Upload folder using huggingface_hub
Browse files- best-model.pt +3 -0
- dev.tsv +0 -0
- loss.tsv +11 -0
- test.tsv +0 -0
- training.log +240 -0
best-model.pt
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:1477615a3e43b31b0174d6aede9e38bb05ca9b3d79457c2ce6d301ba99a51dee
|
3 |
+
size 443311111
|
dev.tsv
ADDED
The diff for this file is too large to render.
See raw diff
|
|
loss.tsv
ADDED
@@ -0,0 +1,11 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
EPOCH TIMESTAMP LEARNING_RATE TRAIN_LOSS DEV_LOSS DEV_PRECISION DEV_RECALL DEV_F1 DEV_ACCURACY
|
2 |
+
1 10:20:22 0.0000 0.3283 0.1316 0.6916 0.6601 0.6755 0.5187
|
3 |
+
2 10:21:26 0.0000 0.0985 0.1147 0.7358 0.7769 0.7558 0.6169
|
4 |
+
3 10:22:30 0.0000 0.0627 0.0884 0.8508 0.7366 0.7896 0.6626
|
5 |
+
4 10:23:36 0.0000 0.0455 0.0871 0.8562 0.7934 0.8236 0.7111
|
6 |
+
5 10:24:42 0.0000 0.0328 0.1185 0.8386 0.7624 0.7987 0.6802
|
7 |
+
6 10:25:48 0.0000 0.0244 0.1726 0.8953 0.7066 0.7898 0.6590
|
8 |
+
7 10:26:51 0.0000 0.0189 0.1648 0.8550 0.7800 0.8158 0.6984
|
9 |
+
8 10:27:54 0.0000 0.0128 0.1723 0.8511 0.7913 0.8201 0.7040
|
10 |
+
9 10:28:56 0.0000 0.0087 0.1810 0.8423 0.8058 0.8237 0.7084
|
11 |
+
10 10:30:00 0.0000 0.0063 0.1870 0.8615 0.7841 0.8210 0.7047
|
test.tsv
ADDED
The diff for this file is too large to render.
See raw diff
|
|
training.log
ADDED
@@ -0,0 +1,240 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
2023-10-14 10:19:19,794 ----------------------------------------------------------------------------------------------------
|
2 |
+
2023-10-14 10:19:19,795 Model: "SequenceTagger(
|
3 |
+
(embeddings): TransformerWordEmbeddings(
|
4 |
+
(model): BertModel(
|
5 |
+
(embeddings): BertEmbeddings(
|
6 |
+
(word_embeddings): Embedding(32001, 768)
|
7 |
+
(position_embeddings): Embedding(512, 768)
|
8 |
+
(token_type_embeddings): Embedding(2, 768)
|
9 |
+
(LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
|
10 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
11 |
+
)
|
12 |
+
(encoder): BertEncoder(
|
13 |
+
(layer): ModuleList(
|
14 |
+
(0-11): 12 x BertLayer(
|
15 |
+
(attention): BertAttention(
|
16 |
+
(self): BertSelfAttention(
|
17 |
+
(query): Linear(in_features=768, out_features=768, bias=True)
|
18 |
+
(key): Linear(in_features=768, out_features=768, bias=True)
|
19 |
+
(value): Linear(in_features=768, out_features=768, bias=True)
|
20 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
21 |
+
)
|
22 |
+
(output): BertSelfOutput(
|
23 |
+
(dense): Linear(in_features=768, out_features=768, bias=True)
|
24 |
+
(LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
|
25 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
26 |
+
)
|
27 |
+
)
|
28 |
+
(intermediate): BertIntermediate(
|
29 |
+
(dense): Linear(in_features=768, out_features=3072, bias=True)
|
30 |
+
(intermediate_act_fn): GELUActivation()
|
31 |
+
)
|
32 |
+
(output): BertOutput(
|
33 |
+
(dense): Linear(in_features=3072, out_features=768, bias=True)
|
34 |
+
(LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
|
35 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
36 |
+
)
|
37 |
+
)
|
38 |
+
)
|
39 |
+
)
|
40 |
+
(pooler): BertPooler(
|
41 |
+
(dense): Linear(in_features=768, out_features=768, bias=True)
|
42 |
+
(activation): Tanh()
|
43 |
+
)
|
44 |
+
)
|
45 |
+
)
|
46 |
+
(locked_dropout): LockedDropout(p=0.5)
|
47 |
+
(linear): Linear(in_features=768, out_features=13, bias=True)
|
48 |
+
(loss_function): CrossEntropyLoss()
|
49 |
+
)"
|
50 |
+
2023-10-14 10:19:19,795 ----------------------------------------------------------------------------------------------------
|
51 |
+
2023-10-14 10:19:19,795 MultiCorpus: 5777 train + 722 dev + 723 test sentences
|
52 |
+
- NER_ICDAR_EUROPEANA Corpus: 5777 train + 722 dev + 723 test sentences - /root/.flair/datasets/ner_icdar_europeana/nl
|
53 |
+
2023-10-14 10:19:19,795 ----------------------------------------------------------------------------------------------------
|
54 |
+
2023-10-14 10:19:19,795 Train: 5777 sentences
|
55 |
+
2023-10-14 10:19:19,795 (train_with_dev=False, train_with_test=False)
|
56 |
+
2023-10-14 10:19:19,795 ----------------------------------------------------------------------------------------------------
|
57 |
+
2023-10-14 10:19:19,795 Training Params:
|
58 |
+
2023-10-14 10:19:19,795 - learning_rate: "5e-05"
|
59 |
+
2023-10-14 10:19:19,795 - mini_batch_size: "8"
|
60 |
+
2023-10-14 10:19:19,795 - max_epochs: "10"
|
61 |
+
2023-10-14 10:19:19,795 - shuffle: "True"
|
62 |
+
2023-10-14 10:19:19,795 ----------------------------------------------------------------------------------------------------
|
63 |
+
2023-10-14 10:19:19,795 Plugins:
|
64 |
+
2023-10-14 10:19:19,795 - LinearScheduler | warmup_fraction: '0.1'
|
65 |
+
2023-10-14 10:19:19,795 ----------------------------------------------------------------------------------------------------
|
66 |
+
2023-10-14 10:19:19,795 Final evaluation on model from best epoch (best-model.pt)
|
67 |
+
2023-10-14 10:19:19,795 - metric: "('micro avg', 'f1-score')"
|
68 |
+
2023-10-14 10:19:19,795 ----------------------------------------------------------------------------------------------------
|
69 |
+
2023-10-14 10:19:19,795 Computation:
|
70 |
+
2023-10-14 10:19:19,796 - compute on device: cuda:0
|
71 |
+
2023-10-14 10:19:19,796 - embedding storage: none
|
72 |
+
2023-10-14 10:19:19,796 ----------------------------------------------------------------------------------------------------
|
73 |
+
2023-10-14 10:19:19,796 Model training base path: "hmbench-icdar/nl-dbmdz/bert-base-historic-multilingual-cased-bs8-wsFalse-e10-lr5e-05-poolingfirst-layers-1-crfFalse-3"
|
74 |
+
2023-10-14 10:19:19,796 ----------------------------------------------------------------------------------------------------
|
75 |
+
2023-10-14 10:19:19,796 ----------------------------------------------------------------------------------------------------
|
76 |
+
2023-10-14 10:19:25,609 epoch 1 - iter 72/723 - loss 1.72327249 - time (sec): 5.81 - samples/sec: 2983.38 - lr: 0.000005 - momentum: 0.000000
|
77 |
+
2023-10-14 10:19:31,228 epoch 1 - iter 144/723 - loss 1.00146801 - time (sec): 11.43 - samples/sec: 3045.82 - lr: 0.000010 - momentum: 0.000000
|
78 |
+
2023-10-14 10:19:36,758 epoch 1 - iter 216/723 - loss 0.73554490 - time (sec): 16.96 - samples/sec: 3059.06 - lr: 0.000015 - momentum: 0.000000
|
79 |
+
2023-10-14 10:19:42,581 epoch 1 - iter 288/723 - loss 0.60215162 - time (sec): 22.78 - samples/sec: 3047.48 - lr: 0.000020 - momentum: 0.000000
|
80 |
+
2023-10-14 10:19:48,999 epoch 1 - iter 360/723 - loss 0.50523257 - time (sec): 29.20 - samples/sec: 3045.82 - lr: 0.000025 - momentum: 0.000000
|
81 |
+
2023-10-14 10:19:55,159 epoch 1 - iter 432/723 - loss 0.45270535 - time (sec): 35.36 - samples/sec: 2992.60 - lr: 0.000030 - momentum: 0.000000
|
82 |
+
2023-10-14 10:20:00,904 epoch 1 - iter 504/723 - loss 0.41268390 - time (sec): 41.11 - samples/sec: 2980.35 - lr: 0.000035 - momentum: 0.000000
|
83 |
+
2023-10-14 10:20:07,154 epoch 1 - iter 576/723 - loss 0.37700903 - time (sec): 47.36 - samples/sec: 2966.93 - lr: 0.000040 - momentum: 0.000000
|
84 |
+
2023-10-14 10:20:13,057 epoch 1 - iter 648/723 - loss 0.34991301 - time (sec): 53.26 - samples/sec: 2976.79 - lr: 0.000045 - momentum: 0.000000
|
85 |
+
2023-10-14 10:20:18,955 epoch 1 - iter 720/723 - loss 0.32824400 - time (sec): 59.16 - samples/sec: 2973.43 - lr: 0.000050 - momentum: 0.000000
|
86 |
+
2023-10-14 10:20:19,104 ----------------------------------------------------------------------------------------------------
|
87 |
+
2023-10-14 10:20:19,104 EPOCH 1 done: loss 0.3283 - lr: 0.000050
|
88 |
+
2023-10-14 10:20:22,627 DEV : loss 0.1315712332725525 - f1-score (micro avg) 0.6755
|
89 |
+
2023-10-14 10:20:22,650 saving best model
|
90 |
+
2023-10-14 10:20:23,102 ----------------------------------------------------------------------------------------------------
|
91 |
+
2023-10-14 10:20:29,239 epoch 2 - iter 72/723 - loss 0.12632996 - time (sec): 6.13 - samples/sec: 2913.10 - lr: 0.000049 - momentum: 0.000000
|
92 |
+
2023-10-14 10:20:35,225 epoch 2 - iter 144/723 - loss 0.11494873 - time (sec): 12.12 - samples/sec: 2893.63 - lr: 0.000049 - momentum: 0.000000
|
93 |
+
2023-10-14 10:20:40,755 epoch 2 - iter 216/723 - loss 0.11125540 - time (sec): 17.65 - samples/sec: 2962.74 - lr: 0.000048 - momentum: 0.000000
|
94 |
+
2023-10-14 10:20:46,994 epoch 2 - iter 288/723 - loss 0.10970521 - time (sec): 23.89 - samples/sec: 2965.22 - lr: 0.000048 - momentum: 0.000000
|
95 |
+
2023-10-14 10:20:53,342 epoch 2 - iter 360/723 - loss 0.10475284 - time (sec): 30.24 - samples/sec: 2955.70 - lr: 0.000047 - momentum: 0.000000
|
96 |
+
2023-10-14 10:20:59,111 epoch 2 - iter 432/723 - loss 0.10224698 - time (sec): 36.01 - samples/sec: 2961.87 - lr: 0.000047 - momentum: 0.000000
|
97 |
+
2023-10-14 10:21:04,544 epoch 2 - iter 504/723 - loss 0.10046143 - time (sec): 41.44 - samples/sec: 2974.07 - lr: 0.000046 - momentum: 0.000000
|
98 |
+
2023-10-14 10:21:10,196 epoch 2 - iter 576/723 - loss 0.09752484 - time (sec): 47.09 - samples/sec: 2995.32 - lr: 0.000046 - momentum: 0.000000
|
99 |
+
2023-10-14 10:21:16,127 epoch 2 - iter 648/723 - loss 0.09941523 - time (sec): 53.02 - samples/sec: 2991.38 - lr: 0.000045 - momentum: 0.000000
|
100 |
+
2023-10-14 10:21:21,791 epoch 2 - iter 720/723 - loss 0.09855220 - time (sec): 58.69 - samples/sec: 2994.78 - lr: 0.000044 - momentum: 0.000000
|
101 |
+
2023-10-14 10:21:21,952 ----------------------------------------------------------------------------------------------------
|
102 |
+
2023-10-14 10:21:21,952 EPOCH 2 done: loss 0.0985 - lr: 0.000044
|
103 |
+
2023-10-14 10:21:26,345 DEV : loss 0.11473622173070908 - f1-score (micro avg) 0.7558
|
104 |
+
2023-10-14 10:21:26,361 saving best model
|
105 |
+
2023-10-14 10:21:26,963 ----------------------------------------------------------------------------------------------------
|
106 |
+
2023-10-14 10:21:32,825 epoch 3 - iter 72/723 - loss 0.07907433 - time (sec): 5.86 - samples/sec: 2993.20 - lr: 0.000044 - momentum: 0.000000
|
107 |
+
2023-10-14 10:21:38,751 epoch 3 - iter 144/723 - loss 0.07464467 - time (sec): 11.78 - samples/sec: 2959.55 - lr: 0.000043 - momentum: 0.000000
|
108 |
+
2023-10-14 10:21:44,800 epoch 3 - iter 216/723 - loss 0.06887957 - time (sec): 17.83 - samples/sec: 2967.64 - lr: 0.000043 - momentum: 0.000000
|
109 |
+
2023-10-14 10:21:51,036 epoch 3 - iter 288/723 - loss 0.06980865 - time (sec): 24.07 - samples/sec: 2938.66 - lr: 0.000042 - momentum: 0.000000
|
110 |
+
2023-10-14 10:21:57,209 epoch 3 - iter 360/723 - loss 0.06595517 - time (sec): 30.24 - samples/sec: 2912.85 - lr: 0.000042 - momentum: 0.000000
|
111 |
+
2023-10-14 10:22:02,975 epoch 3 - iter 432/723 - loss 0.06369977 - time (sec): 36.01 - samples/sec: 2932.84 - lr: 0.000041 - momentum: 0.000000
|
112 |
+
2023-10-14 10:22:09,498 epoch 3 - iter 504/723 - loss 0.06320356 - time (sec): 42.53 - samples/sec: 2916.78 - lr: 0.000041 - momentum: 0.000000
|
113 |
+
2023-10-14 10:22:15,167 epoch 3 - iter 576/723 - loss 0.06249681 - time (sec): 48.20 - samples/sec: 2918.13 - lr: 0.000040 - momentum: 0.000000
|
114 |
+
2023-10-14 10:22:21,126 epoch 3 - iter 648/723 - loss 0.06292183 - time (sec): 54.16 - samples/sec: 2926.70 - lr: 0.000039 - momentum: 0.000000
|
115 |
+
2023-10-14 10:22:27,060 epoch 3 - iter 720/723 - loss 0.06275594 - time (sec): 60.09 - samples/sec: 2924.25 - lr: 0.000039 - momentum: 0.000000
|
116 |
+
2023-10-14 10:22:27,243 ----------------------------------------------------------------------------------------------------
|
117 |
+
2023-10-14 10:22:27,244 EPOCH 3 done: loss 0.0627 - lr: 0.000039
|
118 |
+
2023-10-14 10:22:30,796 DEV : loss 0.08838976919651031 - f1-score (micro avg) 0.7896
|
119 |
+
2023-10-14 10:22:30,815 saving best model
|
120 |
+
2023-10-14 10:22:31,393 ----------------------------------------------------------------------------------------------------
|
121 |
+
2023-10-14 10:22:37,402 epoch 4 - iter 72/723 - loss 0.04342449 - time (sec): 6.00 - samples/sec: 2874.63 - lr: 0.000038 - momentum: 0.000000
|
122 |
+
2023-10-14 10:22:43,827 epoch 4 - iter 144/723 - loss 0.04558890 - time (sec): 12.43 - samples/sec: 2795.95 - lr: 0.000038 - momentum: 0.000000
|
123 |
+
2023-10-14 10:22:50,441 epoch 4 - iter 216/723 - loss 0.04282584 - time (sec): 19.04 - samples/sec: 2683.29 - lr: 0.000037 - momentum: 0.000000
|
124 |
+
2023-10-14 10:22:56,600 epoch 4 - iter 288/723 - loss 0.04327687 - time (sec): 25.20 - samples/sec: 2751.68 - lr: 0.000037 - momentum: 0.000000
|
125 |
+
2023-10-14 10:23:02,680 epoch 4 - iter 360/723 - loss 0.04398015 - time (sec): 31.28 - samples/sec: 2781.27 - lr: 0.000036 - momentum: 0.000000
|
126 |
+
2023-10-14 10:23:09,050 epoch 4 - iter 432/723 - loss 0.04594075 - time (sec): 37.65 - samples/sec: 2802.25 - lr: 0.000036 - momentum: 0.000000
|
127 |
+
2023-10-14 10:23:15,185 epoch 4 - iter 504/723 - loss 0.04565317 - time (sec): 43.79 - samples/sec: 2831.76 - lr: 0.000035 - momentum: 0.000000
|
128 |
+
2023-10-14 10:23:20,960 epoch 4 - iter 576/723 - loss 0.04572753 - time (sec): 49.56 - samples/sec: 2833.82 - lr: 0.000034 - momentum: 0.000000
|
129 |
+
2023-10-14 10:23:26,585 epoch 4 - iter 648/723 - loss 0.04471750 - time (sec): 55.19 - samples/sec: 2854.56 - lr: 0.000034 - momentum: 0.000000
|
130 |
+
2023-10-14 10:23:32,857 epoch 4 - iter 720/723 - loss 0.04552874 - time (sec): 61.46 - samples/sec: 2861.20 - lr: 0.000033 - momentum: 0.000000
|
131 |
+
2023-10-14 10:23:33,032 ----------------------------------------------------------------------------------------------------
|
132 |
+
2023-10-14 10:23:33,032 EPOCH 4 done: loss 0.0455 - lr: 0.000033
|
133 |
+
2023-10-14 10:23:36,576 DEV : loss 0.08705586940050125 - f1-score (micro avg) 0.8236
|
134 |
+
2023-10-14 10:23:36,597 saving best model
|
135 |
+
2023-10-14 10:23:37,122 ----------------------------------------------------------------------------------------------------
|
136 |
+
2023-10-14 10:23:43,697 epoch 5 - iter 72/723 - loss 0.03314608 - time (sec): 6.57 - samples/sec: 2845.13 - lr: 0.000033 - momentum: 0.000000
|
137 |
+
2023-10-14 10:23:49,408 epoch 5 - iter 144/723 - loss 0.02748621 - time (sec): 12.28 - samples/sec: 2921.11 - lr: 0.000032 - momentum: 0.000000
|
138 |
+
2023-10-14 10:23:55,570 epoch 5 - iter 216/723 - loss 0.02779545 - time (sec): 18.45 - samples/sec: 2927.77 - lr: 0.000032 - momentum: 0.000000
|
139 |
+
2023-10-14 10:24:01,691 epoch 5 - iter 288/723 - loss 0.02991449 - time (sec): 24.57 - samples/sec: 2917.20 - lr: 0.000031 - momentum: 0.000000
|
140 |
+
2023-10-14 10:24:07,775 epoch 5 - iter 360/723 - loss 0.03006041 - time (sec): 30.65 - samples/sec: 2908.32 - lr: 0.000031 - momentum: 0.000000
|
141 |
+
2023-10-14 10:24:13,849 epoch 5 - iter 432/723 - loss 0.03092723 - time (sec): 36.72 - samples/sec: 2904.76 - lr: 0.000030 - momentum: 0.000000
|
142 |
+
2023-10-14 10:24:19,930 epoch 5 - iter 504/723 - loss 0.03033433 - time (sec): 42.81 - samples/sec: 2882.81 - lr: 0.000029 - momentum: 0.000000
|
143 |
+
2023-10-14 10:24:25,916 epoch 5 - iter 576/723 - loss 0.03189491 - time (sec): 48.79 - samples/sec: 2887.10 - lr: 0.000029 - momentum: 0.000000
|
144 |
+
2023-10-14 10:24:31,822 epoch 5 - iter 648/723 - loss 0.03147341 - time (sec): 54.70 - samples/sec: 2897.07 - lr: 0.000028 - momentum: 0.000000
|
145 |
+
2023-10-14 10:24:38,005 epoch 5 - iter 720/723 - loss 0.03282684 - time (sec): 60.88 - samples/sec: 2885.40 - lr: 0.000028 - momentum: 0.000000
|
146 |
+
2023-10-14 10:24:38,183 ----------------------------------------------------------------------------------------------------
|
147 |
+
2023-10-14 10:24:38,184 EPOCH 5 done: loss 0.0328 - lr: 0.000028
|
148 |
+
2023-10-14 10:24:42,528 DEV : loss 0.11852852255105972 - f1-score (micro avg) 0.7987
|
149 |
+
2023-10-14 10:24:42,545 ----------------------------------------------------------------------------------------------------
|
150 |
+
2023-10-14 10:24:48,512 epoch 6 - iter 72/723 - loss 0.02109962 - time (sec): 5.97 - samples/sec: 2932.99 - lr: 0.000027 - momentum: 0.000000
|
151 |
+
2023-10-14 10:24:55,286 epoch 6 - iter 144/723 - loss 0.02464690 - time (sec): 12.74 - samples/sec: 2851.35 - lr: 0.000027 - momentum: 0.000000
|
152 |
+
2023-10-14 10:25:01,278 epoch 6 - iter 216/723 - loss 0.02651401 - time (sec): 18.73 - samples/sec: 2861.92 - lr: 0.000026 - momentum: 0.000000
|
153 |
+
2023-10-14 10:25:07,586 epoch 6 - iter 288/723 - loss 0.02500530 - time (sec): 25.04 - samples/sec: 2837.34 - lr: 0.000026 - momentum: 0.000000
|
154 |
+
2023-10-14 10:25:13,880 epoch 6 - iter 360/723 - loss 0.02550617 - time (sec): 31.33 - samples/sec: 2820.00 - lr: 0.000025 - momentum: 0.000000
|
155 |
+
2023-10-14 10:25:20,227 epoch 6 - iter 432/723 - loss 0.02588593 - time (sec): 37.68 - samples/sec: 2835.76 - lr: 0.000024 - momentum: 0.000000
|
156 |
+
2023-10-14 10:25:26,637 epoch 6 - iter 504/723 - loss 0.02626521 - time (sec): 44.09 - samples/sec: 2816.25 - lr: 0.000024 - momentum: 0.000000
|
157 |
+
2023-10-14 10:25:32,350 epoch 6 - iter 576/723 - loss 0.02545341 - time (sec): 49.80 - samples/sec: 2826.59 - lr: 0.000023 - momentum: 0.000000
|
158 |
+
2023-10-14 10:25:38,211 epoch 6 - iter 648/723 - loss 0.02546137 - time (sec): 55.67 - samples/sec: 2824.80 - lr: 0.000023 - momentum: 0.000000
|
159 |
+
2023-10-14 10:25:44,480 epoch 6 - iter 720/723 - loss 0.02448943 - time (sec): 61.93 - samples/sec: 2834.22 - lr: 0.000022 - momentum: 0.000000
|
160 |
+
2023-10-14 10:25:44,752 ----------------------------------------------------------------------------------------------------
|
161 |
+
2023-10-14 10:25:44,752 EPOCH 6 done: loss 0.0244 - lr: 0.000022
|
162 |
+
2023-10-14 10:25:48,334 DEV : loss 0.1726008951663971 - f1-score (micro avg) 0.7898
|
163 |
+
2023-10-14 10:25:48,364 ----------------------------------------------------------------------------------------------------
|
164 |
+
2023-10-14 10:25:54,132 epoch 7 - iter 72/723 - loss 0.01010894 - time (sec): 5.77 - samples/sec: 3009.11 - lr: 0.000022 - momentum: 0.000000
|
165 |
+
2023-10-14 10:26:00,546 epoch 7 - iter 144/723 - loss 0.01397475 - time (sec): 12.18 - samples/sec: 2880.79 - lr: 0.000021 - momentum: 0.000000
|
166 |
+
2023-10-14 10:26:06,233 epoch 7 - iter 216/723 - loss 0.01737460 - time (sec): 17.87 - samples/sec: 2927.54 - lr: 0.000021 - momentum: 0.000000
|
167 |
+
2023-10-14 10:26:12,698 epoch 7 - iter 288/723 - loss 0.01805427 - time (sec): 24.33 - samples/sec: 2887.43 - lr: 0.000020 - momentum: 0.000000
|
168 |
+
2023-10-14 10:26:18,352 epoch 7 - iter 360/723 - loss 0.01744268 - time (sec): 29.99 - samples/sec: 2920.78 - lr: 0.000019 - momentum: 0.000000
|
169 |
+
2023-10-14 10:26:24,396 epoch 7 - iter 432/723 - loss 0.01990357 - time (sec): 36.03 - samples/sec: 2932.22 - lr: 0.000019 - momentum: 0.000000
|
170 |
+
2023-10-14 10:26:30,242 epoch 7 - iter 504/723 - loss 0.01939631 - time (sec): 41.88 - samples/sec: 2936.64 - lr: 0.000018 - momentum: 0.000000
|
171 |
+
2023-10-14 10:26:35,761 epoch 7 - iter 576/723 - loss 0.01925559 - time (sec): 47.40 - samples/sec: 2951.69 - lr: 0.000018 - momentum: 0.000000
|
172 |
+
2023-10-14 10:26:41,965 epoch 7 - iter 648/723 - loss 0.01913244 - time (sec): 53.60 - samples/sec: 2949.86 - lr: 0.000017 - momentum: 0.000000
|
173 |
+
2023-10-14 10:26:48,111 epoch 7 - iter 720/723 - loss 0.01890120 - time (sec): 59.75 - samples/sec: 2942.22 - lr: 0.000017 - momentum: 0.000000
|
174 |
+
2023-10-14 10:26:48,270 ----------------------------------------------------------------------------------------------------
|
175 |
+
2023-10-14 10:26:48,271 EPOCH 7 done: loss 0.0189 - lr: 0.000017
|
176 |
+
2023-10-14 10:26:51,780 DEV : loss 0.16478076577186584 - f1-score (micro avg) 0.8158
|
177 |
+
2023-10-14 10:26:51,797 ----------------------------------------------------------------------------------------------------
|
178 |
+
2023-10-14 10:26:57,786 epoch 8 - iter 72/723 - loss 0.01381860 - time (sec): 5.99 - samples/sec: 3020.38 - lr: 0.000016 - momentum: 0.000000
|
179 |
+
2023-10-14 10:27:03,369 epoch 8 - iter 144/723 - loss 0.01061469 - time (sec): 11.57 - samples/sec: 3040.23 - lr: 0.000016 - momentum: 0.000000
|
180 |
+
2023-10-14 10:27:10,268 epoch 8 - iter 216/723 - loss 0.01332653 - time (sec): 18.47 - samples/sec: 2967.68 - lr: 0.000015 - momentum: 0.000000
|
181 |
+
2023-10-14 10:27:15,337 epoch 8 - iter 288/723 - loss 0.01314284 - time (sec): 23.54 - samples/sec: 2952.54 - lr: 0.000014 - momentum: 0.000000
|
182 |
+
2023-10-14 10:27:21,493 epoch 8 - iter 360/723 - loss 0.01343682 - time (sec): 29.70 - samples/sec: 2971.85 - lr: 0.000014 - momentum: 0.000000
|
183 |
+
2023-10-14 10:27:27,555 epoch 8 - iter 432/723 - loss 0.01231511 - time (sec): 35.76 - samples/sec: 2984.09 - lr: 0.000013 - momentum: 0.000000
|
184 |
+
2023-10-14 10:27:32,976 epoch 8 - iter 504/723 - loss 0.01164514 - time (sec): 41.18 - samples/sec: 3007.06 - lr: 0.000013 - momentum: 0.000000
|
185 |
+
2023-10-14 10:27:38,634 epoch 8 - iter 576/723 - loss 0.01222536 - time (sec): 46.84 - samples/sec: 3010.30 - lr: 0.000012 - momentum: 0.000000
|
186 |
+
2023-10-14 10:27:44,572 epoch 8 - iter 648/723 - loss 0.01264218 - time (sec): 52.77 - samples/sec: 3011.91 - lr: 0.000012 - momentum: 0.000000
|
187 |
+
2023-10-14 10:27:50,263 epoch 8 - iter 720/723 - loss 0.01283067 - time (sec): 58.47 - samples/sec: 3006.26 - lr: 0.000011 - momentum: 0.000000
|
188 |
+
2023-10-14 10:27:50,446 ----------------------------------------------------------------------------------------------------
|
189 |
+
2023-10-14 10:27:50,446 EPOCH 8 done: loss 0.0128 - lr: 0.000011
|
190 |
+
2023-10-14 10:27:54,343 DEV : loss 0.17232058942317963 - f1-score (micro avg) 0.8201
|
191 |
+
2023-10-14 10:27:54,359 ----------------------------------------------------------------------------------------------------
|
192 |
+
2023-10-14 10:28:00,250 epoch 9 - iter 72/723 - loss 0.00704046 - time (sec): 5.89 - samples/sec: 3061.31 - lr: 0.000011 - momentum: 0.000000
|
193 |
+
2023-10-14 10:28:06,250 epoch 9 - iter 144/723 - loss 0.00659264 - time (sec): 11.89 - samples/sec: 2995.37 - lr: 0.000010 - momentum: 0.000000
|
194 |
+
2023-10-14 10:28:11,950 epoch 9 - iter 216/723 - loss 0.00659604 - time (sec): 17.59 - samples/sec: 2989.48 - lr: 0.000009 - momentum: 0.000000
|
195 |
+
2023-10-14 10:28:18,181 epoch 9 - iter 288/723 - loss 0.00665508 - time (sec): 23.82 - samples/sec: 2980.52 - lr: 0.000009 - momentum: 0.000000
|
196 |
+
2023-10-14 10:28:23,869 epoch 9 - iter 360/723 - loss 0.00733282 - time (sec): 29.51 - samples/sec: 2978.60 - lr: 0.000008 - momentum: 0.000000
|
197 |
+
2023-10-14 10:28:30,360 epoch 9 - iter 432/723 - loss 0.00781952 - time (sec): 36.00 - samples/sec: 2974.28 - lr: 0.000008 - momentum: 0.000000
|
198 |
+
2023-10-14 10:28:35,920 epoch 9 - iter 504/723 - loss 0.00773609 - time (sec): 41.56 - samples/sec: 2971.56 - lr: 0.000007 - momentum: 0.000000
|
199 |
+
2023-10-14 10:28:41,901 epoch 9 - iter 576/723 - loss 0.00869847 - time (sec): 47.54 - samples/sec: 2978.58 - lr: 0.000007 - momentum: 0.000000
|
200 |
+
2023-10-14 10:28:47,424 epoch 9 - iter 648/723 - loss 0.00883473 - time (sec): 53.06 - samples/sec: 2988.14 - lr: 0.000006 - momentum: 0.000000
|
201 |
+
2023-10-14 10:28:53,233 epoch 9 - iter 720/723 - loss 0.00872089 - time (sec): 58.87 - samples/sec: 2987.10 - lr: 0.000006 - momentum: 0.000000
|
202 |
+
2023-10-14 10:28:53,391 ----------------------------------------------------------------------------------------------------
|
203 |
+
2023-10-14 10:28:53,391 EPOCH 9 done: loss 0.0087 - lr: 0.000006
|
204 |
+
2023-10-14 10:28:56,879 DEV : loss 0.18103523552417755 - f1-score (micro avg) 0.8237
|
205 |
+
2023-10-14 10:28:56,896 saving best model
|
206 |
+
2023-10-14 10:28:57,500 ----------------------------------------------------------------------------------------------------
|
207 |
+
2023-10-14 10:29:03,133 epoch 10 - iter 72/723 - loss 0.00332405 - time (sec): 5.63 - samples/sec: 2958.13 - lr: 0.000005 - momentum: 0.000000
|
208 |
+
2023-10-14 10:29:09,814 epoch 10 - iter 144/723 - loss 0.00473766 - time (sec): 12.31 - samples/sec: 2881.86 - lr: 0.000004 - momentum: 0.000000
|
209 |
+
2023-10-14 10:29:15,600 epoch 10 - iter 216/723 - loss 0.00599232 - time (sec): 18.10 - samples/sec: 2940.03 - lr: 0.000004 - momentum: 0.000000
|
210 |
+
2023-10-14 10:29:21,108 epoch 10 - iter 288/723 - loss 0.00549493 - time (sec): 23.61 - samples/sec: 2957.54 - lr: 0.000003 - momentum: 0.000000
|
211 |
+
2023-10-14 10:29:27,547 epoch 10 - iter 360/723 - loss 0.00683243 - time (sec): 30.04 - samples/sec: 2937.64 - lr: 0.000003 - momentum: 0.000000
|
212 |
+
2023-10-14 10:29:33,142 epoch 10 - iter 432/723 - loss 0.00611410 - time (sec): 35.64 - samples/sec: 2958.49 - lr: 0.000002 - momentum: 0.000000
|
213 |
+
2023-10-14 10:29:39,216 epoch 10 - iter 504/723 - loss 0.00646123 - time (sec): 41.71 - samples/sec: 2972.85 - lr: 0.000002 - momentum: 0.000000
|
214 |
+
2023-10-14 10:29:45,089 epoch 10 - iter 576/723 - loss 0.00655367 - time (sec): 47.59 - samples/sec: 2969.83 - lr: 0.000001 - momentum: 0.000000
|
215 |
+
2023-10-14 10:29:50,720 epoch 10 - iter 648/723 - loss 0.00634156 - time (sec): 53.22 - samples/sec: 2971.21 - lr: 0.000001 - momentum: 0.000000
|
216 |
+
2023-10-14 10:29:56,807 epoch 10 - iter 720/723 - loss 0.00633108 - time (sec): 59.31 - samples/sec: 2958.84 - lr: 0.000000 - momentum: 0.000000
|
217 |
+
2023-10-14 10:29:57,135 ----------------------------------------------------------------------------------------------------
|
218 |
+
2023-10-14 10:29:57,136 EPOCH 10 done: loss 0.0063 - lr: 0.000000
|
219 |
+
2023-10-14 10:30:00,608 DEV : loss 0.18696151673793793 - f1-score (micro avg) 0.821
|
220 |
+
2023-10-14 10:30:01,006 ----------------------------------------------------------------------------------------------------
|
221 |
+
2023-10-14 10:30:01,007 Loading model from best epoch ...
|
222 |
+
2023-10-14 10:30:02,647 SequenceTagger predicts: Dictionary with 13 tags: O, S-LOC, B-LOC, E-LOC, I-LOC, S-PER, B-PER, E-PER, I-PER, S-ORG, B-ORG, E-ORG, I-ORG
|
223 |
+
2023-10-14 10:30:05,788
|
224 |
+
Results:
|
225 |
+
- F-score (micro) 0.815
|
226 |
+
- F-score (macro) 0.7275
|
227 |
+
- Accuracy 0.6978
|
228 |
+
|
229 |
+
By class:
|
230 |
+
precision recall f1-score support
|
231 |
+
|
232 |
+
PER 0.8004 0.8402 0.8198 482
|
233 |
+
LOC 0.8892 0.8231 0.8549 458
|
234 |
+
ORG 0.5410 0.4783 0.5077 69
|
235 |
+
|
236 |
+
micro avg 0.8224 0.8077 0.8150 1009
|
237 |
+
macro avg 0.7435 0.7139 0.7275 1009
|
238 |
+
weighted avg 0.8229 0.8077 0.8144 1009
|
239 |
+
|
240 |
+
2023-10-14 10:30:05,789 ----------------------------------------------------------------------------------------------------
|