|
190 |
+
2023-10-18 22:10:57,544 EPOCH 8 done: loss 0.1530 - lr: 0.000007
|
191 |
+
2023-10-18 22:10:59,325 DEV : loss 0.1937786489725113 - f1-score (micro avg) 0.4817
|
192 |
+
2023-10-18 22:10:59,340 saving best model
|
193 |
+
2023-10-18 22:10:59,377 ----------------------------------------------------------------------------------------------------
|
194 |
+
2023-10-18 22:11:01,186 epoch 9 - iter 72/723 - loss 0.13945487 - time (sec): 1.81 - samples/sec: 10785.70 - lr: 0.000006 - momentum: 0.000000
|
195 |
+
2023-10-18 22:11:02,934 epoch 9 - iter 144/723 - loss 0.13316947 - time (sec): 3.56 - samples/sec: 10339.76 - lr: 0.000006 - momentum: 0.000000
|
196 |
+
2023-10-18 22:11:04,648 epoch 9 - iter 216/723 - loss 0.13722754 - time (sec): 5.27 - samples/sec: 10152.37 - lr: 0.000006 - momentum: 0.000000
|
197 |
+
2023-10-18 22:11:06,400 epoch 9 - iter 288/723 - loss 0.14328557 - time (sec): 7.02 - samples/sec: 10075.44 - lr: 0.000005 - momentum: 0.000000
|
198 |
+
2023-10-18 22:11:08,177 epoch 9 - iter 360/723 - loss 0.14615266 - time (sec): 8.80 - samples/sec: 10049.16 - lr: 0.000005 - momentum: 0.000000
|
199 |
+
2023-10-18 22:11:09,894 epoch 9 - iter 432/723 - loss 0.14984252 - time (sec): 10.52 - samples/sec: 9960.70 - lr: 0.000005 - momentum: 0.000000
|
200 |
+
2023-10-18 22:11:11,597 epoch 9 - iter 504/723 - loss 0.15143593 - time (sec): 12.22 - samples/sec: 9905.91 - lr: 0.000004 - momentum: 0.000000
|
201 |
+
2023-10-18 22:11:13,468 epoch 9 - iter 576/723 - loss 0.15073005 - time (sec): 14.09 - samples/sec: 9992.68 - lr: 0.000004 - momentum: 0.000000
|
202 |
+
2023-10-18 22:11:15,257 epoch 9 - iter 648/723 - loss 0.15148546 - time (sec): 15.88 - samples/sec: 9978.29 - lr: 0.000004 - momentum: 0.000000
|
203 |
+
2023-10-18 22:11:16,977 epoch 9 - iter 720/723 - loss 0.15040735 - time (sec): 17.60 - samples/sec: 9978.12 - lr: 0.000003 - momentum: 0.000000
|
204 |
+
2023-10-18 22:11:17,043 ----------------------------------------------------------------------------------------------------
|
205 |
+
2023-10-18 22:11:17,043 EPOCH 9 done: loss 0.1503 - lr: 0.000003
|
206 |
+
2023-10-18 22:11:18,810 DEV : loss 0.1968904435634613 - f1-score (micro avg) 0.4678
|
207 |
+
2023-10-18 22:11:18,825 ----------------------------------------------------------------------------------------------------
|
208 |
+
2023-10-18 22:11:20,567 epoch 10 - iter 72/723 - loss 0.13221108 - time (sec): 1.74 - samples/sec: 9813.73 - lr: 0.000003 - momentum: 0.000000
|
209 |
+
2023-10-18 22:11:22,334 epoch 10 - iter 144/723 - loss 0.15218809 - time (sec): 3.51 - samples/sec: 9666.30 - lr: 0.000003 - momentum: 0.000000
|
210 |
+
2023-10-18 22:11:24,466 epoch 10 - iter 216/723 - loss 0.14769919 - time (sec): 5.64 - samples/sec: 9253.33 - lr: 0.000002 - momentum: 0.000000
|
211 |
+
2023-10-18 22:11:26,295 epoch 10 - iter 288/723 - loss 0.15037349 - time (sec): 7.47 - samples/sec: 9296.52 - lr: 0.000002 - momentum: 0.000000
|
212 |
+
2023-10-18 22:11:28,116 epoch 10 - iter 360/723 - loss 0.15714138 - time (sec): 9.29 - samples/sec: 9508.97 - lr: 0.000002 - momentum: 0.000000
|
213 |
+
2023-10-18 22:11:29,886 epoch 10 - iter 432/723 - loss 0.15652764 - time (sec): 11.06 - samples/sec: 9531.39 - lr: 0.000001 - momentum: 0.000000
|
214 |
+
2023-10-18 22:11:31,644 epoch 10 - iter 504/723 - loss 0.15303564 - time (sec): 12.82 - samples/sec: 9644.01 - lr: 0.000001 - momentum: 0.000000
|
215 |
+
2023-10-18 22:11:33,414 epoch 10 - iter 576/723 - loss 0.15136324 - time (sec): 14.59 - samples/sec: 9663.06 - lr: 0.000001 - momentum: 0.000000
|
216 |
+
2023-10-18 22:11:35,141 epoch 10 - iter 648/723 - loss 0.14914005 - time (sec): 16.32 - samples/sec: 9668.13 - lr: 0.000000 - momentum: 0.000000
|
217 |
+
2023-10-18 22:11:36,887 epoch 10 - iter 720/723 - loss 0.15021989 - time (sec): 18.06 - samples/sec: 9722.40 - lr: 0.000000 - momentum: 0.000000
|
218 |
+
2023-10-18 22:11:36,951 ----------------------------------------------------------------------------------------------------
|
219 |
+
2023-10-18 22:11:36,951 EPOCH 10 done: loss 0.1504 - lr: 0.000000
|
220 |
+
2023-10-18 22:11:38,720 DEV : loss 0.19765476882457733 - f1-score (micro avg) 0.4656
|
221 |
+
2023-10-18 22:11:38,766 ----------------------------------------------------------------------------------------------------
|
222 |
+
2023-10-18 22:11:38,766 Loading model from best epoch ...
|
223 |
+
2023-10-18 22:11:38,851 SequenceTagger predicts: Dictionary with 13 tags: O, S-LOC, B-LOC, E-LOC, I-LOC, S-PER, B-PER, E-PER, I-PER, S-ORG, B-ORG, E-ORG, I-ORG
|
224 |
+
2023-10-18 22:11:40,203
|
225 |
+
Results:
|
226 |
+
- F-score (micro) 0.4758
|
227 |
+
- F-score (macro) 0.3261
|
228 |
+
- Accuracy 0.3258
|
229 |
+
|
230 |
+
By class:
|
231 |
+
precision recall f1-score support
|
232 |
+
|
233 |
+
LOC 0.5020 0.5611 0.5299 458
|
234 |
+
PER 0.6822 0.3340 0.4485 482
|
235 |
+
ORG 0.0000 0.0000 0.0000 69
|
236 |
+
|
237 |
+
micro avg 0.5588 0.4143 0.4758 1009
|
238 |
+
macro avg 0.3947 0.2984 0.3261 1009
|
239 |
+
weighted avg 0.5537 0.4143 0.4548 1009
|
240 |
+
|
241 |
+
2023-10-18 22:11:40,203 ----------------------------------------------------------------------------------------------------
|